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ASYMPTOTIC NORMALITY OF STATISTICS BASED ON THE
CONVEX MINORANTS OF EMPIRICAL DISTRIBUTION FUNCTIONS

By PIET GROENEBOOM' AND RONALD PYKE?
University of Washington

Let F. be the Uniform empirical distribution function. Write F, for the
(least) concave majorant of F,, and let f, denote the corresponding density.
1t is shown that n [} (.(¢) — 1)? dt is asymptotically standard normal when
centered at log 7 and normalized by (3 log n)'/%. A similar result is obtained in
the 2-sample case in which £, is replaced by the slope of the convex minorant
of F, = F,, o HY.

1. Introduction. In 1956, Grenander introduced ideas of “non-parametric” maximum
likelihood estimation. In one of the examples, he found the maximum likelihood estimate
(M.L.E.) within the class of all distribution functions that are concave over [0, ®), or
equivalently, the class of all monotone decreasing densities supported on [0, «). The
M.L.E. in this example is the concave majorant of the ordinary empirical distribution
function. For a formal definition of maximum likelihood which covers these “non-para-
metric” cases, see Scholz (1980). For this and other examples of “non-parametric” esti-
mation, see Barlow et al (1972). :

Statistics based on either concave majorants or convex minorants of empirical distri-
bution functions have arisen independently in at least two other very different contexts. In
1975, Behnen proposed a 2-sample rank statistic defined as “the supremum of all stan-
dardized and centered simple linear rank statistics having non-decreasing scores.” This
statistic was shown to have comparable performance to an adaptive statistic proposed by
Randles and Hogg (1973) when used against shift alternatives, and to have a much superior
performance against stochastically ordered alternatives. Although not mentioned in Beh-
nen (1974, 1975), it was known independently to both Behnen and Scholz (personal
correspondence, June and July, 1975) that this statistic is expressible in terms of the L,-
norm of the density function of the concave majorant of the usual 2-sample empirical
distribution function. The asymptotic distribution of the statistic was left as an open
question, although Behnen (1974) provided extensive simulations for selected sample sizes
up to m = n = 100 which suggested to us the asymptotic normality of the statistic.

In a completely different context, Scholz (1982) proposed a procedure for the combi-
nation of p-values from independent tests of significance. The procedure, utilizing Roy’s
union-intersection principle, results in a statistic that is expressible similarly in terms of
the Ly-norm of the density function of the concave majorant of the 1-sample Uniform
empirical distribution function. Exact distributions are obtained by Scholz for the very
small sample sizes which are important for this context. Simulations were also carried out
by Scholz (personal communication) for moderate sample sizes to evaluate the feasibility
of approximations using asymptotic theory.

In this paper, the asymptotic normality of the 1-sample statistic of Scholz is derived in
Section 3 and that of the 2-sample statistic of Behnen is obtained in Section 5. The method
used in Section 3 utilizes a conditional representation of the concave majorant of the
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Uniform empirical distribution function in terms of a sequence of Poisson and Gamma
random variables. This representation is detailed in Section 2. This method is an extension
of that used in Pyke (1965) and due originally to LeCam (1958). The 2-sample case is
proved in Section 5 using a strong invariance principle together with the asymptotic
normality of the Lj-norms of the slope processes of the convex minorants of a sequence of
truncated Brownian Bridges. The latter is derived in Section 4.

As is pointed out in the remarks in Section 6, it is possible to prove the 2-sample result
by an analogue of the method presented in Sections 2 and 3. On the other hand, it is
possible to prove the 1-sample result by a method analogous to that of Sections 4 and 5.
This is done in Groeneboom (1981, Theorem 3.2) where a detailed study of the concave
majorant of Brownian Motion is presented.

2. The representation theorem. In this section, we describe the specific construc-
tion that is used to provide a tractable representation for the concave majorant of the
Uniform empirical process. To do this, the following notation is needed. Let F, denote the
Uniform empirical distribution function, and write F, for its concave majorant, the function
on [0, 1] formed as it were by stretching a rubber band over the top of F,.. Let n, + 1 be the
number of vertices of F,, including the end-points, (0, 0) and (1, 1). Let &0 = 0 < &1
< .++ <&,q = 1 be the x-coordinates of these vertices. For 1 =i =1, and 1 < j < n, define

Dni = gn‘i - gn,i—l)
(2'1) Jn,i = n[Fn(gn‘i) - Fn(gn,i—l)] = n[ﬁn(gn‘i) - Fn(gn,i—l)]» and
Qn,f = #{i:Jn,i = J}

to be respectively the horizontal “width” and vertical “number of steps” associated with
each of the segments of F,, and the frequency of segments of a given number of steps (cf.
Figure 1). Notice that @,0 = 1 in view of the flat section of F, that always occurs to the
right of the largest order statistic. Set D™ = (D1, -++, Dny), 3% = (Ju1, ++ -, Juy,) and
Q™ = (Qu1, +++, Qnn). If }, denotes the density (slope) of F,, then the statistic that
motivated this paper is

2 2
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Fig. 1. Sample realization of the Uniform empirical distribution function F, and its concave
majorant F, for n = 12. Here miz = 5, 3% = (5,4,2, 1) and Q¥ = (1,1, 0, 1, 1, 0, 0, 0, 0,0,0,0).
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which can be written in terms of the above notation as
(2.1a) L,= n! 2:’;1 (Jni)z/nDni -1

in which J,;/nD,; is the slope of the ith segment of the concave majorant. The concave
majorant of a sequence of partial sums of interchangeable r.v.’s was studied by Sparre
Andersen (1954) who derived in particular the distribution of the number of vertices.
Implicit in that paper is the following result for our problem where the interchangeable
r.v.’s are the n + 1 spacings formed from the n independent Uniform (0, 1) observations.
(For any r.v.’s X, Y, we write fx and fxy for marginal and conditional density functions
when well defined.)

LEMMA 2.1. For non-negative integers qi, - -+, q» With Y;-1 jq, = n,

(22) fQ(n)(ql’ ceey qn) _ H'}=1 j“b/qj!
and
(23) fil®) =3 {fom(@™) :qi + -+ + g = k}.

