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ON THE BELL-SHAPE OF STABLE DENSITIES

By WOLFGANG GAWRONSKI

Universitat Ulm

The central result of this paper consists in proving that all stable densities
are bell-shaped (i.e. its kth derivative has exactly & zeros and they are simple)
thereby generalizing the well-known property of the normal distribution and
the associated Hermite polynomials.

1. Introduction and summary. The notion of bell-shape is intimately con-
nected with the graph of the density of a normal distribution. As is well known,
the Cauchy density has a similar geometrical form. More generally and to be
more precise, following the concept of bell-shaped kernels in the theory of games
[e.g. 6, Chapter 6, Section 11.C] throughout we call a probability density function
D bell-shaped iff p is infinitely many times differentiable on the real line and its
kth derivative p'¥ possesses exactly % zeros on its support and they are simple.
Now the bell-shape of the normal density amounts to the well-known property
that the zeros of the Hermite polynomials are real and simple [e.g. 9, volume 1II,
problem 58, page 48; or 11, Theorem 3.3.1, page 44]. The same property is readily
verified for the Cauchy density too (see [6, Chapter 6, Section 11.C] or, more
precisely, Section 3 of this paper). Both functions belong to the class of stable
densities for which in general a representation by elementary functions is not
known [cf. 7, page 143]. Thus an investigation of finer properties of general stable
densities seems to be difficult. On the other hand, Ibragimov and Chernin [3]
proved unimodality for all stable densities. Sharpening their theorem and ex-
tending the bell-shape of the two prominent representatives of stable laws
mentioned above, we obtain the central result of this paper by proving that (see
Theorem 1):

all stable densities are bell-shaped.

Moreover, for the £th derivative we determine the exact numbers of zeros located
on the positive and on the negative axis respectively provided the exponent of
stability a # 1 (Theorem 2). The proofs essentially are based on suitable integral
representations and certain variation diminishing transformations [see 6, Chapter
5].

2. Preliminary results. In this section we collect some auxiliary results
and in particular we derive suitable integral representations for stable densities
and its derivatives which are basic for the technical treatment of the proofs of
our theorems.

After a certain normalization we can define stable distributions via the loga-
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rithm of their characteristic functions given by

- ltl“eXP<i§Ysign t), a®l
21 log (¢ @, 7) 1=
— ¢ (§+ iy(log | ¢]) sign t), a =1

[cf. 4, page 581 ff; 5, page 164; 13] where we have for the exponent of stability «
€ (0, 2] and for the skewness parameter y € R

a, O<a=1
(2.2) |Y|5{2—a, l<a=<2

In view of the integrability properties of ¢ (see (2.1)) we see that the corresponding
stable law has an infinitely differentiable density p(x; a, y), say, [cf. 7, Chapter
5.8] which we represent by Fourier’s inversion theorem [e.g. 2, Proposition 5.1.10.,
page 192] as

23) pxay)= —I—J’ e ™ot a, y) dt = 1 Re f e ™ o(t; a, y) dt.
27 J_ T o

In the first lemma we list some properties of p(x; a, y) known in the literature. In
particular concerning concepts such as total positivity sign regularity and related
ones we refer to the monograph of Karlin [6, Chapter 2].

LEMMA 1. i) For all x € R and y € R satisfying (2.2) we have
(24) px ay) =p(—xa,—y), a€(0,2]
il) If0 < a <1, then

px;a,—a) =0 forall x<0
(2.5)
px;a,a) =0 forall x>0.

iii) If 0 < a < 1, then the following representation as Laplace transform holds
(2.6) e = f e ™Mp(x; o, —a) dx, ReA=0.
0

iv) If 0 < a < 1, then the kernel
(2.7) K(x,y) =pe*™ a,—a), x%yER,

is strictly totally positive (STP).
w/2

(28) v) px 1, Y)=% f exp(—a(@)e " alp)e ™" d

—x/2
for all x € R and y € (0, 1] where
(2.9) a(e) := (y¢ + (7/2))exp{(¢ + (7/2y))tan ¢}, |¢| < x/2.



