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SITE RECURRENCE FOR ANNIHILATING RANDOM WALKS ON Z,.!

BY RICHARD ARRATIA

University of Southern California

Consider a system of identical particles moving on the integer lattice with
mutual annihilation of any pair of particles which collide. Apart from this
interference, all particles move independently according to the same random
walk p. A system will be called site recurrent if a.s. each site is occupied at
arbitrarily large times. The following generalization of a conjecture by Erdos
and Ney was open: the system of annihilating simple random walks on Z,,
starting with all sites except the origin occupied, is site recurrent. We prove,
for general p and a reasonably broad class of initial distributions, that the
annihilating system is site recurrent. Loosely speaking, this condition is that
the initial configuration does not have any fixed sequence of holes with
diameters tending to infinity.

1. Introduction. The study of annihilating particle systems was initiated in a paper
by Erdos and Ney (1974). They considered a system of discrete-time simple random walks
on the integers Z in which particles annihilate in pairs if they collide or cross paths. They
conjectured that, starting with all sites except the origin occupied, a.s. the origin is occupied
at some time ¢ € {1, 2, ...}. Lootgieter (1977) verified this conjecture, along with its
generalization to the case p(x, x + 1) = 1 — p(x, x — 1) €[0, 1]. Schwartz (1978) handled
the corresponding question in continuous time. Schwartz exploits two distinct connections
between the system of annihilating random walks and the voter model: a duality relation,
given in Holley and Stroock (1979), which holds for a general random walk p, and a border
relation, which only holds for one-dimensional, nearest-neighbor p. This border connection
is exploited further in Bramson and Griffeath (1980) and Arratia (1982).

Consider the system of annihilating random walks in continuous time corresponding to
a transition kernel p(x, ¥) = p(0, y — x) on Z,. A particle at site x waits an exponentially
distributed time with mean one, then chooses a site y with probability p(x, y) and jumps
there. If site y is already occupied by another particle, the two particles mutually annihilate,
leaving both sites x and y vacant. All the waiting times and choices according to p are
independent of each other and of the initial configuration no. Denote by 7. the set of sites
occupied at time ¢. Griffeath (1978) proved, for irreducible p, that if L is a sublattice of Z,
(i.e. Z, can be partitioned into finitely many translates of L) and the initial configuration
1o satisfies:

a.s. | AL | is finite and even with p recurrent;

(Y

or a.s. | AL is finite with p transient,

then the annihilating system is site recurrent — a.s. every site will be occupied at arbitrarily
large times. Consider a two-dimensional version of the Erdos-Ney conjecture: start a
system of annihilating simple random walks on Z, with all sites except the origin occupied
at time zero. No conclusion about site recurrence can be drawn frorn (1), because the initial
configuration differs from a lattice by an odd number of sites.

Let p be any random walk on Z; whose symmetrization is irreducible, and let 7, be the
corresponding system of annihilating random walks in continuous time. Theorem 1 below
gives the following sufficient condition, on the distribution of the initial configuration no,
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to imply site recurrence:
2) Jr such that Vx;, x5, -+ - € Z; with | x,| — oo,
PN B (x,) #3 io0)=1.

Here B, (x) is the ball of radius r centered at x. For a deterministic initial configuration
Mo = A C Z; this condition is that A be dense, in the terminology of Harris (1978). If 7 has
a distribution which is translation invariant, and mixing {in the sense that for all firiite A,
B C Z4,limjz | P(A C 1o, (x + B) C o) — P(A C o) P((x + B) Cno)| =0} and if P(no
# J) > 0, then 1 satisfies (2). Note that product measure with P(x Eno) =p € (0,1) V x
€ Z, satisfies (2) but is concentrated on a class of sets A C Z; which do not satisfy (2).