Proor. Conditionally given the ordered set of Uniform spacings, all permutations
thereof are equally likely. With probability 1, all spacings and partial sums thereof are
distinct. Partition the spacings into q; subsets of size 1, g; subsets of size 2, and so on, with
¥5-1 Jgi = n. The remaining spacing forms a subset of its own. Within each subset of size
J, the probability is 1/j of choosing a permutation whose partial sums lie below the line
segment joining the end points of that subset. (Spitzer’s Lemma; Spitzer (1956), cf. Feller
(1968), page 423.) The g, subsets of size j can be permuted g;! times. Finally, the slopes of
the line segments determined by each of the subsets can be ordered in exactly one way by
decreasing slopes to form a concave majorant with the required Q™ = q™. (2.3) is
immediate. (Cf. the last paragraph of Hobby and Pyke, 1964.) O

If we let {N;:j = 1} be independent Poisson r.v.’s with E(N,) = 1/j, it is clear from the
form of (2.2) that if T, = }}-1 jN; and No =1 ass,,

(2.4) Q"™ =, N®|[T, = n].
Note that from a comparison of the form of the conditional and unconditional probabilities,
(2.5) P[T, = n] = exp{—X}-1(1//)}.

(Cf. Lemma 3.2 below.) Also, it is well known that if {Y;:j = 1} are independent Exp(1)
r.v.’s then the conditional distribution of n (Y1, «++, Y,41) given Y1+ «++ + Yoy =nis
the same as that of the n + 1 Uniform spacings. We now build upon this as follows to
provide a suitable conditional representation for the concave majorant. Let {S;:i =1, j
= 0} be independent r.v.’s with S;, being a I'(j, 1) r.v. for j = 1 and S,; being a I'(1, 1) or
Exp(1) r.v. That is, each Sj;, j = 1, is equal to a sum of j independent Exp(1) r.v.’s. Assume
{N;} and {S;;} are independent.

Rewrite the spacings {D,;} of the concave majorant in a specific order as follows. First,
write D,, for D, , the only zero-step spacing; then write all of the one-step spacings in the
order of increasing magnitude (which, since the slopes are nonincreasing, is the same as
the order of appearance in the concave majorant); then write all of the two-step spacings,
and so on. In this order, denote them by D" = (Du; Dpu, -+, Dniq,; Do,
<+, Dn2g,y; - +; Dnna,,). Analogously, write Sj; < Sj; < -+ - < Sjy for the ordered values of
S]1, e, Sij and set

S = (So1; Sn, ey guv,; ng, cey S_2N2; e gnl, ey SnN,,).
Then the following representation holds, where N™ = (N, ..., N,).

NoTE. We delete the parameter n from the notation whenever it is unlikely to cause
confusion.
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THEOREM 2.1. Forn=1

(2.6) (Q"™, nD™) =, (N®, 8") | (T =n, S, =n)
where
2.7) T. = Yj<1JN;, S, =Y YN S,

ProoFr. Let {Y(¢):¢ = 0} denote a Poisson process with EY(¢) = ¢. It is well known
that conditional on the (n + 1)th jump occurring at t =n, n™'Y(n-) on [0, 1) is equal in law
to F,. The relationship given in (2.6) is closely related. First of all, by (2.4), the marginal
distribution of Q is the same as the conditional distribution of N® given T, = n. Now fq,5
is obtainable by standard techniques starting from the Uniform distribution over [0, 1]".
The main thing to observe is that as is implied in the proof of (2.4), the distribution of Q
is the same for almost all values of the original ordered Uniform spacings. The latter when
multiplied by n, can be represented as the ordered values of n + 1 independent Exp(1)
rv.’s Yy, -+, Y1 given Yi + -+ + Y. = n. Thus the same techniques that will yield
fanb(q, d) from the joint density of ordered Uniform spacings will yield fyw s» 7 s (q, d,
n, n) from ordered exponentials. [

3. The one-sample limit theorem. The statistic L, is shown to be asymptotically
normal by studying a related statistic suggested by Theorem 2.1. First of all, notice that

(31) Ln = n_l Z'}=1 j2 Zfijl (l/nD_nji)>
which suggests that one might study the conditional limiting distribution of
Ly=n"Y50 723N (1/S)

under the conditions that T, = n and S, = n. To this end, we introduce three suitably
normalized r.v.’s, namely

3.2) Un = (3log n)™/*(Tj=r (7° T2y (1/Si — 1/5) + 2%, (Sii — /)} — log n)

(3.3) Va=n"2¥51 30 (Si—J)
and
3.4) W, = n~! Y7, jN;.

Observe first that the conditions T, = n and S,, = n are equivalent to W, = 1 and V,, = 0.
Secondly, observe that under these conditions, U, reduces to

35) U. = (3log n) V4(X3-1 /2 3N, (1/8i) — n —log n),

= (3log n) V3 (nL} — n — log n),

which is conditionally equal in law to the same expression with L, replaced by L;. The
particular choice of U, in (3.2) was not easy to obtain. Its specific combination of terms is
essential in order to provide the desired asymptotic normality. The form given by (3.2)
makes it easy to see the effect of the conditions W, = 1 and V,, = 0. It may, however, be
simplified as

(3.5a) U, = (3log n) *(X=1 2N, (Sii — J)?/Sji — log n).

One may also write
U, = (3log n)™*(¥}-1 2, (Sii — J)*/j —log n)
— (3log n) ™2 Y0 N (Sii — )% /7S

in which the randomness has been removed from the denominator in the first term while
the second term is of smaller order.

(3.5b)
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LEMMA 3.1. (U,, Vi, W,) = (U, V, W) where U and (V, W) are independent, U is
N(0, 1) and (V, W) has the infinitely divisible characteristic function

1
¢(V,W)(s, t) = exp{j (eitu—szuz/2 _ l)u—l du} .
()

Equivalently, V =, ZW'? where Z is a N(0, 1) r.v. independent of W.

Proor. Clearly E(V,) =0 and E(W,) = 1. Also
var(V,) = n™' Yo E(N))var(S,) = n™"' Y (1/7)j = 1.