232 WOLFGANG GAWRONSKI

Proor. Part i is an immediate consequence of (2.3) and ii follows from a
series representation of p(x; a, v) [e.g. 7, Chapter 5.8]. The representations in part
iii and v are given in [1] and [13] respectively. The property in part iv is
established in [6, page 390].

REMARK. [7, Chapter 5.8]. p(x; a, xa), 0 < a < 1, are the only onesided
densities; in all other cases p(x; a, y) is concentrated on the whole real line. If y
= 0, then p(x; a, 0) is a symmetric density.

Using the abbreviation

(2.10) P(x) = p(x; a, —a), 0<a<l,
and the convention

0 for x>0

argx={w for x<0

we derive the following representation formulae for the derivatives in-question.
LemMMA. 2. i) If0<a<l1,|y|<a,x%#0,and k € NU {0}, then
s 09 == [ oty ()
) O =—"7Z o (1
p t] Y 7T| xlk . Do)y ELY. Y
where

. (—i)*
(y exp(imy/2a) + i sign x)**1’

Yar(y) =R y=0.

i) Ifl<a<2,|y|<2—a,x#0,and k € NU {0}, then

=D)*'T((k + 1)/a) [~
ma| x|*

pP(x; a,y) = Pl Y/ 2| Ver(y) dy

0

where
e ‘ iexp{i(le.: + 1)arg x} y=o.
(y + exp{iy(7/2) — ia((m/2) — arg x)})*+D/=

\Pa,k(y) =R

Proor. Differentiating (2.3) we obtain, by (2.1),
1 o [ . ,
(2.11) p®(x; a, ) = = Re(=i)* J’ t*exp(—ixt — t%e™"?) dt.
w
0

i) Suppose that 0 < a <1, | y| < e, and x # 0. Then, putting
(2.12) a = exp(imy/2a)
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we get, by Lemma 1, iii, with A = ta

pPx ay) =717Re(—i)" f dte‘“‘tkf dée™*pa(§)
0 0

00

= 7T|1x|_k Re(—i)* J dyp.(y|x]) J r*exp{—r(ay + i sign x)} dr
0

0

S
T fo Pl ¥ | X )¥ur(y) dy.

ii) Suppose that 1 < a < 2, |y| < 2 — @, and x # 0. Then we treat (2.11) by
contour integration as in [1] to obtain

1 i ® . .
p®(x; a, y) = = Re(—i)keo®*+D f r*exp(—7|x|e? — %) dr
T
0

where ¢o, 01, 0; are chosen subject to

w
a ar 01=‘Y§+a¢)0
__54’055’ T
2 02=§—argx+¢o
such that
T T .
6; (—§+8,—2——8>, it=1,2 forsome &€ (0,n/2)
and

dosign x < 0.
Next, we put 7 = ¢ and get

00

p(k)(x; a, ‘Y) = W_la Re(_i)kei(k+l)¢0 J‘ g((k+l)/a)—1exp(_§eif)l)
0

X exp{—(&]x|“e“®%)"*} d¢.

In order to apply Lemma 1, iii to the second exponential we have to make sure
that ¢o can be chosen such that | 6, | < 7/2 and | af: | < #/2. We suppose that arg
x = 0. The reasoning for arg x = = is very similar. Then we have

6, = y§+ ago, abs = a(g+ ¢o)
and consequently

T T m
01—(y—a)§+a(§+¢o)—(y—a)§+a02

I
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which gives in view of | y| <2 — a
-7+ ab: < 6; < abs.
Choosing now ¢ = (1 — a)7/2a € (—7/2, 0) we get
aly=7/2, —7/2 <0, < w/2.

(For arg x = 7 choose ¢o = (a — 1)7/2a).
Now Lemma 1, iii implies (A = £| x|“exp(iafz))
PP (x; a,y)
1 -\ B i(k+]) B
= — Re(—i)*e***%
TQ o

_ T'((k+ 1)/a) ® (_i)kei(k+1)¢0
_—-—Ta————J(; pl/a(y)Re (7‘7' rapy l z |aela02)(k+W& dy

dypl/a(y) f g((kﬂ)/a)—lexp{_g(eie, +y|x|aez‘a02)} d£
0

_ DDk + D /e) (7

o | x|*

Pyl y/| 2| Wai(y) dy.
0

This completes the proof.

