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STRONG LAW OF LARGE NUMBERS FOR BANACH SPACE
VALUED RANDOM SETS*

BY MADAN L. Puri AND DAN A. RALEScU

Indiana University and University of Cincinnati

In this paper we prove a strong law of large numbers for random sets
whose values are compact convex subsets of a Banach space.

1. Introduction and preliminaries. The study of the theory of random sets initi-
ated by Robbins (1944, 1945) and defined as multivalued measurable mappings on a
probability space has received considerable attention in recent years (see e.g. Kendall
(1974), Matheron (1975) and, Fortet and Kambouzia (1975), among others). Motivation for
studying random sets is both theoretical (since they generalize random variables and
random vectors) and practical (since they represent geometrical objects in certain models
of growth).

Artstein and Vitale (1975) proved a strong law of large numbers (SLLN) for R ?-valued
random sets (i.e. random sets whose values are compact subsets of R”). Later, using
different methods, Cressie (1978) proved a SLLN for some particular class of R”-valued
random sets.

The methods of Cressie (1978) do not seem suitable for extension to more general
random sets. Artstein and Vitale (1975) use an embedding of all compact convex subsets
of R? into C(S”"'), the Banach space of continuous functions on the unit sphere in R”.
However, their result is not valid if R is replaced by a Banach space.

In this paper we consider random sets as (measurable) mappings from a probability
space into the set of compact convex subsets of a Banach space. In this setting, we prove
a SLLN for sequences of independent and identically distributed random sets. Our main
tool in proving this limit theorem is a result due to Radstrom (1952) which states that the
collection of compact convex subsets of a Banach space can be embedded as a convex cone
in a normed space.

Our result generalizes all previous SLLN for random sets. Note, however, that if the
random sets take values in an infinitely dimensional space, the hypothesis concerning the
convexity of values cannot be dropped.

Let F be a real Banach space. Denote by ' (F'), the collection of all nonempty compact
convex subsets of F. The following operations are defined in " (F'):

A+B={a+bla€AbEB), aA={aalacA)}

where A, B € #(F), « € R. Note that X' (F) is not a vector space but it becomes a
complete metric space when endowed with the Hausdorff distance

du(A, B) = max {supaeainfieg| a — 0|, supsepinfyeal @ — 6|}

where | - || denotes the norm in F'and A, B € X' (F).

We use the notation || A || = du ({0}, A) = sup{||a||a € A} where A € X (F).

Let (2, o7, P) be a probability space. A random set (F-valued random set) is a Borel
measurable function X:Q2 — % (F'). Different concepts of measurability can be introduced,
but they are equivalent in this setting (see, e.g. Debreu (1966)).

The expected value of a random set is defined by using the integral due to Debreu
(1966). (For another definition, see Aumann (1965), and for the equivalence of two
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definitions, see Byrne (1978)). To recall the definition due to Debreu (1966), suppose first
that X is a simple random set, i.e. X = Y%, K;xa, where K; € #'(F), A; € o and x4, is the
characteristic function of A;. Then, the expected value of X is defined as E(X) = fo X dP
= Y%, P(A;)K;. To extend this integral to more general random sets, one needs to use the
Réadstrom (1952) embedding theorem: There exists a normed space & and an isometry
j: A (F) — & such that addition in & induces addition in #'(F) and multiplication by
nonnegative scalars in % induces the corresponding operation in J'(F). It is clear that if
X:Q— #'(F) is a random set, then E(X) = [¢ X dP can be defined as a Bochner integral.
It can be shown (see Debreu (1966), pages 354 and 363)) that E(X) € X (F) if X is
integrable, i.e., if E(|| X)) < .

2. Strong law of large numbers. To prove the SLLN for the Banach space valued
random sets, we will use the Radstrom embedding theorem together with the SLLN for
the Banach space valued random elements. To adopt this approach, we need the following
lemma:

LEMMA 2.1. Let X:Q — X' (F) be a random set such that E(|| X|) < co. If j: #(F)
—> Fis the isometry given by the Rddstrom embedding theorem, then E(j°X) = j(E(X)).

Proor. Suppose first that X is a simple random set, i.e., X = Y\%-1 Kixa, where K; €
H(F), A; € o and x4, is the characteristic function of A;. Then, since E(X) = Y%, P(A)K;
and joX = Y%, j(K;)xa,, the result follows.

Now suppose that X is a random set such that E(]|X||) < . Then there exists a
sequence of simple random sets X, such that X, — X a.e. and

Yt e f2 |0 X — jo Xn| dP =0

(Debreu (1966, page 365)). The result follows by noting that E(X) = lim, .« E(X,), j°X»
— joX a.e., and using the definition of the Bochner integral.
We now prove the SLLN for random sets.

THEOREM 2.1. If X,, n =1 is a sequence of independent and identically distributed
random sets such that E (|| X1||) < », then ¥?-1 X;/n— E(X1) a.e., the convergence being
in the Hausdorff metric.

Proor. From the Radstrém embedding theorem, there exists a normed space & and
an isometry j: X (F) - £

Thusjo X, j°Xz, - - +,j° X, are independent and identically distributed, and E (|| X1 ||)
= E(|| X1||) < . From the standard SLLN in Banach space (cf. Mourier (1955)), it follows
that (371 j°Xi)/n — E(j°X1) a.e. which implies that je[(¥-1 X;)/n] — E(j°Xi) a.e.

By Lemma 2.1, j°[(3 %1 X;)/n] — j(E(X1)) a.e. Finally, since j is an isometry, it follows
that (37 X;)/n — E(X1) a.e., the convergence being in the Hausdorff metric.
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