Our proof that (2) implies site recurrence involves two steps. The first step, following
Griffeath (1978), is to estimate the density of particles, in a system of coalescing random
walks starting from all sites occupied (Lemma 1). From the estimate it follows that the
expected occupation time per site is infinite; site recurrence for the coalescing system is a
consequence of this and monotonicity (Lemma 2). The second step is to analyze the
coupling between annihilating and coalescing random walks, relation (3) below. Fix e € Z,
with p (0, e) > 0. Site recurrence for the coalescing system implies that there exist large
times ¢, and sites x for which £ = 0 and £¢7*° # 0 (Lemma 3). Condition (2) guarantees that
for infinitely many of these x, the initial configuration n, will have an occupied site y
nearby. The particle at y may feed up to site x or to site x + e when the system begins to
run; this choice, localized in space and time, controls the parity of the number of coalescing
paths to reach the origin at time £. We have an infinite number of these localized choices,
which are sufficiently independent to conclude that a.s., there exist arbitrarily large ¢ at
which the annihilating system has a particle at the origin (Theorem 1). This same general
strategy was used in Arratia (1981) to establish a one-half thinning relation between the
limiting point processes for rescalings of systems of annihilating and coalescing random
walks, both started with all sites occupied.

The method used in Theorem 1 also works for systems in discrete time; we give this as
Theorem 2. The same method could also be used to handle the original Erdos-Ney system,
. in which particles annihilate if they collide or cross paths.

Systems with annihilations between two different types of particles are discussed in
Erdos-Ney (1974) and Holley (1982). In these systems, particles of the same type move
independently of each other, while two particles of opposite type annihilate upon collision.
These systems are substantially different from the systems studied in this paper; e.g. a
coupling such as (3) below is not available.

2. Further discussion. In this section we present the basic coupling between anni-
hilating systems 7 with various initial configurations A C Z,. This will explain the source
of Griffeath’s condition (1) that | AAL | be even in the case that p is recurrent. We discuss
an example from Griffeath (1978) which shows how site recurrence, for annihilating simple
random walks on Z, depends delicately on the initial configuration A. This same example
will show that our sufficient condition (2) is not necessary for site recurrence.

Here is the basic coupling of the annihilating systems corresponding to a given p. Start
with a system (£ x € Zy, t = 0) of coalescing random walks. In this latter system particles
live forever; ¢7 is the position at time ¢ of a particle initially at site x. Particles move
independently before collision, and move together afterwards. Thus for each x, (7 is a
random walk based on p, and for all w € Q; x,y € Zg; 5, t = 0; & = £ implies that £7.s =
£%.,. The annihilating system 77 starting with particles on A C Z, is realized by defining

(3) 1t ={yEZs |{x€EA:£f =y}|isodd}.
This coupling has the cancellative property: VA, B C Za; t = 0;

4) nitB=nf A nf.
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Now suppose that the symmetrization of p is recurrent and irreducible, so that Vx, y
€ Z4, P(& = & eventually) = 1. Then for B finite and even, P (nf = @ eventually) = 1 and
hence P (n#28 = 5/ eventually) = 1. This explains why an even perturbation is allowed in
the recurrent case of condition (1).

For an example, consider annihilating simple random walks on Z starting from A =
Un=1{n*, n* + 1}. The system starting from A U {0} is site recurrent, and A U {0} does not
satisfy our condition (2). Starting from A instead of A U {0}, a.s. each site is eventually
empty. The proof is an easy exercise, working with the event E, that the coalescing paths
£ for the particles initially at n* and n* + 1 collide with each other before either one is
displaced n® from its initial position. By the Borel-Cantelli lemma, P(E, eventually) = 1.
All our claims follow from the cancellative property (4) together with recurrence of the
underlying simple random walk.

3. Theorems and proofs. The continuous-time cases of Lemmas 1 and 2 below
appear in Griffeath (1978). In that paper, the bound P(0 € &) = 1/(1 + ¢) is obtained by
comparing the voter model, which is dual to the system & of coalescing random walks,
with the critical binary branching process in continuous time. Such a comparison does not
seem to be available for the discrete-time voter model. The argument we give here to
prove Lemma 1 is taken from an excellent paper by Kelly (1977) which gives better bounds
for P(0 € £&,) when p is simple symmetric random walk on Z;, d = 2. Bramson and
Griffeath (1980b) build on Kelly’s work to obtain asymptotics for P(0 € &); and these
asymptotics are exploited in Arratia (1981). Finally, the stopping time argument given to
prove Lemma 2 below is taken from Griffeath (1978), where it is used in a more complicated
setting.