Since E(Si*) = T'(j — k)/T'(j) for j > k, one obtains for j > 2 E(S;') = (j — 1)7}, E(S;?)
=1/(j — 1)(j — 2) and var(S;') = (j — 1)7%(j — 2) 7. Write U} to denote U, less its first
2 terms. Then U} — U, = 0,(1). Hence, as n — <,

E(Ux)=@logn) ' 2(Ys j? - j1 - j7(j— 1 —logn)
= (3 log n) 233z j ' — log n) = O((log n)~'?)

and
var(U¥) = (3log n) (X3 j 7 {j* var(S;i') + var(S;;) + 252 covar(Sii*, Si:)}
+ 373 7% var(N)E(S7 — j71)) + o(1)
(3.6) = @Blogn) ' Y {/U-DPG -2 +1-2j(j—-D"

+ (=17 +0(1)
(Blog n)™* Yi% (3/k + 4/k(k + 1) + 1/k(k + 1)®} + 0o(1) — 1.

The orders of the asymptotic variances are thereby established.

To determine the limiting distribution of (U,, V,, W,.), it suffices to show that all linear
combinations, aU} + bV, + ¢W,, converge in law and to specify the limiting distribution.
Since the variances converge, it suffices to proceed as follows. In view of (3.5a), write U}
= Y3 (X + Y,) + €., where for j =3

Xy = (8logn) 2 YN (S — /)*/Sii— J/(G — 1)}
3.7) Y= @logn)™*(UN;,— 1)/(j — 1)
&= (3log n) 74X }=s (j — 1" — log n) = O((log n)~*?).

We note that EX,;, =0 = EY,,.

To establish the asymptotic normality of U}, it suffices, since &, — 0 and all variances
converge, to show that ), P[| X, + Y,;| > ¢] — 0. (Cf. Loeve, 1963, page 316). For this it
suffices to compute fourth moments and use Markov’s inequality. To this end, we compute

E|X,|* = (3log n)°E {ME[(Sfl = /81— j/( = DI

+ (g’) (EL(Sh — j)*/Sp — /() — 1)]2>2}
= (3log n)2{j A, + (1/2*)B?)

where A; and B; are the fourth and second central moments of (Sj; — j)?/S;1, respectively.
It is easy to show that both A; and B; are uniformly bounded in j > 4, since for j >4

(3.8) E[Sy—NYShT =[G -G =2 =3 = D E(Sj-s1 — J)°
and by the c-inequality (cf. Loéve, 1963, page 155)
E(Sj-s1 — )’ = 2"{E[T S (Vi - 1) + 4%)
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where Y;, Y, ... are independent Exponential r.v.’s with mean 1. Straightforward
computations show that E(X; + - - + Xx)® < Cm* for any independent r.v.’s with means
zero. Therefore,

Ys4 P[| Xoy| > €] = €7 Yjos E| Xpy|* < Cllog n)* ¥ j ™ — 0.
Similarly,
E|Yy|*= (3log n) %% — DE(N; — 1/j)*
= (@3logn)™%*(j — D' +6/7%) = Clog n)% .
Hence
3 P[| Y| > €] = O((log n)™') — 0.

We have thus established that U, —1 U, a N(0, 1) r.v.
To determine the limiting joint distribution of (V,, W, ), we compute the characteristic
function

E(eisV,,-H'tW,,) = E{H7=1 ([¢S,l—j(sn_l/2)]N'eit(j/n)N’)}

= exp{zsgl j_l(eit(j/n)d)s”—j(sn_1/2) - 1)}.

(3.9)

Now, as j — o while j/n — u € (0, 1), we have by the Central Limit Theorem for
{772 (Sj1 — J)} that
¢s,,—i(sn717%) — €7,

Recognizing a Riemann sum in the exponent of (3.9), the limit becomes
1
(3'10) E(eisV+itW) — exp{J’ (eitu—32u2/2 _ l)u—l du}
0

as desired. It is straightforwardly checked by direct integration that the exponent in (3.10)
may be written as

1 00
(3.11) f f (e — D)p(v/w)w 2 dv dw
0 —oo

where ¢ is the standard Normal density, so that the Lévy measure of the 2-dimensional
infinitely divisible r.v. (V, W) is absolutely continuous with respect to Lebesgue measure
on ((—o, 0) U (0, ®)) X (0, 1) with “density” ¢(v/w)w 2. There is therefore no Normal part
to the distribution of (V, W). This fact completes the proof since it is easily checked that
(Un, V., W,). is in the domain of attraction of an infinitely divisible distribution and that
if {Y.;} and {Z,;} are two triangular arrays which are jointly in the domain of attraction
of an infinitely divisible distribution, and if the marginal limiting law of one is Normal and
the other has no Normal component, then they are asymptotically independent. [J

The above result gives the limiting joint distribution of (U,, V,,, W,,), whereas the result
being sought is the limiting conditional distribution of U, given V, = 0 and W, = 1. To
obtain the conditional result from the joint, we follow an idea used originally by LeCam
(1958) to obtain limit laws for sums of a function of Uniform spacings. The method was
used by Pyke (1965) to obtain limit laws of more general functions as well as the weak

convergence of related processes. It can be shown that
(3.12) bum(t) : = E[e"U"| V,, = 0, W, = 1] = E{E[e"""| Vin, W]| Vo =0, W = 1}
' = E[e"%0nm(Wo)am(Vin, Win)]

where
ponm(k/n) = P[Wy = k/m| W, = 1]/P[W,, = k/m]
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and
Tam(V, /M) = fv,_ 1w, v (v, R/m, 0)/fv, W, (v, k/m)

for £ =0, 1, - . and real v. To verify (3.12), use the fact that fv jw v, = fv,w,,v,w, and
fw, v, = fw,v,,w, to write

Sum(t) = T} PLWn = k/m| W, = 1] f E[e!U»| Wy, = k/m, Vin = v]
[V, | W, vV, k/m, 0) dv
= Lo P[Wn = k/m]pum(k/m) f E[e"Vn| Wy = k/m, Vi = 0]

'rnm(v, k/n)fle W,,.(U, k/m) dv

which is then the unconditional expectation given in (3.12).
Since the N;’s are independent

(3.13) prm(k/n) = P[Ty — T = n — k]/P[T, = n]

where T, = Y1 jN; = nW,.. Moreover, under the condition that W,, = k/m (equivalently,
T = k) and V, = 0 (equivalently, S,: = Y"1 ¥¥; S;; = n), it is well known that n~'S,, is
a Beta (k, n — k) r.v., while under the single condition V,, = 0, then S, is a Gamma (&, 1)
r.v. Therefore, for k=1,2, ---,nand 0 <m v + k<n,

m?T\(n) mY2 + E\* 1 mY2 + £\
n'(E)'(n — k) n

v, W, v (0, kM, 0) = ~

and

1/2 k-1
_ 12 m’”v+k —ml/2u—k
fvwa(v, /m) =m <——I‘( Al ) e .

