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ADDITIVE PROCESSES ON NUCLEAR SPACES

By A. S. USTUNEL

In this work we construct general additive processes on the nuclear
spaces, and prove Khintchin’s formula and Paul Lévy’s decomposition for
these processes. As applications, we construct some Ornstein-Uhlenbeck
processes with jumps and solve some (stochastic) partial differential equations
obtained from the transformations of these processes by a random diffeo-
morphism corresponding to a finite dimensional diffusion process.

Introduction. The processes with independent increments have been the
guiding elements of the stochastic calculus. The main reasons for this are, firstly,
that they can be constructed easily from their local characteristics and secondly,
that almost all of them possess the necessary properties to be stochastic measures
in the sense of [9]. Consequently, in order to show the validity of a stochastic
calculus on the nuclear spaces, one has to shew that such processes can be
constructed on these spaces as easily as in the finite dimensional case and this
is the essential motivation of this work.

In the first section we recall some results as the Prokhoroff’s condition,
nuclear space-valued martingales, etc. The second section is devoted to the
definition of the additive processes and to the proof of the regularity of their
trajectories using the general results of L. Schwartz about the Markov processes
(cf. [11]). In the last part we prove the theorem of Khintchin and obtain the
decomposition of Paul Lévy for the nonhomogeneous additive processes with
jumps. Let us note that in [8], K. Itd has given the characterization of &’ (R¢)-
valued (i.e. the space of the tempered distributions) continuous additive processes
using the canonical basis of this nuclear space. Our approach is different from
his and works in any nuclear space encountered in applications, permitting us to
handle also the discontinuous additive processes.

In the last section we give three applications: The first one deals with an
Ornstein-Uhlenbeck type process with values in the space of the tempered
distributions whose driving semimartingale is a homogeneous additive process.
We calculate explicitly the infinitesimal generator of this Markov process on the
cylindrical, twice-differentiable functions. The second application studies the
image of the above process under a stochastic flow of diffeomorphisms generated
by a finite dimensional diffusion process. The image process turns out to be the
solution of a stochastic partial differential equation with random coefficients and
its mathematical expectation gives the solution of an integro-differential type
Cauchy problem with a functional integral. The third application deals with a
stochastic partial differential equation whose solution is the Ornstein-Uhlenbeck
process of free quantum field.
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I. Notations and preliminaries. @ denotes a complete, separable nuclear
space whose toplological dual &’ is also nuclear under its strong topology
B(®’, ®), denoted by ®}. For practical reasons we suppose that ®; is a Souslin
space. If U is an absolutely convex neighborhood (of zero) in ®, we denote by
&(U) the quotient set ®/p7*(0) completed with respect to the gauge function py
of U and k(U) represents the canonical mapping from ® into ®(U). If VC U is
another such neighborhood, k(U, V): ®(V) — &(U) is defined by k(U) =
k(U, V) o k(V).Let us recall that ® is called nuclear if there exists a neighborhood
base % in ® such that, for any U € %, there exists some V € %, V C U, for
which the mapping k(U, V) from ®(U) into ®(U) is a nuclear mapping. If B is
a bounded, absolutely convex subset of ®, we note by ®[B] the completion of the
subspace (of ®) spanned by B with respect to the norm pg(i.e., the gauge function
of B). It is well known that (c.f. [10]) in each nuclear space ®, there exists a
neighborhood base %;,(®) such that, for any U € %,(®), ®(U) is a separable
Hilbert space whose dual can be identified by ®’[U°], U° being the polar of U,
and & is (a subspace of) the projective limit of

{(®(U), k(U, V)): V, U € 2(®), VC U}

We note by %5, (®) the set
{U% U € Zn(®4)}

and %, (®’) is defined by interchanging ® and ®;.

If (Q, &% <., P)is a completed probability space with a right continuous,
complete filtration (.%;; t = 0), a stochastic process M with values in &’ is called
a martingale if, for any U € Z,(®%), (k(U)(M,); t = 0) has a modification MY
which is a martingale with values in the separable Hilbert space ®’(U). In [13]
we have showed that any such martingale has a modification with almost surely
" right continuous trajectories having left limits (in $3).

Suppose that X is a completely regular topological space and A is a set of
Radon measures on X. We say that A satisfies Prokhoroff’s condition if A is a
bounded set in the variation-norm topology and if for any ¢ > 0, there exists a
compact set K, C X such that

sup(|m|(X — K,);m€EA) <e.

If A is a set of cylindrical probability measures on the nuclear space &g, then A
satisfies Prokhoroff’s condition if and only if the characteristic functions m,
m € A, are equicontinuous at zero (c.f. [2], page 178).

