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A BERRY-ESSEEN THEOREM FOR ASSOCIATED RANDOM
VARIABLES'

By Tuomas E. Woob

Louisiana State University

Uniform rates of convergence in the Central Limit Theorem for associated
random variables are given. Applications to the Ising Model and Diffusion
and Gaussian processes are discussed.

1. Introduction. A real function f(x;, ---, xz) of k real variables will be called
increasing if it is a nondecreasing function of each of the separate variables x;, - - - , x;.. Let
{X(t):t € T}, where T is a subset of the real numbers, be a collection of random variables.
If for any %, any {t;, -- -, £} contained in 7T, and each pair of Borel measurable increasing
functions of % variables f and g the inequality

Cov[ f(X(t1), - -+, X(tx)), 8(X(&), - -+ , X(8))]= 0

holds, then the variables {X(¢):¢ € T'} are called associated (Esary, Proschan, and Walkup,
1967).

Before stating our main result, we establish some notation to be used throughout the
remainder of the paper. For a sequence {X,:n = 1, 2, - - -} of random variables we set S,
=X + --- + X,)/n'2 F,(x) denotes the distribution function of S, 0% = E(S2), and
or=E|S,|°. We use N4 (x) to denote the normal distribution function with zero mean and
variance A%,

THEOREM 1. Suppose {X,: n =1, 2, ...} is a sequence of associated random
variables satisfying the following:
(1) Zero mean: EX, =0, for alln
Finite Variance: 0 < EX%2 < o for all n
Finite third moment: E | X,|® < o, for all n
(2) Stationarity: for all m and for allj, ki, - - - , k integers, (X (k1), - -+, X(k»)) has the
same distribution as (X (j + k1), «-- , X(J + kn)).
(8) Finite susceptibility: A> = EX5 + 2 Y3_2 Cov(X1, Xz) < .
Then forn=m - k

| Fu(x) — Na(x)|=< [(16 02m(A® — 6%))/(9mp})] + 3ok /okm /2.

This result provides uniform rates of convergence in the Central Limit Theorem for
associated random variables due to C. M. Newman (1980). The rates of convergence
provided by our result depend on the rate of convergence of 0% to A” and the growth of
pr. We exhibit below examples from statistical mechanics and diffusion processes where
pr is bounded as k goes to infinity and the theorem gives its strongest estimates. In the
Berry-Esseen Theorem for independent random variables the uniform rate of convergence
of F,(x) to the normal distribution has order of magnitude O (n~'/%), We give an example
of Gaussian processes to show that in the generality of our results such a convergence rate
is not to be expected. We have no general results on the growth of p, for a stationary
associated sequence.
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2. Proof of Theorem 1. The proof requires two lemmas. One is the smoothing
lemma of A. C. Berry (Feller, 1971). The other is an inequality on characteristic functions
of associated random variables due to C. M. Newman (1980).

SMmooTHING LEMMA. Let F be a probability distribution with zero mean and char-
acteristic function p(s) = [ e“*dF (x). Suppose that F — G vanishes at + and that G has
a derivative g such that | g | < B. Finally, suppose that g has a continuously differentiable
Fourier transform y such that y(0) = 1 and y’(0) = 0. Then
T

|F(x) — Gx)| = 77" f

(p(s) — y(s))/s| ds + 24B/xT

-T
holds for all x and T > 0.
NEwMAN’s INEQuUALITY. Suppose Xj, ---, X, are associated random variables with
finite variances; then for any real A;, ---, A,

|E exp(i Zz=1 }\ka) - :=1 E exp(i)\ka) IS EZ=1,,‘>1¢ I}\kl I)\,l COV(Xk, )(])

Applying the triangle inequality to the smoothing lemma we get the following

LEMMA 1. Suppose {X,: n =1, 2, -..} satisfies the conditions of Theorem 1. Let
@r(s) be the characteristic function of S, and B = sup{| N4 (x)|: x € R}. Then
| Frp(x) — Na(x) | =7 (L + I + ;) + 24B/rT
where

T
L =f | (prar(s) — oR(s/m))/s| ds;

-T

T

L= j | (pF(s/vm) — exp(—o3s2/2))/s|ds;
-7
T

I = f | (exp(—o0%s®/2) — exp(=A’s?/2))/s| ds.
-7

The proof of Theorem 1 now follows by estimating the three integrals I, I,, and I3. We
set

Yi=(X((j— Dk +1) + - + X(jk))/E

and T = 40%m'?/3p,. Using Newman’s inequality we get
T
L= | (35 8°Cov(Y}, Y1) /m|s|ds

-T
= (T? Y115 Cov(Y}, Y1) /m = (T?/2)(Var(Sn.:) — Var(Sk))
= (T?/2) (o7 — 0%) = (T?/2)(A® — 0}) = (16 6im (A® — 6%))/18p}.
Next, by Taylor’s Theorem we have

T .
L<2 f [(A7 — 02)5]/25 ds = T*(A® — 02)/2 = (16 otm(A® — o}))/18p1.
0

The estimates we use next mimic those which prove the Berry-Esseen Theorem for
independent sequences. First note the inequality for complex numbers «, 8 with

|la|=Aand |B|=7vy:|a"—B"|=n|a—-B|y"""
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From the stationarity of {X,} we have that EY? =0, E(Y¥)? = ¢% and
or(s) = E exp(is Y?) = E exp(is Sp).
Also

|@r(s) — 1+ 03s%/2| =

f (€™ — 1 — isx + s?x2/2) dF, (x)

SJ’ | s°x%/6| dFy(x) = px|s|®/6.

