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THE MOTION OF A TAGGED PARTICLE IN THE SIMPLE
SYMMETRIC EXCLUSION SYSTEM ON ZzZ*

BY RICHARD ARRATIA

University of Southern California

Consider a system of particles moving on the integers with a simple
exclusion interaction: each particle independently attempts to execute a simple
symmetric random walk, but any jump which would carry a particle to an
already occupied site is suppressed. For the system running in equilibrium, we
analyze the motion of a tagged particle. This solves a problem posed in
Spitzer’s 1970 paper “Interaction of Markov Processes.” The analogous ques-
tion for systems which are not one-dimensional, nearest-neighbor, and either
symmetric or one-sided remains open. A key tool is Harris’s theorem on
positive correlations in attractive Markov processes. Results are also obtained
for the rightmost particle in the exclusion system with initial configuration
Z~, and for comparison systems based on the order statistics of independent
motions on the line.

1. Introduction. Infinite particle systems with a simple exclusion interaction were
introduced in Spitzer’s 1970 paper, “Interaction of Markov processes.” These systems have
been studied extensively; see Liggett (1977) for a survey, or Liggett (1980) for a recent
study of a related model. Let p(x, y) = p(0, y — x) be the transition probabilities for an
irreducible random walk on the integers Z. The corresponding exclusion system 7; is a
Markov process with state space {0, 1} = {n:n C Z}—it is an evolution of configurations
of indistinguishable particles on Z with at most one particle per site. A particle at x waits
an exponentially distributed time with mean 1, then chooses a site y with probability
p(x, ). If y is vacant at that time, the particle at x moves to y; otherwise it stays at x. All
the holding times and choices according to p are independent. Since the holding times
have a continuous distribution, only one particle moves at a time; one may tag an individual
particle and follow its motion.

For each p € [0, 1], product measure », on {0, 1}, with marginals »,{n:x € n} = p,
Vx € Z, is invariant for the simple exclusion process (Spitzer, 1970). Start an exclusion
system 7, in its equilibrium »,, conditioned to have a particle at the origin initially, and let
Y, be the position at time ¢ of that particle. This initial distribution, product measure »,
conditioned to have a particle at 0, is invariant for the translated configuration —Y; + 7,
i.e., for the configuration of particles relative to the frame of reference of the tagged
particle. At the upper extreme of crowding, p = 1 and no = Z, all attempted jumps are
excluded and no particle ever moves; Y; = 0, V¢, w. At the opposite extreme, p = 0 and 7o
= {0}, the exclusion mechanism never comes into play and Y, is the same as an ordinary
continuous-time random walk X,. Consider the case where the random walk X, with jumps
at rate one based on p has Var(X,) = 0% < . A naive guess is that Var(Yy) = (1 — p)o’t as
¢ — oo; this gives the correct values at both p = 1 and p = 0, and for all p it is asymptotically
correct as ¢ — 0. However, for the nearest-neighbor symmetric case, p(x, x + 1) =
p(x, x — 1) = %, the correct result is

Var(Y,) ~ v2t/m(1 —p)/p
as ¢ — oo; this is Theorem 1 and the main result of this paper. This is in sharp contrast to
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the result for the one-sided nearest neighbor case, p(x, x + 1) = 1, given in Spitzer (1970):
Var(Y,) = (1 - p)t.

Let us consider these two cases of p in more detail. In any nearest-neighbor case
(p(x,y) = 0if |[x — y| > 1), the paths of different tagged particles cannot cross over each
other. A continuous-space system with this property was studied by Harris (1965) in
“Diffusions with ‘collisions’ between particles.” Particles in that system undergo indepen-
dent Brownian motions apart from reflection upon collision with each other. The paths in
Harris’s system are the order statistics derived from a system of independent Brownian
motions, so that the derived paths never cross each other, and the two systems have, for
all ¢ and w, the same set of occupied sites. A Poisson point process on R is invariant in
distribution for independent particle motions, and thus also invariant for the system with
reflections. Harris considered the system with reflections starting from a Poisson point
process on R with intensity one, conditioned to have a particle at the origin. By expressing
the position yo(¢) of that tagged particle in terms of the positions of particles in the system
of independent motions, he proved that

£ V40(8) —q (0, V2/7).