LEMMA 1. Let p be an arbitrary random walk on Z,, and let (¢5, x € Z;) be the
corresponding system of coalescing random walks, in either discrete or continuous time.
Let &, = {£7: x € Z4} be the set of sites occupied at time t, starting from all sites occupied.
Then

POE&)=1/(1 + 2¢).

Proor. For x € Z,, t = 0 define random variables
n(x) = |{y € Za: £ = x}|,
Ni(x) = n,(67) = |[{y € Za: & = &7},

so that n? is the size—possibly zero—of the cluster at x, while N;(x) = 1 is the size of the
cluster containing the particle initially at x. Write n, = n,(0) and N, = N,(0). Using only
the translation invariance of (¢7, x € Z;) for each fixed ¢, it follows that for 2 = 0,1,2,- - -,

(5) kP(n,=k) = P(N; = k).
From (5), En, = 1, and E (n?) = EN,. Using Cauchy-Schwartz for n, = n;1(n, > 0),
(6) 1= (En)?*=<E(@n?)P(n > 0), )

so P(0€¢&)=P(n>0) =1/E(n}) =1/EN,.

Now EN, is just the expected number of sites visited by a random walk S; = Xi(¢) —
X>(t), where X; and X, are independent random walks based on p, starting as 0. In discrete
time, fort=10,1,2, ---,

EN,=3,cz,P((i=8)=3,P(Sn=—xforsomem €[0,t])) =1 +¢

so by (6), P(0 € &) = 1/EN, = 1/(1 + t). In continuous time, the random walk S, = Xi1(¢)
— X,(t) has jumps at rate 2, so the bound we obtain from the expected number of jumps
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is EN; =1 + 2t and hence
POeE&)=1/(1+2¢). O
LEMMA 2. Let p be an arbitrary random walk on Z,, and let ¢, be the corresponding

set-valued system of coalescing random walks, in either discrete or continuous time,
starting from all sites occupied. Then .

P(lim sup;«(0 € &)) = 1.
ProoF. By Lemma 1,

(7) J POE&) dt =
o

For any ¢ € [0, ), let o; = inf {s: s = ¢, 0 € &} € [0, ], so that the conclusion of this
lemma is: Yt, P (0, < ) = 1. The basic coupling, {8 = {£5: x € A} for A C Zy, has the
property that A C B C Z, implies {7 C £7 C £, so the Markov process (¢7: A C Z,), with
state space {0, 1}% = {A: A C Z,} ordered by set inclusion, is attractive. Now for ¢ < u, the
strong Markov property yields

It u) = E(f 10€ ) ds) =J f P, €dr ¢, € dA)E(f 10 € ¢2) ds)
s=t r=t J A€{0,1}% §=0

SJ’ P(UtEdr)E(f 10 € &) ds)
r=t =0

< P(o: < u)(t + I(t, u)).
Thus P(o: < u) = I(t, u)/(¢ + I(¢, u)). For fixed ¢, taking u — o yields P (o, < ®) = 1, using
(7).0

LEMMA 3. Let p be a random walk on Z; which is irreducible in the sense that Yx
3n 3 p™(0, x) + p"(x, 0) > 0. For any e # 0 € Z, it is possible to define random sites X,
Xo, - €EZgand times0 =Ty < Ty < T; < ... such that as. forn=1,2, ...

8) &(X,, T.) =0,6(X.+e T,) #0,
VEE[O, Too1]l, £(Xn,t) #0 and &(X, +e,t) #0.

Here £(x, t) = £/ is the position at time ¢ of a particle starting at x, in a system of coalescing
random walks based on p, in either discrete or continuous time.

Proor. Forx € Z,, t €0, ) let
T(x) =inf{s: {2 =0} €[0, ], H(t) = {x:7(x) =¢t}, H=U, H(¢).
To see that )
9 Vt, P(H,is finite) = 1,
consider
E|H,| = Y:ez,P(r(x) = t)
= Y:P (£ = 0for some s € [0, t]) =T P (£ = —x for some s € [0, £])
= E (# of distinct sites visited by £) fors €[0,¢]) = 1+t < oo.

The random walks £7 are taken to be right-continuous in ¢, and H (¢) is increasing and
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right-continuous in ¢. Write H(¢—) = U..H(s), and let (e, x) denote the inner product on
Zy.