Hence, if 0%5%/2 = 1, | gx(s) | = 1 — 635%/2 + px| s|?/6. For | s| = T this gives
| @r(s/oxVm)| < 1 — s2/2m + pi|s|?/603m™?
=1 - 55%/18m < exp(—5s?/18m).

We note that since o is always less than or equal to p; the theorem holds trivially when
m < 9 and so we assume without loss of generality that m = 10. Now

0, T
L= J | (p&(s/0xVm) — exp(—s?/2))/s| ds.
—orT
Setting y™ ! = exp(—s?/4) and using e * — 1 + x < x?/2 for x > 0, it follows finally that
o, T

L/m+ 24B/7T < 7! J’ ((2s%/9 + | s|?/18)exp(—s?®/4))/T ds + 24B/x T

—arT
=< 3pr/aim 172,

In the last inequality #< % was used to approximate B. The proof of Theorem 1 is
complete.

REMARKS. Since A% — ¢} goes to zero as k goes to infinity it is always possible to
regulate the growth of m with % in such a way that p,/m*?> and m**(A% — o%)/px both go
to zero.

We have done some work in replacing variances and absolute third moments with
truncated moments (Wood, 1982).

3. Ferromagnets. Some important examples of stationary associated sequences of
random variables arise in models for ferromagnets in mathematical physics. Typical among
these models is the classical Ising model for which association of the spin variables is
equivalent to their satisfying the FKG-inequalities (Simon, 1974).

Moreover, for the ferromagnetic Ising models, the Lebowitz Inequality

EXXX: X< (EX.X)(EX:X)) + (EXX:)(EX,X) + (EX.X))(EX;X:)
holds. A recent derivation of the Lebowitz Inequality for Ising models and ®* field theories
can be found in the paper by Brydges, Frolich, and Spencer (1982).

THEOREM 2. Let {X,:n=1,2,-.--} be a stationary sequence of mean zero associated
random variables with finite fourth moments. Suppose {X,} satisfies the finite suscepti-
bility condition and the Lebowitz Inequality. Then

n=E|Xi+ --- +X,)/n*?|?=E|S,|°

is bounded as n goes to infinity,

Proor. First note that p, =< (ES:)**. The Lebowitz Inequality and the association
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give
E S = (1/n% 31 X1 Ti-1 D1 E XXX X,
= (3/n?) L1 =1 Th-1 i1 (EX: X)) (EXe X))
= (3/n? Yl Ti-1 Xi-1 (EXX)) Yim1 (EXeX)).

The last sum is bounded by the finite susceptibility assumption. This completes the proof.

In the one dimensional Ising model, at sufficiently high temperatures, ¥ 7-1 EX1X, is a
convergent geometric series (Thompson, 1972). Theorem 1 and Theorem 2 then combine
to give constants C and D so that

| Fa(x) — Na(x)|=< C/m'?
where n = D m log m.
4. Diffusions in R'. Consider the one dimensional diffusion process {X,: ¢t € R} with
generator
) G = d*/dx* — b(x) d/dx.

We take b(x) to be a bounded, smooth even function with b(x) = /| x| for |[x| = § >0
and B > 1. We will show that if 8 > 9 then .
T
f X, dt
0

remains bounded as 7T goes to infinity. This process generated by G is associated by a
theorem of I. Herbst and L. D. Pitt (Pitt, 1983). Before stating this theorem, we note a
definition due to T. E. Harris (1977).

3

pr=T"E

DEFINITION. A semigroup P’ is called monotone if P‘f is a bounded, increasing
function whenever f is a bounded, increasing function in the domain of P’ If P’ is the
transition semigroup of a Markov process X; and P’ is monotone then X, is also called
monotone.

HERBST-PITT THEOREM. Let G generate a unique diffusion on R™ where G is of the
form

Gf(x) = Y1 Y1 @ij(x)0:0;f (x) + Yie1 bi(x)d:f (x).

Let P'(x, dy) be the corresponding Markov semigroup.
A. The condition that a;; =0 for all i and all j is necessary and sufficient for

(6) G(fg) — fGg — gGf= 0

to hold for all smooth increasing functions f and g in the domain of G.
B. Necessary and sufficient conditions that P’ be monotone are

a) 3:bj=0 if i#j
b) dra;j=0 if k& {i,j}.
The following formal calculation shows how one uses this theorem to prove the positive
covariances necessary for association. We assume P‘ is monotone and fand g are increasing.