This led Spitzer (1970) to conjecture, for the symmetric nearest-neighbor exclusion system
starting in equilibrium », for p € (0, 1), that the variance of the position of a tagged particle
grows like some constant, depending on p, times Vt. However, in the one-sided case
p(x, x + 1) = 1, a particle is never affected by other particles to its left; it can be checked
that even after conditioning on the position Y, of the tagged particle, the distribution of
the configuration (n(Y,+ i),i=1, 2, --.) to the right is product measure with density p.
Thus the process Y, is Markovian with jumps of +1 at rate 1 — p, so Y; is Poisson with
mean and variance exactly (1 — p)¢#; Spitzer (1970) attributes this result to Kesten.

These two cases of p, namely a one-dimensional nearest-neighbor random walk which
is either one-sided or else symmetric, are the only cases in which asymptotics for
Var(Y,) have been established. The remaining nearest-neighbor cases, p(x, x + 1) =
1 — p(x, x — 1) € (%, 1) must somehow interpolate between Var(Y, ~ ¢Vt when
p(x, x + 1) = % and Var(Y,) ~ ¢ when p(x, x + 1) = 1. One might conjecture linear
growth for Var(Y;) in all the intermediate cases in the belief that the symmetric case is
more “special” than the one-sided case. More boldly, one might conjecture that Var(Y;) ~
|p(x, x + 1) — p(x, x — 1)|-(1 — p)t since the underlying random walk is the sum of a
symmetric random walk at rate min(p(x, x + 1), p(x, x — 1)) and a one-sided random walk
at rate | p(x, x + 1) — p(x, x — 1)|. In non-nearest-neighbor exclusion systems on Z* and in
exclusion systems on Z¢ for d = 2, a particle is not “trapped” by its neighbors, which
makes linear growth for Var(Y,) seem plausible.

CONJECTURE. For the simple exclusion system on Z% d = 1 corresponding to
an irreducible random walk with finite variance, starting in product measure », with
p € (0, 1), the position Y, of a tagged particle has

Var(Y) ~ct as t— o
for some constant depending on p and p, provided that p is not one-dimensional, symmetric
and nearest-neighbor.
Theorem 2 concerns the non-equilibrium behavior of the exclusion system 7, starting
from 1o = Z~. The position of the righmost particle
M, =max{y:y€n)

is the same as the position of the tagged particle initially at zero in those cases where p is
nearest-neighbor. In the one-sided case p(x, x + 1) = 1, the lead particle is not affected by
any other particle, so M, is a rate one Poisson process, and the fluctuations of M; — ¢ are
described by the classical central limit theorem and law of the iterated logarithm. Rost
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(1981) showed that the system spreads out linearly in time, with a density profile given by
P(lat|€n?) - (1 —a)/2

for a € [—1, 1], where |x] denotes the integer n with n < x < n + 1. We consider the
symmetric, nearest neighbor case p(x, x + 1) = p(x, x — 1) = %. The standard self-duality
relation for symmetric exclusion systems:

PafNB#Q)=PANn#0)
with A = Z~ and B = {|at"/?]} immediately yields a density profile result:

P(lat™?| € 4f7) —> J’ (2m) V%~ dx.

The position M, of the lead particle is described in Theorem 2 by
t72M, — Vlog t —... 0;

it is the same result that would be obtained if M, were the maximum of a countable
collection of independent random walks, one starting from each z € Z~.

Theorems 1 and 2 are proved by considering order statistics of a system of dependent
random walks, the stirring system. Both theorems use Lemma 1 to get an upper bound on
the dependence of the stirring paths; Theorem 1 is sharp because it also exploits the strong
dependence of the stirring paths, shown by formula (7). For the sake of comparison with
Theorems 1 and 2, we conclude this paper with two theorems describing the order statistics
of a system of independent paths in place of the stirring paths.

2. Symmetric exclusion motions in terms of stirring motions. For any sym-
metric random walk p on Z, the system of exclusion motions based on p can be expressed
in terms of a system ¢ = ¢(w) = (¢f, x € Z, ¢t = 0) of random stirrings, as introduced by
Harris (1972) and Lee (1974); see Griffeath (1979) for a recent exposition. The system £ at
all times has exactly one particle per site; the particles at sites x < y are interchanged at
rate p(x, y) = p(y, x), with independent Poisson flows of event times for each pair of sites
{x, ¥} for which p(x, y) > 0. The position at time ¢ of the particle initially at size x is
denoted &7. Equivalently, £&; is a random permutation of Z which starts as the identity
permutation and to which the transposition (x, y) is appended after exponentially distrib-
uted times with mean 1/p(x, y), independently for each {x, y} for which p(x, y) > 0. For
each fixed x, the path £ is a random walk based on p, starting at x. From now on we will
take the realization of the symmetric exlcusion system given by:

(1) for ACZ,  f={¢:x€A).