In the case that p is recurrent, irreducibility implies that Vx P(r(x) < o) =1,s0 H=Z,
a.s. We define the X, T, recursively by: forn=1, 2, ...

T.=inf{t=T,1+1: mHE®)>mH(T.-1))};
X, = any element of H(T,) for which (e, x) is maximal.

Using (9) and H = Z; a.s., it is easy to see that a.s. this defines (X,,, T,,n =1, 2, --.),

satisfying (8).
In the case that p is transient, it follows from Lemma 2 and (9) that a.s., sup{¢: H; #
H;_} = . For x € Z, let

o(x) =0\ sup{t=0:£( =0}

so that by transience, P(c(x) < © Vx) = 1. The X, T, and auxiliary times @, are defined
recursively by: To = @y =0, and forn =1, 2, - -.

T.=inf{t=Q.-1:H(t) # H(t—));
X, = any element of {x: £(x, T,) = 0} for which (e, x) is maximal,
Q. =1+ max{o(x):x or x — e € H(T,)}.

A little thought shows that this sequence X,,, T, a.s. satisfies (8), for any transient p. [A
relevant example here is the one-sided random walk p(0, 1) = 1 on Z;, with e = 1; note that
(e, X) decreases as n increases.] [

THEOREM 1. Let p(x, y) = p(0, y — x) be a random walk on Z;, d = 1,2, --. , which
is irreducible in the sense that Yx 3n 3 p™(0, x) + p™(x, 0) > 0. Let . be the corresponding
system of annihilating random walks, with sites 1o C Z4 occupied at time 0. If

3r Vx1, %2, +++ € Za, | xn| — oo implies P(no N B,(xa) # ¢ i0.) =1,
‘then
P(Nyez,(lim sup;..{x € n:})) = 1.
Here B.(x) = {y € Zys: |x—y|<r}.

ProoF. Since our hypothesis is translation invariant, it is enough to prove that
P(lim sup{0 € n}) = 1. Start with the usual coupling given by a substructure P = (7.(n),
S:n):x € Zz, n =1, 2, ...) of event times and arrows, independent of the initial
configuration 7o. In detail, the random variables 7.(1), 7.(n + 1) — 7.(n) are exponentially
distributed with mean 1, the random S.(n) € Z, are distributed according to P(S.(n) = y)
= p(x, y), and all these quantities are mutually independent. At an event time 7.(n), a
particle at site x jumps to the random site S,(n). Write £5; = £(x, s, £) = y to indicate that
a particle starting from site x at time s is carried by P up to site y at time ¢; write £ =
£(x, t) = £(x, 0, t). The coupling is

(10) = {y€E Zy: |[{x € no:£F = y}|is odd}.

The cancellative property of the coupling is relation (4) in the introduction. For an interval
I C [0, ), write Pr = (£5::s < t; s, t € I, x € Z,;) for the substructure restricted to times
in I, so that Py 13, P12, and Pys.) are mutually independent.

Fix r for which the hypothesis on 1 is satisfied. By the irreducibility hypothesis on p,
we can fix z € Z; such that ¢ = min,eg P(£1 = —2z, £ # —z Va # y) > 0. Thus

(11) Vx€Zy, yEB(x+2), P=x)=e>0.

Fix any e € Z,; with e # 0, p(0, e) > 0. Depending on p, we can fix a sequence |e| < r;
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< ry< ... increasing so rapidly that for x, x’ € Z;,y € B,(x + 2),y’ €EB,(x' + 2),n =1,
2, .-+, the events A(x, y) defined by A(x, y) = {& = x, £§ % x Va 5 y} satisfy

(12) |x— x’| > r. implies | P(A(x, y) N A(x, ")) — P(A(x, ¥))P(A(x’, ¥"))| < n”3.

By Lemma 3, shifted to time 2, we can define random X;, X, --- €Zsand To=2=<T,
<T.< ---,all 6(Ppw«) measurable, so that a.s.

(13) Vm<n|X,—X,|>r.
and
£X,,2,T,) =0, £X,,2,8)#0 Vte[2 T,],
EXn+e2,t)#0 VEE[2 Tha]U {Tn}.