II. Additive processes. Let (Q, &, P) be a probability space and (#,
t = 0) be a filtration of Z A stochastic process X on (2, %, P) with values in &’
is called an additive process or a process with independent increments if

i) for any t = 0, X, is 7,-measurable,

ii) for any 0 < s <t, X, — X, is independent of &,
iii) the mapping (¢, ¥) — f:(¥) = E(exp iX(¥)) is continuous on R+ X &
iv) Xo(?) =0 a.s., forany ¥ € P.
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Under these conditions the mapping
(s, t, ) — E(exp i(X:(?) — X(¥)))

is continuous on [0, T'] X [0, T] X ® for any T > 0. If A is a measurable subset
of ®’, denote by Py(x, A), x € &’, the following quantity:

Pyu(x, A) = P{X,— X, + x € A}.

By (i) and the theorem of Minlos-Sazonov-Badrikian, A — P, (x, A) is a Radon
measure on ®’. Moreover, if H C ' is compact, then the set of measures

{Pg(x, -):s,t €0, T],s <t x € H}
satisfies the condition of Prokhoroff, hence it is tight (cf. [2]). We have also:
ProPOSITION I1.1. For any compact set H in ®' and T > 0, the mapping

defined, from [0, T'] X [0, T'] X H into the space of the (Radon) probability measures
on &', by

(S, t7 x) Land st(x9 )

is weakly continuous.

PROOF. We know already that the set
{Pst(xy ) (S, t) S [O’ T]29 x € H}

is tight. Let ¢ > 0; then by Prokhoroff’s theorem, there exists a compact set
K. C &’ such that

Pst(x, Ke) =1-—c¢

uniformly in s, t and x € H. Let f be any bounded, continuous function on ®}.
Since @} is nuclear, it has the approximation property (cf. [10]), hence there
exists a finite dimensional linear operator I, on &’ such that

supyex, | f(y) — fLy)| < /4.
Denoting by P, (x, f) the integral of f with respect to P, (x, dy), we have

|Pst(x’f) - Pru(z, f)l = L f(y)Pst(x7 dy) - J}; f(y)Pru(29 dy)

+ ’ f f(y)Py(x, dy) — f f(y)Pr(z, dy)’
K¢ K:
< ‘ fK (f(y) = f(.y)) Ps(x, dy) ‘

+ ’ Lf(lay)Pst(x, dy)—Lf(Iay)Pm(z, dy)’
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+ L (f(Ley) = F(¥) Pru(z, dy)’

+ ’f f(y) Py (x, dy)—f f(¥) Pz, dy)l
K¢ K:

=A+B+C+D.

By the choice of I,,, we have A < ¢/4; B also can be majorated by ¢/4 when
(x, s, t) approaches to (y, r, u) as we know from the finite dimensional case (cf.
[3], [7]). From the approximation property, C is smaller than ¢/4 and by the
tightness D is smaller than ¢ | f||.0

The following result is a corollary of Proposition II.1 and Theorem 8.3 of [11]:

COROLLARY IL.1. Denote by { the following set
O = {w € Q: X(w) is right continuous with left limits}.

Then the outer probability measure of § is equal to one.

It is well known that P has a unique extension P’ to Zv{Q¢} (i.e., the o-
algebra generated by # and {©¢}) in such a way that Q¢ is a P’-negligible set
(cf. [5]). Consequently we may and shall suppose that X is almost surely right
continuous with left limits. Let us also note that such a procedure is unnecessary
when ®} is metrizable, since, in this case ¢ is a P-negligible set. If (F; ¢t = 0)
is the canonical filtration of X, then, as in the finite dimensional case, it is right
.continuous. Hence, in the following we shall suppose that (Q, &, ,, P) satisfies
the “usual” conditions (cf. [5]).

ITI. Lévy-Khintchin Formula. In this section we shall study in detail the
trajectories of the additive process X and the representation of the Fourier

transform of the law of X, t € R..
The following result is a simple consequence of the regularity of the trajectories

of X:

LEMMA III.1. Let A be any measurable subset of ®’ such that 0 ¢ A. Then we
have

Nt(w, A) = Zsst ]-A(AXs(w)) < 4+ q.s.,
for any t = 0, where AX, = X, — X,_.

Denote by . the set function defined by
u(A) = E(N:(-, A)).
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Obviously, for any countable, increasing, measurable subsets (A,), one has
limnﬂt(An) = ﬂt(limnAn)'

Since, for any U € %,(®%), k(U)(X) = XY is an additive process, one has the
following Lévy’s decomposition (cf. [3], [7]):

xYNP(dxY) + f *Y(NY — u¥)(dxY),

XV =al + W,U+f
Us U

where U, denotes the closed unit ball of ®’(U), WV is a continuous Gaussian
martingale with values in ®’(U), aV is a continuous, deterministic process in
®’(U), the first integral converges almost surely and the second integral con-
verges in L%(Q, %, P; ®'(U)) (i.e., ®'(U)-valued, norm-square integrable random
variables). Furthermore, the second integral is a discontinuous martingale and

N/(w, B) = ¥4 15(AXY(w)), u!(B) = E(N/(-, B)).
Obviously we have uY = k(U)(u;) and N¥Y = k(U)(N,) (a-s.).