Notice that this gives an additive coupling of the family of exclusion processes correspond-
ing to p: B =gt UnPforall A, BC Z

Following Harris (1965), we will express the set-valued evolution 7 in terms of a system
of paths (Y7, x € A) which never cross each other; we loosely describe these Y7 as the
“order statistics” of the stirring paths £7. Thus, we need to define paths Y7 for x € A so
that for all £ =0

(Yrx€AY=ni (={¢:x€A})
Vx<yEA, Yi<Y?
(2) VxEA, Y5=x (= &)
Vx € A, Y7 is right-continuous with left limits, and
[{i€A: Yi_# Y| <o,
To accomplish this, define for x,zE R, t =0
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(3) philz, t) =|{y€A:y<ux tI=2}|
paxz,t) =|{y€A:y>ux, ¢ <z}|.

Now define the paths Y7 = Y?* for x € A by

(4) Y: (= YP4) = sup(z € R: phi.(z, t) > piax(z, £)).

Here is a proof that the paths Y7 = Y (x, ) defined above satisfy the four conditions in
(2). Consider A C Z and ¢ = 0 as fixed. Let

D(x, 2) = ph(2, ) — pax(z, t).

As a function of z € R for fixed x, D(x, -) is a left-continuous decreasing step function with
jump —1 at each z € {¢{: y € A}, and D(x, —») = |A N (-, x]|, D(x, ©) =
—|A N (x, ) |. Similarly, for fixed z, D(-, 2) is right-continuous increasing step function of
x € R with jump +1 at each x € 4, and D(—», 2) = —|{y € A: £} < 2}|, D(x, 2) =
|{y € A: £ = 2z}|. From the description of D(x, -) it follows that {Y(x, ¢t): x € A} C 7.
Fix integers xo and zo such that xo € A, Y(xo, t) = zo. Label A and 77 so that A =
(o xa<x<x---}andnf = (... —z; <z < 2 ---}. From the jump description of D
it follows that for x € [x:, x:;+1) and 2z € (2,1, 2i4j] we have D(x, z) = 1 — j and hence
Y (x;, t) = z;. This finishes the proof that the Y7 defined by equation (4) satisfy the
relations in (2).

The definition of the path Y7 above is valid in the stirring system based on any
symmetric random walk p(x, ) = p(y, x). In the nearest-neighbor case, p(x, y) = 0
whenever | x — y| > 1, at most one of the paths (Y7, x € A) moves at any time, so that Y7
is the path of the tagged particle initially at x € A, in the exclusion system 757 defined by
(1). When p is symmetric but not nearest-neighbor, the path of a tagged particle initially
at x in the exclusion system 7 is not given by Y%. To see this in detail, if x En# and
y & 7t and the particles in £ at sites x and y get stirred at time ¢, then the paths Y~
which jump at time ¢ are exactly those for which YZ_is in the closed interval between x
and y.

3. Theorems for the nearest-neighbor, symmetric exclusion system.

LEMMA 1. In a system (¢7, x € Z) of random stirrings, based on symmetric, nearest-
neighbor random walk (p(x, x + 1) = p(x, x — 1) = 1), the events

{¢/=a} and {&'=10b)

are negatively correlated, for all t = 0 and v, w, a, b € Z with v # w.

Proor. We apply Harris’s theorem (1977), which states that for an attractive Markov
process X; on a finite partially ordered state space E, a necessary and sufficient condition
for the evolution to preserve the class of measures having positive correlations is that the
process can jump only between comparable states. Let E = {(x, y) € Z%: x # y}, with the
partial order (x1, y1) < (x2, y2) iff x; = x2 and y; = y». (Note the reverse order for the second
component.) The process X, defined by X = (&%, £7) for (x, y) € E is clearly a Markov
process which only jumps up and down in E. We will present below a coupling to show
that the process X, is attractive: Although this is not a process with a finite state space, it
is easy to approximate this process by finite-state processes for which Harris’s theorem
applies directly. For increasing functions on E into R use

flo, ) =lx=a), g y)=1y<bd),

and start tl}e process in the deterministic measure “unit mass at (v, w).” Now the statement
th:f the distribution of X, has positive correlations, applied to f and g, is precisely our
goal:

Pz a & <b) = E(fg(X)) = (Ef(X.))(Eg(X.)) = P = a)P(EF < b).
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The process X, which we must show to be attractive is the Markov process on E with
flip rates

(x,y) = (2, y) atrate p(x,2) if z#y
(x) y) - (x, Z) at rate p(y, z) if z# x;
(x, y) = (y,x) atrate p(x, y).