Condition on P, so that the values xi, Xz, - -+ of X1, X5, - - - are determined. By the
hypothesis on 7, for each fixed sequence x1, x2, - - - , P(no N B,(x, + 2) # ¢ i.0.) = 1. Since
1o is independent of Py, it is possible to select a subsequence of the X, T, (to be again
labeled X, T,) and define random Y;, Ys, - -+ € Z; such that a.s., Vn

(14) Y. € B, (X, + 2) N no.

These Y1, Yz, - -, and these new X1, X;, - - - and T, T3, - - - are all 6 (1o, Pp2,«)) measurable,
and still satisfy (13).

Let x1, x2, -+ and y1, y2, + - - € Zy satisfy Vm < n |xm — x| > r» and y, € B, (x, + 2).
Define events A, = {£(Ya, 1) = x5, £(a, 1) # x, Va # y,} € 6(Ppo,1y). By (11), P(A,) =& >
0 Vn, while by (12), ¥ .cov(1(4n), 1(As)) < . Thus Qr=n 1(A.)/Yn=nv P(A;)) = 1in L,
as N — oo, so that P(A, i.0.) = 1. Condition on o (1o, Pj2«)) so that the values of X;, X,,
...and Yy, Yy, - - - are determined. It follows that P((£(Y,, 1) = X,, £(a, 1) # X, Va # Y,)
i.0.) = 1. Thus we can define a subsequence of the X,,, Y,, T» (again labeled X, Y,, T,),
now o (1o, Pio1;, Pr2,«)) measurable, so that a.s., Vn

_(15) EY1)=X,, £, 1)#X,Vy+#Y,
and also (13) and (14) are still satisfied.
For each x € Z; define an event E; € o(P1,2)) by
E.={w:é¢i,€{x,x+e}and (fi°=x+ ¢, VEE [1, 2]}
N{&,#xVy#x,V1=<s=t=2}.
Let g by the elementary conditional probability P(£f; = x| E.). For any x1, X2, - -- such
that | x,| — o, as n — o, it can be shown that P(E, i.0.) = 1. By conditioning on o (o,
P01}, Pi2«), which is independent of Pyyz), it follows that P(Ex_ i.0.) = 1. Thus there is a

further subsequence of the X, Y,, T, (yet again labeled X,, Y,, T,) which satisfies (13),
(14), (15), and for which

(16) P(Ny=1 Ex) =1,
so that in particular a.s. Vn £(X,, 1, 2) € {X,, X, + e}.
Let C, be the indicator random variable
Cn = 1(£(Xn, 1, 2) = X,).

Let F be the o-field carrying all the information in 7, and P except for the values of Ci, Cs,
..«;ie. let F = o(no, P, Prae, £(x, 8, 1(x € (X1, X, - -}) :1x €EZy, 1 =s=t=2). Even
after conditioning on F, the C;, C, - - - still form an i.i.d. sequence of Bernoulli variables
with ¢ = P(C, = 1) € (0, 1). Using (13), (14), (15), and (16), we see that a.s. C, = 1(Y, €
Mo, §(Yy, Tn) = 0) and that the indicator variable B, defined by

Bn=1(|{y €mo\{Ya}: £&(y, Ty) = 0} is odd)
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isF v a(Cy, Cs, - -+, Cy,_1) measurable. By the basic coupling (3), Vn, a.s.
0€n}={B.+Cr=1}€Fvyva(C,C;, -+, Cp).

Now a.s. P(O €z, |F, Cy, -+ -, Co-1) = g A (1 — @) >0, and it follows, by Levy’s conditional
form of the Borel-Cantelli lemma (see Freedman, 1973), that

PO E nz, io0) = 1.0

THEOREM 2. Let p be a random walkon Z;,d =1, 2, --- , which has period ¢, so that
Z,4 can be partitioned into ¢sets 0 € Gy, Gi, « -+ , Gs—1, where x € Gi, y € Gj, p*(x,y) > 0
implies that ¢ divides (i + k — j), and ¢ is the largest such integer. Assume that p is
irreducible in the sense that for i =0 to {— 1,Vx,y € G;, 3n, z D p"(x, 2)p™(y, 2) > 0. Let
(s £=0,1,2, -..) be the discrete-time system of annihiliating random walks based on
p. If the initial configuration no C Z, satisfies

17) Fef{0---,/—1} IrVYx,x, - € Zy,
| Xn| = o implies P(no N B-(x,) N G: # ¢ 1.0.) =1,
then
P(Niez,(lim sups.«{x € n})) = 1.