Set h(s) = P“°[P°f(x)P°g(x)] so that A(0) = P(fg) and A(t) = (P'f)(P‘g). Then for s €
(0, ¢)

H(s) = =P *[G(P*fP°g) — (GP*f)P°g — P°f(GP°g)]
which cannot be positive by (5). Therefore
Cov(f,(X:), g(X:)) = h(0) — h(t) = 0.
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We now return to showing pris bounded as 7 goes to inifinity for 8 > 9. We use Feller’s
representation G = D,,D; for the generator in terms of the speed measure m(dx) and
natural scale function s(x). Elementary calculations show that in our case for |x| =68 we
may take m’(x) = | x| and s’(x) = | x |*. In particular we observe that m(dx) = m’(x) dx
is a finite measure since 8 > 1. Furthermore, P! is self-adjoint on L2(R, dm), or what is the
same, X, has time reversed symmetry if we take m(dx) (appropriately normalized) as our
initial distribution.

Let @(x) = x be the identity function on R and 0 < i <j < k < [. Then

EAX,.X]XI,XI = EPj_i(p (.X]‘)AX]‘XkPl_k(p (Xk)

Observe that P monotone and & (x) even imply that P* preserves odd increasing functions.
Hence, 0 =< xP‘p(x) as the product of two odd increasing functions. Denote by R, the Oth
order resolvent operator for X;:

Rof(x) = E, f FX,) de.
0

Thus
' E f X, X, X, X, dqdrdsdt
A

= f EP" %9 (X,) X, X, P* ¢ (X;) dgdrdsdt
B

= f ERop(X:)X, X, Rop (X,) drds
c

S(T2/2)f | xRogp (x) |* dm (x)

where A = {(q,7,5,t):0<g<r<s<t<T)},B={(qrst):0<r<s<Tand —0<gq
<r<s<t<ow},and C= {(r,s):0<r<s<T}.
Assuming for the moment that xRy (x) is in L%(R, dm) we now have the estimates

T 4\ 3/4
st(1/T2)(E< j X, dt)) = C|| xRop(x) |3
()

for some constant C > 0.

We now show that xRo¢(x) is in L*(R, dm) provided that 8 > 9. We make no claim that
this is necessary for pr to be bounded, but only that it is sufficient.

For x> 6

Rop(x) = f s'(y) {j @ (2)m(2) dZ} dy = x*/3(B — 2).
0 y

Hence [Z. |xRo@(x) |’dm(x) < » if and only if [§ {x*/3(8 — 2)}*/x* dx < o. This is
equivalent to 8 > 9.

ReMARKs. The diffusion processes we have discussed provide examples in which we
have rapid convergence in Theorem 1, but they do not satisfy the usual strong mixing
conditions used for proving the Central Limit Theorem for Markov processes (Rosenblatt,
1978).

That these processes do not satisfy the strong mixing condition is an easy consequence
of the fact that G is self-adjoint on L%(R, dm). In fact,

sup{Ef(Xo)g(X:)} = e~

where the supremum is over all pairs (f, g) of functions with Ef(X,) = Eg(X;) = 0 and
Ef(Xo)?=1and

A= inf{— ff(x) - Gf(x)m’ (x) dx}
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over the set of all smooth functions with compact support satisfying [ f dm = 0 and
[ |f|? dm = 1. By choosing f,(x) to be smooth approximations of the odd function g(x)
with
0 for 0=sx=<A
g(x) ={x—)\ for A=sx=A+1
1 for A\ +1=x

it is easy to see that A = 0 and hence X; cannot be strongly mixing.

4. Gaussian processes. With the following example we intend to demonstrate that
the convergence rate in Theorem 1 can be arbitrarily slow. This differs from the Berry-
Esseen Theorem for independent random variables which provides the order of magnitude
n~2for | Fn(x) — Ni(x)|.

As the Fourier transform of a positive L' function

ris,t)=rt—s)=[1+ (-8 %<v<¥%

(Magnus, et. al., 1966) is the covariance function, r(s, t) = EX,X,, of a stationary, mean
zero, Gaussian process {X;:t € R}. By a theorem of L. D. Pitt (1982) the process X, is
associated.

Since » > % we have the finite susceptibility condition, [§ r(¢) dt <., holds. The
process X, satisfies the conditions of Theorem 1 and we can get estimates on the
convergence rate of |F,(x) — Na(x)| independently of the theorem because all the
distributions involved are normal.

For two mean zero normal distributions N4 (x) and Ng(x) the maximum of | Ng(x) —
Na(x)| occurs at x, where x, = (24°B*(log A — log B))"?/(A* — B?). Note that xo
converges to A as B goes to A. A Taylor’s Theorem approximation shows that | Np(xo) —
Na(x0) | has order of magnitude O(A — B) as B goes to A.

Applying the notation of Theorem 1 we have F,(x) = Ng(x) for

B=o02=1+ (2/n) S EXX;=1+ (2/n) ¥y oir(J — 0).

By varying the choice of » we can make o7 converge arbitarily slowly to A.
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