We will construct simultaneously, for each e € E, a realization X¢ of the process starting
ate sothatforallw €Q,t=0,

(5) e<f€E implies X{=XIi.

For each (x, y) € E, let W, be a rate p(x, y) flow of event times, with these flows
mutually independent. At an event time in W,,, any X* in one of the states listed below
will jump:

(x, 3) = (3 %),
(x,2) > (y,2) for z#y, and

(z,5) = (z,x) for z#x

It is trivial to check that at each event time 7, X°~ < X{_ implies X¢ < X ' so that (5)
holds. Note that this coupling differs from the coupling achieved by setting X{*” =
(&3, £7); essentially, in this latter coupling, for each x # y the two flows of event times W,
and W,, are taken to be identical rather than independent. 0

Added in revision. The proof above does not work for the case of p symmetric but not
nearest-neighbor, because the process X on E fails to be attractive: relation (5) fails in any
coupling for e = (0, x), f= (1, x), and ¢ small, if x = 2 and p(0, x) > 0. A referee showed
how to prove Lemma 1 for an arbitrary symmetric random walk p on Z by calculating
directly with the generator of our process X. Lemma 1 can also be generalized in a different
direction. First note that for our application of Lemma 1, only the special case a = b is
used. Enrique Andjel pointed out that occupation of a single set by two different stirring
paths involves negative correlation, and this has nothing to do with the order relation of
the line, as shown below.

LEMMA 1. Let p(x, y) be the Q matrix for a Markov process on a countable state
space S, with p(x, y) = p(y, x), and let (¢i, x € S, t = 0) be the corresponding stirring
system. Thus Vx € S, ¢¥ is a realization of the Markov process on S starting from x, and
Vt =0, & is a permutation on S. Then for any AC S, x# y € S, t = 0, the events {{ € A}
and {§{7 € A} are negatively correlated.

ProoFr. The pair 7, = (£, £7) is a realization of the exclusion process with state space
T, = {(i, j) € 8% i # j}. The function g: S> — R defined by g((i, j)) = 1({x, y} C A) is
bounded, symmetric, and positive definite in the sense of Liggett (1977, page 227). The
conclusion of Lemma 2.3.4 in that reference, specialized to this g, is exactly the statement
of Lemma 1°.0

THEOREM 1. For the exclusion system of simple random walks on Z, starting from
product measure with P(x € no) = p for 0 # x € Z, P(0 € no) = 1, the position Y, of that
tagged particle initially at the origin satisfies

t74Y, —a n(0, v2/7 (1 — p)/p).
Furthermore, Var(t~'/*Y,) — v2/7 (1 — p)/p.

Proor. The position Y, = Y? of the tagged particle in the exclusion system is given by
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relations (3) and (4), where (£7, x € Z) is a system of nearest neighbor stirrings, independent
of the initial configuration no = A, which is distributed according to the product measure
v, conditioned to have 0 € A. These relations reduce to

(6) {0:Y,z2) = {0 Fyzo HYEA §=2) — Yo Ly E A, § <2)) >0},

for any z € R. Here is a quick argument to show that {¢"'/*Y,, ¢ > 1} is tight; we don’t use
this result, but its proof illuminates the need to introduce relation (7) below. Fix a = 0 and
let z = at'*. Since

ut=pho(z, t) = Yo L(&i= 2, i € A)

is the sum of indicators of events which, according to Lemma 1, are negatively correlated,
it follows that Var(u*) = E (u*) ~ p v¢/(27). The same consideration for u~ =pz, (2, )
leads to the bound Var(u* — u~) =< ¢#/% and direct calculation yields E (u* — p~) ~ pz.
Now by relation (6),

P(Y,>at) = P(u* — u~ > 0) =< ct'*/(02)* = clpa) %

This shows that {¢"/*Y,} is tight, but this argument cannot establish the desired conver-
gence in distribution or even identify the limiting variance.