Proor. We focus on the modifications needed to transfer the proof of Theorem 1 to
the discrete-time system. The substructure P now is a family (S(x, n); x € Z4, n =0, 1,
-+ +) of independent Z;-valued random variables with P(S(x, n) = y) = p(x, y). Form <n,
the position £7, . = £(x, m, n) at time n of a particle starting from site x at time m is defined
recursively by: ¢(x, m, m) = x and for n > m, £(x, m, n) = S(&é(x, m,n — 1), n — 1). The
annihilating system (n,, ¢ € Z") is still defined in terms of the coalescing paths £f = £5; via
the coupling (3). For an interval I C [0, ), we let P; = ((3,:s<t;s,t€EINZ, x € Za).

The ¢ subsystems (¢::n€Z*,x€ G;) fori =0, 1, - -+, £/— 1 are mutually independent.
Fix fi# f. € Zj such that p(0, fi)p(0, fz) > 0 and set e = —f; + fo. The conclusion of
Lemma 3 for this choice of e must hold for at least one of the ¢ independent subsystems,
so we can fixj € {0, 1, --- , /— 1} such that (8) holds with the additional restriction that
Vn, X, € Gj.

Fix r and i for which the hypothesis (17) on 7, is satisfied. By the irreducibility of p, we
can choose z € Zy, k € Z* such that

VXEG;, VYYEB.(x+2) NG, p*y,x-f)>0.

As in Theorem 1, choose a sequence r; < r; < ... increasing so rapidly that for
n=1 x, x"e Zi,y € B.(x + 2),y’ € B.(x" + 2), the events A(x, y) defined by A(x, y) =

{8 =x—fi, &8 # x — f Va # y} satisfy (12).
By Lemma 3 shifted to time % + 1 we can define random X;, X;, --- € Gjandk+ 1 =
To<Ti < ... €Z, all P41, measurable, so that a.s.

Vm<n|X,—X,|>r. and ¢X,.,k+1,T,) =0, ¢X,+ek+1,T,)#0;
ViEk+1,ToulNZ, (X k+1,8)#0 and £X,.+e k+1,¢t) #0.

Since 7o is independent of Py.+1.x), it is possible to select a subsequence of the X, T»
and define random Y3, Y3, .- - € Zy, now all 6 (o, Ppx+1,:)) measurable, to also satisfy Vn,

Y. € B, (X, + 2) N G:N no.

Since Pyoz; is independent of 1o and Py+1,.), it is possible to select a further subsequence
X, Ya, Th, now o(no, Ppoj, Pr+1)) measurable, for which Vn

g(Yn,k)=Xn_fl, Vy# Yn,g(y’k)#xn_fl'
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For each x € Z; define an event E, by
E.={S(x—fi,k) € {x,x+e}}.

Since P(E.) > 0 and the E., x € Z; are mutually independent of each other even after
conditioning on o (10, Poz), Pir+1,+), it is possible to select a further subsequence for which

P(Np=1 Ex) = 1.

Thus in particular Vn ¢(X, — f1, R, k + 1) € {X,,, X, + e}.
Let C, be the indicator random variable

C.=1¢Xn—fi, b b+ 1) = X,).
Even after conditioning on
F=o0o(,Sx,nln#korx+fiZ{X1,Xs, +++}):xEZg,nEZ")

which represents all the information in 1o and P except for the values of Ci, Ca, ---,
the Ci, C., ... still form an i.i.d. sequence with P(C, = 1) = g € (0, 1). Now a.s. C, =
1(Y, € no, £(Ya, Tn) = 0). The indicator variable B, = 1(|{y € no\{Y.}: &(y, T») =0}]is
odd) is F \/ ¢(Cy, Cs, - -+, Cn—1) measurable. By the basic coupling (1), Vrn {0 € 97} =
{(B.+C.=1}€Fva(C,C;, -+, Cp). From PO € 9z, |F,C1, -+ ,Cr)) =g A (1 —9)
> 0, it follows that

PO € nr i0) =10
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