3. Main results. First we prove that p®(x; a, ), 2 € N, has at least %
changes of sign on the real axis by showing that its moments up to order & — 1
vanish [cf. 8]. It should be mentioned that this part of the proof for Theorem 1
requires integrability properties of the stable characteristic functions only rather
than its particular structure. Putting

(3.1) xe(t) = t*(t; a,v), tER, EEN
we have, by (2.1), that

(3.2) xi' ELi(R), v=0,.+,k—1,
and

(3.3) x20)=0, »=0,...,k—1.

Further, from (2.3) we get

*®) (_i)k “ —ixt
pPP(xa,y) = o e Mxx(t) dt

and thus by (3.2) and [2, Proposition 5.1.14, page 194]

(=i)*

(3.4) (@x)p®(x; a, y) = 5

J eV dt, v=0,...,k—1.

Now by Fourier’s inversion in the form of Jordan’s theorem [2, Problem 5, iii,
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page 205] and since the left hand side of (3.4) is continuous we get

(305) X;:)(t) = Cf eixtx”}’(k)(x; a, Y) dx) v= 0’ M k- 1’

where the integral exists at least as a principal value. Actually we could apply the
classical inversion theorem [2, Proposition 5.1.10, page 192] since by extending
the asymptotic results for p(x; a, y) in [10] to its derivatives the left hand side of
(3.4) is seen to be in L;(R). Putting ¢ = 0 in (3.5), by (3.3), we obtain

.fxwmmamnm=mu=m.wk-L

Because p®(x; a, y) is continuous on the real line this shows that p®(x; a, v)
changes its sign at least % times [9, vol. I, problem 140, page 65]. Hereby we have
proved part of

THEOREM 1. All stable densities are bell-shaped.

To complete the proof of Theorem 1 in case a # 1 we estimate
Ni#(a, y) := number of zeros of p® (x; a, y) on the positive real axis
and
Ni (a, y) := number of zeros of p®(x; a, y) on the negative real axis,
from above (both counting multiplicities). First, we observe, by Lemma 1, i, that
(3.6) Ni(a, y) = Ni(a, —)
for all admissable y in (2.2). Then we prove

THEOREM 2. Suppose that a # 1 and k € N, then we have
+1
i) p*(0; a, v) =w cos (g (k + % (B + 1))) that is x = 0 is a zero of

PP (x; a, y) iff  + (k + 1)y/a is an odd integer. This zero is simple unless
lyl]=a<1.
ii) If x = 0 is a zero of p®(x; a, y) so it is a zero of p® (x; a, —7).

iii) If | y| < aor|y| <2 — ain cases a < 1 or a > 1 respectively, then

k+1_Fk+1
[———2— ¥ T%] , when k + (k + 1)y/a is not an odd integer
NHOD = 1 ke
—5 ¥ TE , when k + (k + 1)y/a is an odd integer.

(for real x as customary [x] denotes the largest integer not exceeding x) and all
zeros are simple.
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iv) In the extreme cases we have
N, Fa)=*F fora<1
and for a > 1

k+ 1], when (k+1)/ag N
a
Ni(a,a —2) =<
kzl—l, when (k+1)/a€N
(k_[k+1], when k+1¢N
a a
Ni(a,a—2) =<
k—k+1, when k+1€N,
a a

Ni(a,2—a)=Ni(a,a — 2),

and all zeros on the support of p(x; a, y) are simple.
REMARKS.

i) Observe that & + (k£ + 1)y/a is an odd integer iff (¢ — 1)/2 F ((k + 1)/2)(y/
@) is an integer in part iii or (2 + 1)/a is an integer in part iv when | y| = 2 — a.
ii) Theorem 2 in particular shows that p*(x; a, y) has exactly k zeros on its
support and they are simple (a # 1).

iii) The numbers Ni(a, y) reflect the skewness of the underlying distribution;
that is the more probability mass is concentrated on a half-axis the more zeros of
the derivatives are located on this half-axis.

iv) If a = 2, then (y = 0, by (2.2))

k/2, if k& iseven

N%(2’O)={(k—1)/2, if b isodd

and p™(0; 2, 0) = 0 in the latter case. This is the well-known property of bell-
shape for the normal density following e.g. from [11, Theorem 3.3.1, page 44 and
Section 5.5. page 105].