A deterministic property of the stirring paths is the key to further progress; for all
0<zER,t=0,and w €E Q,

) wko(2 ) — uzolz, £) = =120 (0, 2)|,

where the p are defined by (3). To prove this claim, check that it is true at £ = 0 and that
any stirring changes the left side of (7) by zero. In detail, the left side is |B| — |C| with B
={y€EZ y=0,=2and C={y €EZ: y>0, £ < z}. The only stirring which affects

- either B or C is the transposition (i, { + 1) where i < z < i + 1. Suppose that x and y are
the integers such that £f =i, £f =i+ 1,£%_ =i+ 1, and £7 = i. The four possible cases and
the resulting changes at time ¢ are

x=0,y=<0 B gains x, B loses y;
x=0,y>0 B gains x, C gains y;
x>0,y<0 Closes x, B loses y;
x>0,y>0 Closes x, C gains y;

so that the net change in |B| — |C| is always zero.
Write N = N(w, 2, t) for the first term in relation (7), so that

N =p2o(z, t) = T pmo 1(& = 2)

is a sum of indicators of dependent events, which by Lemma 1 are negatively correlated.
If z(t) = o(t'/?), then Var(N) < EN = E((&) — [2] + 1)*) = (t/(27))"/%. By Chebyshev’s
inequality it follows that

P(IN = (t/2m)"*| > %) -0 as t— oo.

Now consider the role of the initial state A of the exclusion system. Write A = n U {0}
where the distribution of 7 is product measure »,. Take z to be a positive integer. Label the
two sets of sites which would contribute to expression (6) if A were Z:

{(y=0:8122} = {y-n<y-ne1< -+ <y},
{y>0éi<z}={yn<y2<-+ <Yn+z1}.
Let
S =Y Nto-1 1(Yi €M) — Vim1ton+2-1 L(y: E M),
sothat Y, =z iff S+ 1(£)=2,0€&5) >0. Fix a = 0 and let z = 2(¢) = la((1—p)/p)"*
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(2t/m)*]. After conditioning on the value of N, which depends only on the stirring paths
£, the distribution of S is of the form described in Lemma 2 below. Let E = E, be the event
{IN — (¢/(27))"*| < t*/®}, so that P(E) — 1 as ¢ — =, and let X denote a n(0, 1) random
variable. We have

P(Y;=2)=P(S+1(&=20¢&n >0
=P(S>-1)<P(E°)+ P(S>-1|E)P(E) > 0+ P(X > a).

Similarly P(Y, = 2) = P(S>1) = P(S > 1|E)P(E) — P(X > a). We have shown that
P(Y; = 2) » P(X > a), where X is n(0, 1) and z = a((1 — p)/p)?(2t/m*. Thus
t74Y, —a n(0, (2/m) 21 — p)/p).

To establish that Var(Y,) ~ (2¢/7)/*(1 — p)/p, it remains to show that {t~V2Y?, t =1}
is uniformly integrable. Here are some of the estimates, to show that lim sup E ((¢7/*| Y,|)?)
< o, Take @ > 1 and z = |at'/*]. Now

P(Y:> at'*) <= P(N > t'2 + t4a"%)
+ 1Y <esprtga PIN=n)P(X1+ +++ + X, + 1> Y1+ oo + Yoro).
For the first term, since Var(N) = EN = (t/(2m)V? P(N > tV* + t/4a"%) <
P(N — EN > t*a™*) < Var(N)t?a™"? < a2, for all a > 1 provided ¢ is large enough

that EN < ¢', Routine bounds on the second term lead to P(Y; > at/*) < ca~""2 for all
a >1and t > ¢, so that supe E (¢ 74| Y:|)® < 0.0

LEmMMA 2. LetS=S8,=Xi+ -+ +Xo — (Y1 + +++ + Yu1.), where the X;, Xo, + - -,
Yy, Yy, c-- areiid,, PXi=1)=p, PX;=0) =1 — p, and z = z(t) = la((1 — p)/p)"?
(2t/m)"*). Then for any a € R, limuo Supn:|n—t/van|<i/® |P(S>a) — [z @m) e/ dx|
= 0.

Proor. For any n(¢) such that z(¢) = o(n(t)), Var(X; + ... + X,)/Var(S) =
n/(2n + z) — %, so that (X; + ... + X, — np)/(Var(S))"? — n(, %) and (Yy + --- +
Yoiz — (n + 2)p)/(Var(S)) 2 -, n(0, %) as t — . For n(t) = (t/2m) "2, ES/(Var(S))V/% =
—2p/(p(1 — p)(2n + 2))* = —a, s0 S/(Var(S))/? >, n(—a, 1) as t — c. [