The densities are zero otherwise. Hence

R 1/2 n—k—1
(3.14) Fum(v, B/m) = {T'(n)/n*T'(n — k)}(l —m—v—+—k) Paar

Upon substituting (3.13) and (3.14) into (3.12), one obtains a tractable unconditional form
for the conditional characteristic function of U, which can be used to prove the desired
result. A significant step in the proof of this result will be the determination of the limiting
behavior of the functions p.. and r.. in order to permit the use of the dominated
convergence theorem in (3.12). To this end, we prove the following lemmas.
LEMMA 3.2. With T,: = Y}-1 JN;=nW,,
(3.15) P[T,=k]=pp:=exp(-Y31j"), for 0=<k=n,
=pDn for k>n

and np, — e~Y = 561. .., where y = .5772. .. is Euler’s constant.

ProoF. The generating function of T, is computed directly to be

(3.16) pnexp(Xi-1 7 7's7).

For k =< n, the coefficient of s* in (3.16) will be the same as the coefficient of s* in
Ppn(1 — 5)7! since the two functions differ in the exponent by powers of s higher than n. For
k > n, the latter would be greater. This proves (3.15). The rest of the Lemma is clear. 0
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LEMMA 3.3. For m = o(n), pnm(k/m) — 1, as n — o, uniformly for k < cn for some
c<l

Proor. By (3.13) and Lemma 3.2, it only remains to show that the numerator of pn»
satisfies

(3.17) lim, . onP[T, — Tn=n—k]=e.
By the Fourier inversion formula for the characteristic function of T, — T = Y. J=m+1JN;,
27
(3.18) P[T.—Tn=n—k]=(2m)™" J fum (¢)e™ =P dt
0
where

fom () = exp{= i1 (1 =€) + T 7171 = e¥)}
is the characteristic function of T, — T',. Integration by parts shows that the right hand
side of (3.18) is equal to
27
2(n - k) f Sr, eV — Y7 e} fum(t)e " P dt,
0
Since p, = P[T, = n] = P[T, = n — k] for all £ < n, then similarly one obtains

27
(v = Blpa = 20 J $i1 elg, (e "M dt
0

where
&n(t) = exp{— X1/ (1 — e¥)}

is the characteristic function of T,. Hence

2m
(n—R{P[T, — Tn=n—k] —p.} = (27)" j TR e { fum (8) — g (£)}e P dt
0

27
0

=P[T,—Tn=n—k—-1-P[T.=n—-k-1]
—Pln-m—-k=T,—T,=n-k-1]

=P[T.,— Tn=n—-m-—Fk—1]
—P[T,=n—-k—1].

Thus if m = o(n) and 2 = o(n), it follows from Lemma 3.1 that W, = n~'T, >, W, a
continuous r.v., and so the right hand side of (3.19), which is bounded for £ bounded away
from n, converges to 0 as n — «. Thus

(3.19)

lim,onP[T, — T, = n — k] =limy—onp, = €77

by Lemma 3.2. The convergence is uniform for 2 < cn when 0 < ¢ < 1. This completes the
proof. O

LEMMA 34. Form/n— b=0and k/m — x>0 with bx <1,
limy_, oo 7om (U, B/m) = (1 — bx)~2exp{— v2b/2(1 — bx)}

uniformly over |v|(m/n)"* <voand k< cn for 0 <vo< w and ¢ < 1.



336 PIET GROENEBOOM AND RONALD PYKE

Proor. By (3.14) and Stirling’s formula,

Fam (U, /M) = 0" %" 12(n — k)—n+k+1/2<1

- a- w12 )n—k-lem'”v.

1/2

_ m / v+ k n—k—lem‘/zv
n

n—=Fk

Now, when 0 <m'?v + k<n,

Un'l,l/2 1/2 l)l’l'l,l/2
1— n—k_m = 1/2 _ —
log{( n—k) e v} m’v+ (n k)log(l n—k)

1/2 2. 1/2
Y2 4 (n — _wm”® v'm o (om
m T (n k){ Py TPy 3 A S

where we have written R (x) = —log(1 — x) — x — x?/2 for | x| < 1. Since
[R(x)|=|x?/3Q—|x|])=|x|® if |x|=2/3

one has

Uml/z |v|3m3/2 i (lvl(m/n)l/2)3
=) ‘ R(n—k) lsm—k)?‘” -k

if |v| (m/n)*? is bounded. The result follows. [

This result, when £ = m, was used in Le Cam (1958) and Pyke (1965, page 410). In the
present application, we have b = 0. In all cases, the result simply represents the known
asymptotic behaviors of Beta and Gamma densities.

In both of the above results, Lemmas 3.3 and 3.4, the uniformity requires that 2 < cn
for some ¢ < 1. Since % is a sample value for T',, the application of these results will
require that for m = o(n),

P[T,>cn|T,=n]—0
as n — «. Now
P[T,>cn|T,=n]=<P[Tn>cn]/P[T. =n].

Since nP[T, = n] = np,— e, it suffices to show that nP[T, > cn]— 0. But by Markov’s
inequality,

nP[T, > cn] < nE (e!™)e~" = ne~" exp{Y 21j '(e¥ — 1)}

1
< ne~v/m exp{J ule*—1) du}
0

if one chooses ¢ = 1/m. Thus we have proved

LEMMA 3.5. Ifne /™ = o(1), then

(3.20) limy—e P{Tn >cn|T,=n]=0.
We can now state and prove the main result.
THEOREM 3.1. Asn— o,

(3.21) K.:= (8logn) Y*(nL, — n —log n) -, U,

a N(0, 1) random variable.
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ProOF. In view of (3.5) and the discussion leading up to it, K, is equal in law to the
conditional law of U, given V, =0and W, = 1. ButforO<m <n

E[elenl V, = 0, W, = 1] = ¢nm(t) + an(t)
where
(3.22) R.n(t) = E[e*Un(e™U~Un) — 1) |V, = 0, W, = 1].

The object of the proof will be to show that ¢, (t) — exp(—¢*/2) and R, (¢t) — 0 as n, m
— o, We first study ¢nm (£).