PRrROOF oF THEOREM 2.

i) From (2.11) we have
1 * ]
p<k)(0; a,y) =— Re(—i)k f tkexp(_taeury/Z) dt
T
0
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and, by Cauchy’s theorem, we obtain

PP a,y) = W—laRe(—i)”exp(-(k + 1)imy/2a) f e SR/ gt
0

ST /0 (2 (1))
2 P

o
ii) Part ii is an immediate consequence of Lemma 1, i.

iii) First, suppose that 0 < a < 1, | y| < a, and x # 0. Then putting
|x|=ef y=e™ &£n€ER

we rewrite the representation of Lemma 2, i as
(7
PP ay) =—5 [ puleWarleT)e™ dn.
By Lemma 1, iv, K(£, 1) = p.(e*™) is strictly totally positive (STP).

Using in [6, Chapter 2] Corollary 5.2 (page 66), Theorem 5.1 (page 62), and the
remark following definition 1.5 (page 49) successively we conclude that K(£, ») is
extended sign regular of order r in both variables (ESR,), then extended sign
regular of order r with respect to £ (ESR,(£)), and finally extended sign regular of
order r and degree s in the variable ¢ (ESR,(§)), for all r, s € N. To obtain upper
estimates for N i*(a, y) by Theorem 3.2 in [6, page 239] we simply have to count
the number of sign changes of {,x(y) as y runs through the positive reals (the
validity of condition (3.21) in [6] is readily verified). To this end by Lemma 2, i
and (2.12) we write

(=i)*

Yur(y) = Re (ya + isign x

)k+1

from which its zeros are easily recognized to be

sin —~
kE+1 )
(3.7) Y, = sign x

. my ™ Y
sm<k+1+2<1+a))

where » =0, ..., B, but » # ((k + 1)/2)(1 — (y/a)).

Casel. Suppose that £ + (& + 1)y/a is not an odd integer (which is equivalent
to the fact that (2 + 1)(1 — y/a)/2 is not an integer). Then a simple counting in
(3.7) gives

(3.8) Ni(e, y) < [k—;'—l (1 - 1)]

a
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(use Theorem 3.2 in [6, page 239]) and further (see (3.6))

(39) Ni(a, ) = Ni(a, —y) < [k_;l (1 + z)] .

a

Since x is not a zero in this case the considerations before Theorem 1 imply that

k=N y) + Ni(@,y) < [5—'2*—1 (1 —Z)] + [f—;—l (1 +1)]

o a

=k+1+ ﬂ 1-— Y + m Y_ 1 =k
2 a 2 a
thereby showing that (3.8) and (3.9) hold with equality.

Cask II. Suppose now that 2 + (k& + 1)y/a is an odd integer which implies
that x = 0 is a simple zero and (k + 1)(1 — y/a)/2 is a positive integer. Now the
conclusion from (3.7) is

+
a

= Ni(@, -y <k*+! (1 +1) ~1
2 o

The same reasoning as above completes the proof in case a < 1.
Now suppose that 1 < a < 2, |y| < 2 — a, and x # 0. Then by the same
arguments as above we have to determine the number of positive zeros of

i exp{i(k + 1)arg x}
® 0 + expliv(m/2) — ia((n/2) — arg )}) V%"

By (3.6), we may confine ourselves to the case x > 0. Writing

Yar(y) =R

b := exp(in(y — a)/2)

the zeros of ,  are the finite solutions of

y + I; (k+1)/a
_ =1.
(y + b)

Putting r := (k + 1)/a the latter are given by

L fmv
—_—— - —
sm(r 2(y a+2))

(3.10) Y=
. TV
sin —
r
where
v=1 ...,r—1, if reEN

(3.11) )
v=1,...,[r], if r&N.
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Further, observe that

—a+2
LY—a+?

(3.12) 0<? <2
r 2

for v satisfying (3.11).