THEOREM 2. For the exclusion system n, =n7 of simple symmetric random walks on
Z starting with particles on the negative integers, the position of the rightmost particle,
+ = max(n.), satisfies

t7VM, — Viog t —,s, 0.
Proor. We will first give the argument to show that t™/*M, — Vlog ¢ converges to
zero in probability; a routine extension of this using a skeleton of times and the Borel-
Cantelli lemma then shows the almost sure convergence. As in relation (1), the set 7, of

sites occupied by the exclusion system with 7o = Z~ = {..., =2, —1, 0} is realized in terms
of a system (£, x € Z) of nearest neighbor stirrings by

n=nf ={¢:i€Zi=<0)}.
Given some deterministic z = z(¢), define N = N(t, w) by
N=Y l&=2),

so that for each w, M; = z iff N = 1. (This is the special case of relations (3) and (4) with
A=7Z",x=0,N=pi.(2,t),p  =0,M,=Y]) Fixa € R and let z = z(a, t) be given by

z =t"*((log t)"* + a).
Since £ is a simple random walk starting from i,
EN=E(¢ -[2]1+1)") > o if a<0,

-0 if a>0,



EXCLUSION SYSTEM ON Z 369
as t — oo; the calculation is given in Lemmas 3 and 4 below. Thus for a > 0, Chebyshev’s
inequality yields

P(t™?M, — (log t)/*>a) = P(N= 1)< EN— 0

as ¢ — . For a < 0, we need to use the negative correlations of stirring paths given by
Lemma 1 to conclude that Var(N) < EN so that

Pt '2M, — (log t)"* > a) = P(N = 0) = Var(N)/(EN)*< 1/(EN) - 0
as t — oo, This shows that
t ™M, — (log ¢)"/>*— 0 in probability.

The argument to get almost sure convergence proceeds differently on the two sides of
zero. On the right, to get

lim sup(¢7*?M, — (log t)'?) < 0 a.s.,
it suffices to find a skeleton of times %, 1 o for which, for every a > 0, with z(a, n) =
(t2)*((log t.)"* + @), P((maXe<sn.. M) = z(a, n) i.0.) = 0. Now

Y=o P(MaXes,, maxisoés = 2(a, 1)) < Tr=o,i<0 P(Maxe,,. £ = 2(a, n))

= Zrz020 2P (&, = 2(a, 1)) = Tm0 2E ()

n:

1 rz(a) n)] + 1)+) < oo,

Estimates like those in Lemma 3 show that this last sum is finite when ¢, = exp(n*), for
a € (0, %5).
On the other side, to get

®) lim inf(¢7*°M, — (log )/ = 0 as,,

we take £, = e™ for any choice o € (0, 1) and show, using estimates like those in Lemma
4, that for every a > 0,

Yn=0 P(M;, < 2(—a, n)) <o, and
Snzo Tizo P((minsetimmen £) < 2(=2a, n + 1)|M,, = £, = z(~a, n)) < .
From these it follows that for all @ > 0,
Yo P(¢7V2M, — (log t)/* < —2a for some ¢ € [t, tus1]) < 0,
which implies (8). This completes the proof that t~/>M, — (log t)** - 0 a.s. 0
The next two lemmas give routine estimates for rate one continuous time random walk

X,, with P(X; = i) = e Y=o £"/(n))P (S, = i), where S, is discrete time simple symmetric
random walk.

LEMMA 3. For rate one simple random walk X., for a > 0, with z(a, t) =

Vt(Vlog t + a),

EX; X >z2(a,t)) >0 as t— o,

Proor. Take ¢t — « along the integers, so that X, is the sum of ¢ independent copies
of X;. Since E (exp(AX;)) < o for all A, a standard large deviation result applies (Feller,
1971, Section XVI.6), namely that P (X, > vt x(¢))/P(X > x(t)) = 1, whenever x(t) — «
and x(t) = o(t'®), where X is n(0, 1). We have for large ¢

EX; X, > 2(a, t)) = EX,;; t7/2X, € (Vlog t + a,log t)) + E(X;; £ 2X, = log t).