By the form for ¢,.. in (3.12), by the convergence in law of (U, V.., W,,) given in
Lemma 3.1, and by the convergence of the ratios p.» and 7. given in Lemmas 3.3 and 3.4,
it follows that if ne™™/™ = 0(1), then

lim,l_m bDrm (t) = limn.—>enE [e ”U'"an (W, )rnm (Vi ’ W )]
(3.23)

= E[e"U.1.1] = e~

In this, the result of Lemma 3.5 is used to show that E[e“U"Ii1 ».cn| T\, = 1, V,, = 0] — 0,
while restricting the other computations to the events [T, < cn] and [(m/n) 2| V| < vo]
for constants ¢ and vo on which the convergences in Lemmas 3.3 and 3.4 are uniform. Note
also that P[(m/n)"?| V,,| > vo | T = n, V,, = 0] is dominated by P[n"?| X, — k/n| > vo]
where {X(} are the Uniform order statistics of a sample size n.

Consider now the second term R, (t). In analogy to (3.12), the conditional defining
relation in (3.16) is equivalent to

R (t) = E[e“P(e™“ =" — 10, (Wy) m (Vin, Win)].

In view of the above derivation of (3.23), the convergence of R, (t) to zero will be complete
if we can show that U, — U, —, 0. For this, it will be necessary to be more specific about
the choice of m. The only condition so far has been that of Lemma 3.5. In what follows we
will need further to assume that (log m)/log n — 1. (To see that this is possible, consider
log m/log n =1 — 1/log log n, for which ne "™ = ¢ (1). log m/log n — 1). To see that this
suffices, set

X; = Y81 (Si = 7)*/Ssi, b= (3log n)™V2
so that by (3.5a)
Up = Un = (bn/bn = DYUn + by 3 Jom+1 X; — by log(n/m).
By (3.7), EX; = 1/(j — 1). Therefore, write
Un = Un = (ba/bm = DUp + bp Zfemar (X, = (= D7) = balog(n/m) — N7z j).

Clearly the last term converges to 0. Since U,, —, the first term converges to 0 because
(bn/bm)? = (log n)/log m — 1. For the middle term, we use (3.6) to compute its variance
to be

b Yi-m-13/k + O(1) = (log n) ' log(n/m) + o(1)
=1— (logm)/log n =o0(1).
This shows that U, — U, —, 0 as desired. The proof is complete. [

4. L:-norm of slopes of convex minorants of truncated Brownian bridges. We
shall prove the following result.

THEOREM 4.1. Let B= {B(t):t € [0, 1]} be (standard) Brownian bridge on [0, 1], let
B.. = B.1y,u, where 1y, is the indicator of the interval [t, u] and let 8. be a version of
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the slope of the convex minorant of B, on (0, 1). Then
1
(4.1) {J' 8 ni-1n(u) du —log n}/s/3 log n —1 Z,
0

where Z is a standard normal random variable.

Theorem 4.1 will be used in Section 5 to derive the asymptotic normality of a statistic
proposed by Behnen (1975). We shall derive Theorem 4.1 from Theorem 3.1 by using
strong approximation of the empirical process by versions of Brownian bridges in Komlos
et al (1975). For this application of Theorem 3.1, note that L, = ||/, — 1||3, in which f, is
the density of the concave majorant of the 1-sample Uniform empirical distribution
function F,, is unchanged in distribution if fn were changed to the density of the convex
minorant of F,. This is due to the fact that U =, 1 — U when U is Uniform (0, 1).

The following class of functions will play a fundamental role in the sequel.

DEFINITION 4.1. ./ is the set of right-continuous and nondecreasing step-functions
J:[0,1]— R, which have only finitely many jumps and satisfy [§ J (u) du =0 and [§ J*(u)
du=1.

Notice that all functions J € # satisfy the inequalities

b
(4.2) f u* dJ (u) < a* 2 + b + f u*=* du,
[a,8] a

for « = 0 and 0 < a < b < %. This follows by integration by parts and the fact that | J («) |
< u "2 for 0 < u < %. Similarly,

b
f Q1-uw)rddJu)<=(1—-a)* 2+ (1 -0b)*1? +f (1= u)*=%?% du,
[a,b] a

fora=0and k=a<b<]1.

LEMMA 4.1. Let G:[0, 1] = R be a bounded function such that G(0) = G(1) = 0 and
4.3) limg ot 270G (¢) = lim, ot~ *7°G(1 — t) = 0,
for some § > 0. Then | €| < © and
“ 12l = —intres | 6w dJw,

0,1)

where § is a version of the slope of the convex minorant G of G.

Proor. First suppose that G is a step-function which only has jumps at the points ¢
< ... <t,, where t; > 0 and ¢, < 1. It follows from (4.3) that in this case G(¢) = 0, if t <
tior t > t,. Since G = G, we have

(4.5) j édJsJ' GdJ, JE M.
(0,1)

0,1)

Integration by parts and the Cauchy-Schwarz inequality give
1
e - [ G- [ gwiw aus et - gt
(0,1) 0

Since G(0) = G(1) = 0, we also have G(0) = G(1) = 0 and hence [6 &(u) du = 0. Suppose
[| €]l > 0. Without loss of generality we may take a right-continuous version g of the slope
of G and in this case the function J = &/ £||» belongs to .#. Hence the upper bound in
(4.6) is attained for J = &/|| & ||2. Combining (4.5) and (4.6) we get
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@ ~infye, f Gd=— f GdT = |4l
(0,1)

0,1)

Let D be the set of discontinuity points of J, then D is not empty, since otherwise G =
0 and hence || £||2 = 0. The set D is a subset of the set {¢1, -- -, .} of discontinuity points
of G. Let H:[0, 1] = R be the function defined by

G({t=) N G(t+),if t € Dand G(t) > G(t—) N\ G(t+)

H(t) = {
G(t), otherwise.

Then H(t) = G(t) if £ € D and hence, since o is a step-function which only has jumps in
D,

4.8) . f HdJ = GdJ.
(0,1) (0,1)

The class .# is also considered in Behnen (1975) and Scholz (1981) (with slight
modifications). It can be used to give a convenient representation of the L;-norm of the
slope of the convex minorant of bounded real-valued functions on [0, 1], which satisfy
certain regularity conditions near the boundary of the interval [0, 1]. The representation
of the L.-norm of the slope of the convex minorant by means of functions in .# has been
studied by F. Scholz, and the following lemma is a generalization of results in Scholz
(1981).