CaseE 1. Suppose that &2 + (& + 1)y/a = k + ry is not an odd integer; that is
x = 0 is not a zero by part i. Using the considerations preceeding Theorem 1, (3.6)
and Theorem 3.2 in [6] again (observe Remark i following Theorem 2) by (3.10),
(3.11), and (3.12) we get

Ni(a, +y) = [r & ;“ Y]
and
k= Ni(a, y) + Niz(a, y) = Ni(a, y) + Ni(a, —y)

B+1 k+1
_[-—2——(k+1)-——} [-—2—+(k+1)§&}

_|k+1_ R _kt1 R -
_[-_2_ (B +1) } [ 5 +(k+1)2a]+k+1 k.

Hence the truth of the assertion follows in this case.

Case II. If & + (kB + 1)y/a is an odd integer the proof runs along the same
lines as the previous one.

iv) Finally we mention that stable laws are continuous functions of the parameters
provided o # 1 [12, Section 2.4, p. 447]. Thus parts i, iii imply iv when 0 < a < 1
orl<a<2 Ifa =2 then see Remark iv following Theorem 2. Now the proof of
Theorem 2 is finished.

Finally we complete the:

Proor oF THEOREM 1. By Theorem 2 and the result preceeding Theorem 1,
it suffices to prove that p®(x; 1, y) has at most % real zeros (counting multiplic-
ities). Since stable laws are not continuous with respect to a near a = 1 [12,
Section 2.4] we cannot pass to the limit in Theorem 2. To this end we use
representation (2.8) to get for x € R, y € (0, 1],

1 /2

PP L, y) =—5 f exp(—a(¢)e ™) Pru(alp)e ™) do
Y —m/2

where P; is a real polynomial of degree & being recursively defined by

Py(§) ==& Praa(§) = E(Pr(§) — Pr(£)), EEN.
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Since
limy,n/2-0a(¢) = o, limy, ,20a(p) =0
and a(¢) is strictly increasing on (—7/2, 7/2) (note that a’(¢) > 0if | ¢ | < 7/2) by

substituting
(3.13) E=e t:=alp)

we obtain

1 00
p(k)(x; 1,7) =7T—YmJ' e_‘sth+1(§t)‘P(t) dt
0
where

Y(t) = >0, for 0<t< oo,

a’(a™(t))
Further, by the formula

1 1

—=—— | e*s/lds, 2>0,jEN
2’ (]—1)!J0 J

we conclude

]

pP(x;1,y) = £+ f

0

ds Qx(s) J e Sk 2y(1) dt
0

=: ¢h? f Ri(y) f e ¥%(t) dt dy
1 0

=: ¢h? f Ri(y)L(§ y) dy.
1

@: and R; being polynomials of degree k. Next, we have

I i _ rr=1)/2 ’ i=1gj—1, £yt
det(WL(gy y)) = (&y) det 5 tTt e (t) dt

i,j=1

which is positive for all £, y > 0 and all r € N, because the latter determinant is
a gram determinant of the linearly independent monomials 1, ¢, - -, t"'. Thus
the kernel L(£, ) is extended totally positive (ETP) and hence ESR,(¢)) for all
r, s € N [6, page 49]. Now another application of Theorem 3.2 in [6, page 239]
completes the proof of Theorem 1 (observe also (2.4)).
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Finally we mention two simple properties of two special cases in the following:

REMARK.

i) Writing the kth derivative of Cauchy’s density (a = 1, y = 0) in the form

1 d* [ 1 (=1)*R! 1
®(x; 1,0) == Im — = I
P 1, 0) a m dx* (x - i) a m (x — i)

it is readily verified that its zeros x, can be given explicitly by

L

[see also 9, volume II, problem 57, page 46].

X, = cotan

ii) If a = —y = %, then p(x; %, —%) can be expressed by elementary functions [5,
page 171; 7, page 143] and hence we obtain inductively (¢ € N U {0})

Pr(x) 1
p(k)<x; 1 _ l) = J QW72 AR expl ——] x>0

, 4x
2 2
0 x=<0

where the polynomials P, (of degree k) are recursively computed by
Po(x) :==1, Pr(x) := (1 — (8% — 2)x)Pr—1(x) + 4x%P}_1(x), R E N.
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