The first term above is dominated by v¢ log ¢ P(¢72X, >Vlog t + a) ~Vt log t P(X >
Viog t + a) ~ eVt log t(Vlog t + a) " exp(—(Vlog ¢ + a)*/2) ~ ¢'Vlog ¢t exp( —aViogt) =
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o(1). The second term, using Cauchy-Schwartz, is dominated by E (X?)P(t~2X, > log t)
=0(1).0

LEMMA 4. For rate one simple random walk X,, with z(a, t) = ND Wlogt + a), for
a>0,
E((X; — 2(—a, t))') >0 as t— .
Proor. Asin Lemma 3, consider ¢ — o along the integers to use a large deviation

result for ii.d. sums; let X denote a n(0, 1) random variable. Now for any a > 0, for
sufficiently large ¢,

E((X: — 2(=3a, t))") = E(X, — 2(-3aq, t); 2(—2a, t) < X, < 2(—a, t))
= avt P(t7°X, € (~2a + Viog t, —a + Viog t)) ~ avt P(X > —2a + Vlog t)
~ ¢Vt (—2a + Viog t)™" exp(—(—2a + Viog £)2/2)
~ ¢’(log £)7'/ exp(2a vlog t) — . O
4. Comparison results: order statistics of independent motions. For compari-
son with Theorem 2 on the rightmost particle in the symmetric exclusion process on Z, we
consider in Theorem 3 an analogous system in which the underlying stirring paths are
replaced by independent random walks. The estimates in Theorem 3, combined with the

step Var(N) < EN from Theorem 2, would only show for the exclusion system that
{b(t) M, — al(t), t > t,} is tight.

THEOREM 3. For a system of independent Brownian motions on R, starting with
particles occupying an intensity X Poisson point process on (—», 0], the position M, of the
rightmost particle at time t satisfies

P (% —a(t) < x) — H;4(x) = exp(—e™)

with scaling and centering constants

t Y,
b(t) = \[—, a(t) =log (——) .
log ¢ V2rlogt

This same result, with A = 1 above, is obtained for M; = max;< x:(¢), where the x; are
independent simple random walks, starting with x;(0) = i for each i € Z.

Proor. (The limiting distribution Hs is well known; see Galambos (1978).) Here is
the argument for the system of Brownian motions. Let z = z(c, t) = Viog ¢t + (log t)~'/2
(c — log log t). Let N = N(zv¢, t) be the number of particles which are to the right of
2+t at time ¢. Let X, be a standard Brownian motion, so that X = X; is n(0, 1). By
decomposing N as the integral over x € [0, ») of how many particles start between —x —
dx and —x and then travel to the right of zv¢ by time ¢, we see that N is Poisson with
parameter

EN = j AP(X, — x= z Vt)dx = \E((X, — 2vVt)*) =A VE E((X — 2)*).
x=0

Writing f(2) = (2m) /?exp(—2z2/2) for the standard normal density, Feller, volume I, gives
PX>2) ~f()(z7" — 2% + 1.327° — ...), in the sense of being caught between the
oscillations. Thus

EX-2)"=EX;X>2) —zP(X>2)
~f@) —2fRETT -2 +32 - . )~ f(2) (22 =827+ .. ).
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Plugging in z = z(c, ¢) which has z® = log ¢ + 2(c — log log t) + o(1), we get
E(X — 2)* = (27) ?exp(—log t — (c — log log t) — o(1))
((og ¢+ ) —3(og t+ -+o) 24 ..2)
~ (2m) V20,
Thus N is Poisson with parameter approaching A(27) "2, so
P(M, < z Vt) = P(N = 0) ~ exp(—A(27)2e™).

With x = ¢ — log A + % log(27) this is exactly our goal.

For the system of simple random walks on Z in place of the system of Brownian motions,
proceed as above. Now the distribution of N = N(zv%, ¢) is no longer exactly Poisson, but
it still converges to Poisson with parameter (27)~/%¢ ™. To check this, for large ¢

EN = Yo P(xt) = 2V8) = E((xo(t) — L2VE] + 1)*) ~ VEE((t™2x0(t) — 2)*)

0 logt
(10) = «/Zf P(t?xo(t) > u)du ~ «/Z‘J P(t72x0(t) > u) du

u=z

log ¢
~t f P(X> u) du ~ VtE(X - 2)*) = (27) 2,

u=z

To justify the replacement of « by log ¢ as the upper limit in (10), use Cauchy-Schwartz:
E(xo(t), x0(t) > Vi log t) < E(x¥(t))P(xo(t) > N/, log t) = o(1). To justify the replacement
of t™2x4(¢) in (10), where x, is rate one simple random walk, by X in the next line, where
X is n(0, 1), use the large deviation result: for integers ¢, since xo(1) has a finite Laplace
transform in a neighborhood of zero, |1 — P(¢™"%xo(¢) > u)/P(X > u)| =O(u?/t). The
rest of the proof for the random walk case is identical to the proof given for the Brownian
motion case, taking A = 1.0