It is clear that the integral [(,1) H dJJ can be approximated arbitrarily close by integrals
fo1 G dJ, with J € .# (move the points ¢ € D, where G(t) > G(t—) N\ G(t+) a bit to the
right or left and consider functions J € .# which have jumps of approximately the same
height as J at the shifted points instead of the original points). Relation (4.4) now follows
from (4.7) and (4.8).

If | £]]2 = 0, then G = 0, and hence G = 0. In this case (4.4) also holds, since [(1) G dJJ
= 0 for any function J € .# such that JJ is constant on the intervals [0, ) and [¢, 1), which
te (0, t1).

Now consider an arbitrary bounded function G:[0, 1] - R such that G(¢) =0, ift< a
ort=1— a, where a € (0, %). Define for each n the intervals I,., by I, = [k27", (k +
1)27),k=0,1,...,2" =2, I, = [k27" 1], if k. = 2" — 1, and let G, be the step-function
defined by

G.(t) =infuey,, Gu), ftE L, k=0,1,...,2" — 1.

Fix £ > 0. Let 2 be the set of finitely discrete probability measures on [0, 1]. Then, if &
is the convex minorant of a function H: [0, 1] — R, we have for each ¢ € [0, 1],

H(u) dP:J

[0.1]

ﬁ(t)=inf{ udP=t Pe ,@}

[0.1]
(see e.g. Rockafellar, 1970, page 36). Thus there exist positive constants ¢, +*+, Cnmyn

and points ¢1,,, « + +, tm,» belonging to m(n) disjoint intervals I, , such that, for each n and
fixed ¢t € [0, 1],

Z;’L(i” Cin = 1, Z;’;(il) ci,nti,n =1 and Gn(t) > Z:’:?) ci,nGn(ti,n) —&.
This implies that there are points ¢}, with | ¢/, — ¢;»| = 27", such that
(4.9) [t =YD cintin]| =27 and  G.(t) > T2 ¢ G(tin) — 2¢

(let t; . and ¢} , belong to the same interval I ., and use the definition of G,,). The sequence
{é,,} is increasing and hence lim,._, .G, (¢) exists (and is < 0). The convex minorant G of G
is continuous on [0, 1], since G is bounded on [a, 1 — a] and zero outside this interval.
Hence by (4.9), G(t) < lim,_,»G.(t) + 2c. We also have G(t) = G.(¢), for all n, and thus
lim,—G.(t) = G(2).
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Since the sequence {G,} converges pointwise to G, the right-continuous slopes &, of G,
converge to the right-continuous slope g of G, except possibly at countably many points of
[0, 1] (see e.g. Roberts and Varberg, 1973, Problem C(9), page 20). The functions G, and
G are uniformly bounded below on (a, 1 — a) and zero outside this interval. This implies
that the slopes g, and g are uniformly bounded on (0, 1). Hence, by dominated convergence,
lim ol &n — &ll2= 0.

Choose no such that || .|| > | £z — & for n = n,. By the first part of the proof there
exists for each n a step-function J, € ., such that —[(,1G» dJ > || £.||2 — ¢ where the
points of jump of J,,, say U1,x, * * +, Up(n),n, belong to disjoint intervals I}, , and are contained
in [a, 1 — a]. By the definition of G, there exist points 1, - -+, Upw,» such that G(u;,)
< Gn(u;n) + € and u;, and u;, belong to the same interval I, ,. Furthermore, let JJ;, be the
right-continuous step-function which has the same jumps as J,, but at the points u},
instead of u;, (note that in general J, & #). Then, by (4.2), we have for n = n,,

—J’ Gdd, > —J G, dJ, — 2ea™? > || 8|2 — 2e — 2ea"V/2
©,1) (0,1)
It is also clear from (4.2) and the definition of the points u;, that

1

1
J Jn (u) du —J J. (u) du
0

0

< 2—n—la—1/2 .

1
f Jr(u) du
0

and

1 1 1
J (Jn(w)? du — 1‘ = J (J% w))? du — J J2(w) du| < 27" ta™.
0 0 0

Thus, for n sufficiently large we can find a J,, € #, obtained from <J;, by making slight
adjustments of mass, which satisfies

—J G dJ} > |||> — 3 — a2
(0,1)

Therefore —iane,// I(O»l) GdJ = ||g"||2 Since —iane./{ J.(O,l) GdJ = —iane,/{ f(o,l) GdJ =
[| & |2, for each n, relation (4.4) now follows.

Finally, let G be an arbitrary bounded function, such that G(0) = G(1) = 0 and (4.3) is
satisfied. By (4.3) and the boundedness of G there exists a constant ¢ > 0, such that

(4.10) |G(®) | = emin{t'/?*8, (1 — ¢)2*%}, te [0, 1].

Thus, if g is the right-continuous slope of the convex minorant G of G we have

(4.11) | £@®)] < c-min{t7**%, (1 — )"V2"), ¢ € (0, 1).
This implies
(4.12) | G(t)| = 2c/(1 + 28))min{t**, (1 — t)/**%}, t€ [0, 1].

Define for each ¢ € (0, 1) the function G, by

(G, fuelt1-4),
Gilu) = {0, otherwise.

By (4.10), (4.2) and integration by parts, we have for all J € .#

(4.13) ‘ J GdJ - J G: dJ‘ = CJ u'* dJ + CJ (1 —w* dJ = c.t’/s.
0, 1) (0,1) (0,2)

(1-¢,1)

Let H, = Gy, and let H, be the convex minorant of H,. The sequence {H,} converges
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uniformly to G, as n — o, and hence, by the same argument as used above, {H,} converges
pointwise to G. By (4.11) and (4.12) the right-continuous slopes hn of H, are uniformly
bounded (in absolute value) by an Ls-function f of the form f(u) = k- min{z V%", (1 =
u)"**%}, u € (0, 1), where £ is some positive constant. Since a similar bound holds for 8,
we have by dominated convergence

(4.14) limyes || B — & |l = 0.
Thus lim, .. || A, ||l = || |l and by (4.13),

(4.15)  limue || An ||z = limyw{—infre J’ Gin dJ} = —infyc 4 J’ G dd.
0,1)

0,1)

The result now follows from (4.14) and (4.15). O

REMARK 4.1. It is clear that condition (4.3) can be somewhat weakened and we mainly
chose (4.3) for convenience.