The next theorem is intended to highlight the effect of crowding in the exclusion system.
Theorem 1 says that for Y, = a tagged particle in the exclusion system = an order statistic
of stirring paths, starting with particles distributed according to product measure Vp,
Var(¢™/*Y,) — v2/7(1 — p)/p. Clearly the same function of p cannot arise in analyzing the
order statistics of independent random walks in place of stirring motions, since the factor
1 — p is zero when p = 1. Harris (1965) considered the analogous order statistic yo(¢) for a
system of independent Brownian motions, starting from a Poisson point process on R with
intensity 1, and showed that¢™"/“yy(¢) —a n(0, v2/7). By rescaling space by A and time by
A%, one transforms this result so that if the initial intensity is A > 0, then ¢/*yo(¢) —4 n(0,
\/2/_‘77/}\). Theorem 4 gives exactly the same constant, v 2/7/A, in a system of independent
random walks starting with a Poisson point process on Z with intensity A. A system starting
in product measure », with p € (0, 1] corresponds to A = p, 0> = p(1 — p) in Theorem 4, in
which case (12) simplifies to

t4y(t) =4 n(0, V2/7/p — (V2 — 1)/V7);

the variance of this limit is1/v7 at the extreme p = 1, in contrast tov2/x for the intensity-
one Poisson initial configuration.

By a system of simple random walks with collisions we mean the following analogue of
the system in Harris (1965). Start with a countably infinite collection of particles on the
integers, at positions x; < x;41, § € Z, with xo = 0 < x;, —00 = lim;_, _.x;, and + = lim;_,cx;.
Let (xi(¢), i € Z) be independent rate one simple random walks with x;,(0) = x; for all
i € Z, with sample paths that are right-continuous with left limits. Except for a set of zero
probability, there will be a unique system (y:(t), i € Z, ¢ = 0) for which foralli € Z, ¢t >0
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¥i(0) = x(0), and yi(t) =< yini(¢)
vi(+) is right-continuous with left limits, and

yi(t) # yi(t—) implies y;(t) = y(¢=), Vj#i
Nty =|{i€ Z:yi(t) = k}| = | (i € Z:x:(t) = E}|.

(11)

We refer to the y;(t) as “the order statistics of independent simple random walks,” or as
“simple random walks with collisions.”

THEOREM 4. In a system (yi(t), i € Z, t = 0) of simple random walks with collisions,
starting with N; + 1;_ particles at site i, if the N; are independent of each other and the
future evolution, with EN; = A > 0 and Var(N;) = o® € [0, ), then for y(t) = yo(t), the
path of the “rightmost” particle starting at the origin,

(12) £ V4(8) = n(0, \"12/m) 2 + (0 — MAAA(V2 — 1) /).
ProoF. The paths y(¢) are obtained from a system (xi(¢), i € Z) of independent
motions by the analogue of relations (3) and (4): for i, z€ Z, t = 0 let
pr=pt 2 t) =Y Hat) = 2); o =p (2 8) =Y Hx() <2),
yi(t) =max{z € Z:p*(i, z, t) > u (G, 2, t)}.
Fix i € Z. Since A is the expected number of particles IV, starting at any site %,
E@"—p) ~-Az as |z|—> o,

uniformly in & To get Var(u™), consider the contribution ¥; 1(x,(0) =, x;(t) = 2) to p*
from particles starting at site 2. For i.i.d. Bernoulli variables I, I1, I, - - - with P(I = 1) =
1 — P(I = 0) = p, independent of N, we have

Var(l; + - -. + In) = (EN)Var(I) + (EI)>Var(N) = (EN)p + (Var N — EN)p?,
so, with p(¢, x) = P(xo(t) > x) for simple random walk x,
Var(n*) = p(t, 2)(1 = p(t, 2) + Yaso AD(t, k + 2) + (> —NP*(t, k + 2)).
Taking z = [at'/*], and with F(x) = P(X > x) for X € n(0, 1),
Var(u*) ~ Ve (A F(x) dx + (6* — A) F2(x) dx)

x=0 x=0
= VEA@D) 2 + (6 = N (V2 — 1)772/2).
The same holds for Var(u™), so
Eu* - ) (Var(u* — p) ™2 ~ hat[262A@m) ™2 + (0° = p) (V2 = D7 %/2)] 72
= Aa[A(2/m)"2 + (0* = N (V2 — 1)/(Vm)] /2
Now (" — p~ — E(u* — p7))(Var(u* — p7))™* >4 X, so
P(y(t) =z at'*) = P(u* — p~ 2 0) ~ PX > —E(u" — p7)(Var(u™ — p) 7,

which shows (12). 0
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