ProoF oF THEOREM 4.1. Let U, be the empirical process defined by U.(t) =Jn (F(t)
— 1), t € [0, 1], where F, is the empirical df of a uniform distribution on [0, 1]. With
probability one all observations are contained in the open interval (0, 1). and hence U,
satisfies almost surely the conditions of Lemma 4.1. Let i, be a version of the slope of the
convex minorant U, of U,. Then, by Lemma 4.1,

" lzn "2 = _inﬁle./{f Un dJ~
©,1)

Fix ¢ > 0 and let a, = (log n)*/n, b, = 1 — a,. There exists M > 0 such that
P[supie,) | Un(t) l/ VE(1 —t) = M Vlogsn] < & for all n = 3, where logsn = loglog n since
supo<t<i | Un() |/ V(1 = t)logan — V2 in probability, as n — o, If | Un(¢)| = MVt logzn and
J € M, we have by (4.2)

f | U. | dJ = M~log,N Vt dJ (t) = M{(logzn) (log(na,/8))}2 < c-log:n,
[6/n,a.] [8/n,a.]

for some constant ¢ independent of . A similar upper bound holds for S, 1-8/m1| Un| ddJ.

Since supse« [0/t dJ (t) — 0, and similarly supses f1-s/my (1 — ) dJ () — 0, as n
— =, there exists a constant % such that, for all large n, P[supscs [0, | Us|dJ =k
logon] < 2e. By Theorem 3.1 and Lemma 4.1,

2
({iane,,f U. dJ} — log n)/\/3 log n—. Z,
©,1)

where Z is a standard normal random variable. Furthermore, since inf;c [« U, dJ —
infre.s [(ap1-ay Un dJ = O(logen) on a set of probability > 1 — 2, and since ¢ > 0 was
arbitrarily chosen, we have

2
(4.16) ({inﬁ;eﬂf U, dJ} — log n)/\/3 log n—t Z.
(an,bn)

By Komlés et al (1975), there are versions of Brownian bridges B, such that
supse,| Un(t) — B,(t)| = O,((log n)/\/r—t ) with probability one. Hence, by (4.2),

= Op(supJe /If n"logn dJ)
(@,b,)

= O,(1/log n),

iane,,f U.dd — inﬂze/,f B, dJ
(an,b,) (an,bn)
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This implies
2
(4.17) ({iane,,{J’ B, dJ} —log n>/\/3 log n— Z.
(@n,bn)
Since lim supxyoSupo<:<x | B (£)|/v2t logast = 1 a.s., we have by (4.2),
supJe,,,,J' | B, | dJ = O,((logzn)"?) u? dJ (u)
[1/n,a.] [1/n,a.]
= O,((logen)*?).

Thus we can replace a, by 1/n and b, by 1 — 1/n in (4.17). By Lemma 4.1 we have
—infres [{i/n1-1/n) Bn dJ = || 81/n1-1/n |2, Where g1/n1-1/» is a version of the slope of the
convex minorant of By, - 1{1/n,1-1/n). Since the distribution of || g1/s,1-1/x ||l2 Will be the same for
any version of the Brownian bridge B,, the result now follows. [

5. Asymptotic normality of a statistic proposed by Behnen. Let X;, ..., X},
and Yy, ---, Y, be two independent samples from a uniform distribution on [0, 1], let
F,.(G,) be the empirical df of the first (second) sample and let H, be the empirical df of the
combined sample. With probability one, all observations in the combined. sample are
different and contained in the open interval (0, 1). Thus, on a set of probability one, we can
define the inverse Hy' of Hy as the right-continuous df such that Hy (Hy'(k/N)) = k/N
and Hy'(u) = Hy'(R/N), k/(N+ 1) <u< (k+1)/(N+1),k=0, - .-, N. In the sequel
we will restrict our attention to the set where Hy' is well-defined and we shall omit the
expression “with probability one”. We define the (random) dfs F,, and G, by

F,=F.,oHy' and G,= Gp.cHj.

Note that by our definition of H ' these dfs are right-continuous.
Behnen (1975) considered the statistic

(5.1) Ty = supJe”J J (u) dF,(u)

0,1)

(actually he considered slightly different versions, but this will make no difference for the
limiting behavior). By integration by parts and Lemma 4.1 it is seen that

(56.2) Tn = —ianeaJ (Fn() — u) dJ (@) = || fav — 1 |2,

0,1)

where fm,N is a version of the slope of the convex minorant of F,,. Let

(5.3) Ly () = (1 = AN {ANUn(HF(0) — (1 = An)"Va(HN ()},

for all ¢ € [0, 1], where U,,(u) = «/;L(Fm(u) —u), Vi(u) = \/I—L(G,,(u) —u) and Ay = m/N.
Then

infre 4 VN(Fu(t) — 8) dJ (8) = inﬁle/lf Ly ddJd + 0(),
o1 ©1
since | VN(Fn(t) — t) — Ly(8)] = VN | Hy(Hz'(t)) — t| = N72, ¢ € [0, 1), (cf. Pyke and
Shorack, 1968, Lemma 3.1, page 762, but note that our definition of Hy" is different; in
particular | Hy(Hy'(8) — t| =t A1 —8),ift A1 —t) < (N+1)7).
To obtain the limiting behavior of || f, v ||2, With /i, v as in (5.2), we compare Ly with the
corresponding functional for Brownian bridges B,, and B;:

(5:4) Ln(8) = (1 = Aw)(AN’Bn (HN'(2)) — (1 — An)"*B/,(H¥\(8))}.
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LEmMMA 5.1. Let ay = (log N)*/N, by = 1 — an and let U,, V., Bn and B}, be
independent versions of empirical processes and Brownian bridges respectively, such
that

suprc | Un(t) —Bn(t)| = O,(log m/vm)
and
suprco| Va(t) —Bi(t)| = O,(log n/vn),

as m, n — . Then, if Ay is bounded away from 0 and 1, as N — «, we have

(5.5) iane,,,J’ LydJ — inf;;e‘,,Jr Ly dJ = 0(1/log N),
[an,bN] [an,bn]
with probability one, as N — .

ProoF. Note that supse,n| Un(H¥(£)) —Bn(Hy' (£))| = supreon| Un(t) —Bn(t)],
with a similar relation for V,oHy' — B, Hy'. The rest of the proof follows exactly the
same pattern as the argument in the proof of Theorem 4.1. 00

The next lemma sh9ws that we can replace B,,> Hy' by B, and B}° Hy' by B} in the
Statistlc inﬁle‘//f[aN’bN]LN dJ.

LEMMA 5.2. Let ay = (log N)!/n and by = 1 —an. Then, if B is a Brownian bridge
on [0, 1], we have

SupJEJ{f | B(HR\(¢)) —B(t)| dJ (t) = 0,
[an,bn]
in probability, as N — .

Proor. Fix e > 0. There exist § > 0 and M; > 1, such that
Plsupo<s<c<i| B(£) —B(s)|/v2(z — s)log(1/(¢ — 8)) = Mi] <e.

(This follows from It6 and McKean 1974, page 36, formula 1.) Since sup;eo, 1| Hv' (¢) — ¢|
Vt(1 — t) = O,({(log:N)/N}'?), (see e.g. Eicker, 1979, (1.9), page 119), there exist M> >0
and Ny(e) such that

P[supieo,n| H3'(t) —t|/Vt(1 — t) = My((loga N)/N)"?] <e.
Thus there exists M; > 0, such that
P[Supte[aN,bN]lB(Hﬁl(t)) —B(#)]/(tQ — £))V* = Msz(log N)*(N 'loga N)"/*] <e.

By (4.2) and its version on [%, 1), it is seen that

on
suPJEﬁf (¢ = t))* dJ (t) = kN~ *log NJ (¢ — £))™2 dt
[an,bn] an

< kaN™V*log N)N'?/log?N = kyN'*/log N,

for some positive constants %; and k.. Thus there exists an M, > 0, such that

P[supJe‘,,Jr | B(H¥'(t)) —B(t)| dJ (t) = My(log N)/*(loga N)"/*] < 2e,
[an,bn]

and the result follows. [
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Now, using the same notation as in Lemma 5.1, we define
(5.6) Lyo(t) = (1 = An) (AN2Bu(t) — (1 =An)"V2Bi(2)}.
By Theorem 4.1 we have

2
(5.7) {(iane_,,()\N/(l - )\zv))wj Lo dJ) —log m}/\/3 logm —., Z,

[an,bn]

with Z standard normal, if Ay stays bounded away from 0 and 1, as N — . To see this,
note that Lyo again represents a Brownian bridge (as a sum of two independent Brownian
bridges), but that the variance is (1 — Ax)/Ax times the variance of the standard Brownian
bridge on [0, 1]. Furthermore, it was shown in the proof of Theorem 4.1 that replacing
[an, bn] by [1/N, 1 — 1/N] leads to the same limiting (normal) distribution.

The asymptotic (standard) normality of the statistic

{(NAn/(1 — AN)) TR — log m}/v3 log m,

with T defined by (5.2) (or, equivalently, (5.1)), will now follow if we can show that
supse.« f(0,a,) Fm dJ/(log m)"* and supse.« fi4,,1)(1 = Fr) deJ/(log m)"* tend to zero in
probability (with a similar statement for the functional with F,, replaced by G,). First, by
our definition of Hy', we have F,(¢t) = 0, if t < (N + 1)7%. Second, for fixed & > 0, there
exists b = b(e) such that

P[F,.(t)<F,.(bt), all t€[0,1]]=1—¢

(see Lemma 2.5, page 761, Pyke and Shorack, 1968; our interval for ¢ is [0, 1] rather than
[1/N, 1], because of our definition of Hjy'). There exists M > 0 such that
Plsup;co,1y| Un(bt) |/«/Z = Mvlogam] < ¢, for all large m. Thus,

PI:supJeA,,J Vm F,dJ =k loggm] <g, if m is large,
[1/(N+1),ax]

for some constant 2 > 0 (see the proof of Theorem 4.1). Similar arguments hold for
Siown) Vm(1 — F,,) dJJ. We have proved

THEOREM 5.1. Let Ty = supse.« [0 J (1) dFn(u). Then Ty = || fn — 1|2, where
fm,N is a version of the slope of the convex minorant of F,o Hy', and the statistic
{(NAn/(1 = An)) T% — logm} /<3 log m tends in law to a standard normal distribution,
if An stays bounded away from 0 and 1, as N — oo,

6. Concluding remarks. Both limit theorems involve non-negative random vari-
ables, namely, square Le-norms. As such, one possible guide to the rate of convergence is
the sample size required before zero is 3 standard deviations from the mean under the
approximating Normal distribution. In the one-sample case, this requires log n =
3(3 log n)? or n > 5 X 10", For 2 standard deviations, one requires n = 162,755. The
results are similar for the 2-sample statistic. By this, one sees the extreme slowness of the
convergence for the squared norms. However, by simple transformations, one can find
functions of the statistics for which the convergence is much improved. Behnen (1974)
used the Lo-norm itself, that is, the square-root transformation, for his Monte Carlo
simulations. Here, the asymptotic variance is constant and the corresponding sample sizes
are 854 and 20, respectively.

Monte Carlo simulations of sample sizes n = 4(1)10 (20,000 replications) and 50 (5,000
replications) for the log transformation have been carried out by Scholz (personal com-
munication). They indicate great improvement but the tails are still heavy for n = 50.
Behnen (1974) had earlier provided simulations for the two-sample statistic for selected
sample sizes up to m = n = 100. Although the convergence is slow, the fit was sufficiently
close to suggest the asymptotic normality of the statistic.
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It is possible to generalize the representation approach used for Theorem 3.1 to obtain
an alternate proof of the two-sample result, Theorem 5.1. The only difficulty is in defining
a suitable “randomization” of the coincidences that can now occur in order that the
resultant distribution of heights remain the same as in (2.2). The coincidences enter
because F,, unlike F,, has its jumps occurring at the equi-distant points {i/N}. One
approach is to affix small (continuous) random perturbations to these points to prevent
ties among the slopes of the segments of the concave majorant without changing signifi-
cantly the value of the statistic. Once this is done, one uses Negative Binomial rather than
Gamma random variables for the {S;;}.
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