PROPOSITION III.1. There exists an absolutely convex, compact set K in &’
such that u.(K) < +oo, for any t € [0, T.

PROOF. Let us denote by O the law of Xy. Since, for any U € %,(®%),
k(U)(87) = 0% is the law of X¥, 0% is an infinitely divisible probability measure
on ®'(U), hence 6r is infinitely divisible (cf. [6], Satz 1.9), consequently there
exists a uniquely defined Lévy measure Gr on ®%, a compact, absolutely convex
set Kin ®’ with Gr(K¢) < +oo, a positive, continuous quadratic form & on ® and
ax € &’ (depending on K) such that the Fourier transform 67 of 67 can be
expressed as

0r(P) = exp(iaK(‘P) - % &, ¢) + f (exp ix(¥) — 1 — ix(‘P)lK(x))GT(dx)).

By the uniqueness of G we obtain that
kE(U)Gr) = ug,

i.e., Gy and ur are equal on the cylindrical sets. Since ® is separable, there exists
a dense set (¥;; i € N) in K° (the polar of K) and we have

K =Np {x € "2 supicn | 2(P0) | = 1Y,

hence K can be written as an increasing union of dylindrical sets (C,). Conse-
quently we have

pr(K°) = prim,C,) = limuur(Cy)

lim,G(C,) = Gr(K°) < +oo.
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THEOREM III.1. For any T > 0, (X;; t € [0, T']) can be represented as

Xt = a; + Wt + LC th(dx) + J};x(Nt - /.l,t)(dx),

where the first integral is taken in L°(Q, &, P)(even almost surely), the second
one converges in CI>[,®L2(Q, Z, P)(i.e., the projective tensor product topology),
W= (W, t € [0, T)) is a Gaussian martingale with continuous trajectories and
(as; t € [0, T')) is a continuous, deterministic process with values in ®4, depending
on the choice of the compact set K.

PrROOF. Let K be an absolutely convex, compact set such that ur(K°) < oo,
then u;(K¢) < +o for any t < T and the restriction of g, to the set K¢ is a Radon
measure on &’ for any ¢ < T. Since

ZssT ]-K‘(AXS)
is almost surely finite, the additive process Y defined by
Yt = Xt - Zsst AXs]-K‘(AXs)

has bounded jumps for almost all w € Q. Therefore, for any ¥ € ®, Y(¥) is an
additive process with finite moments of all orders (cf. [7]). Define a.(¥) as

a:.(¥) = E(Y(¥)).

By the closed graph theorem ¢ — {a,(¥); t = T} defines a continuous mapping
from [0, T'] into ®} which we denote again by a = (a;; t € [0, T']). Let L be the
martingale (cf.[13])

Lg = Yg - Q.
For any ¥ € &, L(¥) can be decomposed as
L,(¥) = M), + Md(‘p)t

where M¢(¥) is a continuous Gaussian martingale and M %(¥) is a purely discon-
tinuous martingale (in the sense of martingales) and this decomposition is unique
(cf. [7], [9]). Consequently © — M(¥) and ¥ — M%®) define linear mappings
from ® into the space of the square integrable martingales. The closed graph
theorem implies that these mappings are continuous, ¢ being nuclear, they are
also nuclear. Hence (cf. [13]) there exists an absolutely convex, compact set S in
%#,(®") such that L is concentrated in ®’[S] as a martingale (cf. [13]),
continuous Gaussian martingale W and a purely discontinuous martingale Me,
both with values in ®’[S], such that, for any ¥ € ®, one has

Me(®) = (is(W),?), MUP) = (is(M?), P)

up to an evanescent process, where is denotes the injection ®’[S] — &’.
Furthermore we can choose S such that S D K and as in the finite dimensional
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case M“ can be expressed as

M¢ = f *(N: — pe)(dx),
'[SINK

where the integral converges in L%(Q, %, P; ®’[S]) and injecting it into ®’ by is
we find: '

Lo=M{+ W, M{=is(M}) = fxx(Nt—m)(dx)
W, =is(W,). O

REMARK. Since M¢ belongs to L%(Q, % P; ®'[S]), we have

fK ps(x)?u,(dx) < +oo,

where ps is the gauge function of S. Since S is compact in &4, we have

Lp(x)2ut(dx) < 4o,

for any continuous seminorm on ®4 and t € [0, T'] (cf. [10]).
We have also the following result:

COROLLARY III.1. Suppose that we are given a functional f, on ® for
te€ [0, T, T >0, of the following form:

fu#) = exp(iam =560, 0) + f (exp ix($) — 1 - ix(‘P))m(dx))

such that

i) t+—> a, is a continuous mapping from [0, T'] into ®g.
ii) t — &, is a continuous mapping from [0, T into the space of the continuous
bilinear mappings on ®, equipped with the strong topology and, for any
t € [0, T, &, is nonnegative-definite on ®.
iii) For any t € [0, T}, u. is an abstract, positive set function on the measurable
subsets of ®’, continuously increasing with t and, there exists an absolutely
convex compact set K in ®’ such that p, restricted to K¢ is a Radon measure

for any t € [0, T'] with

J;p(x)"’m(dx) < +oo,

for any continuous seminorm p on ®;.

Then there exists an additive process X = (X;; t € [0, T']) with right continuous
trajectories having left limits whose law is uniquely defined by the fact that

E(exp(i{ X,, ¥))) = f(¥), P E &.
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PrOOF. Define Py (x, dy), x € ®’, as the unique probability measure on
whose Fourier transformation is given by (c.f. [2])

Py(x, #) = J; exp 1y(?) Pu(x, dy) = exp ix(¥®)-fi(P)/f.(¥),

Y € d,s <t It is obvious that (Py; s < t < +») satisfies Kolmogorov’s relation,
hence it is a Markov semigroup. Then construct the corresponding Markov
process on (®’)",. By the continuity of the mapping (¢, ¥) — f.(¥), we see that
the set of right continuous trajectories with left limits has full outer measure.
The rest of the proof follows from Proposition III.1 and Theorem III.1.0

REMARK. To see the difference between the Banach and nuclear spaces let
us mention that the validity of this corollary for a Banach space B under the
same hypothesis implies that B is finite dimensional. In fact, in this case the
original topology of B coincides with the Sazonov topology (i.e. the coarsest
topology under which the Hilbert-Schmidt operators are continuous), hence B
becomes a nuclear space, but any nuclear Banach space is finite dimensional
(cf. [10]).

EXAMPLES AND APPLICATIONS.

1) Let &’ = &< ’(R?), i.e., the space of the tempered distributions and suppose
that X is a homogeneous additive process with values in & ’(R?). Denote by
£ = (&;; t = 0) the unique solution of the following stochastic differential equation
(cf. [17]):

dé, = %A & dt + dX,, & =EtE Y'(RY),

where A denotes Laplace operator on & ’(RR?). Note that the equation is well
defined since X is a semimartingale in & ’(R9) (it is homogeneous, hence t — a,
is of finite variation) (cf. [14]). Using the uniqueness of the solutions, it is easy
to show that (£;) is a strong Markov process (cf. [18]) whose infinitesimal
generator, say A, can be expressed on the set of twice differentiable cylindrical
functions with bounded derivatives (< ’(IR?) being nuclear; weakly, Hadamard
or Fréchet differentiability is the same thing) as

AF (§) = %O(D?F(£)) + Y»(DF (§), At + 2a)

+ fK (F(x + £) — F(£) — (DF(£), x))u(dx)

+ fK (F(x +£) — F(£)uldx)

where (a, 6, u,'K) are defined by’X (i.e. a = a;, = Gy, s = ;) as in Corollary
II1.1, and D'F denotes the derivative of F of order i = 1, 2.

2) Let , = 2'(R?) and suppose that b and g are C*-mappings on R? with
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values respectively in R¢ and R? ® R? having bounded derivatives. Then there
exists a semimartingale (n.; ¢t = 0) with values in ¥(R¢) ® R (i.e. the projective
tensor product of the nuclear Fréchet space of C*-functions on R¢ with R¢) such
that, for any x € R¢, (n,(x); t = 0) satisfies the following stochastic differential
equation (cf. [17], [19]):

dz; = b(z,) dt + g(2,) dB:, 20 =1,

where B = (B; t = 0) is the standard Wiener process with values in % Moreover,
almost surely, for any t = 0, x — n.(x) is a diffeomorphism (of R%) whose
(functional) inverse (n;'; t = 0) is also a semimartingale with values in % (RY)
® R4 (cf.[17]). Let us denote again by £ = (£,) the image of the process constructed
in the first example under the injection & '(R?) — 2’(R") and suppose that
X = (X,; t = 0) and B are independent. For any ¥ € (RY), since X is a
‘semimartingale and (¥on,; s = 0)-is a locally bounded, previsible process in
2 (RY), the following stochastic integral is well defined (cf. [13], [17]):

t
f <dXS) (Pons> = Zt((p)’
0
and the linear mapping © — (Z,(¥); t = 0) defines a semimartingale in & "(RY)
(cf. [14], [20]). Define y, as .
yt(‘P) = <£ty (Pont>,

then, using the integration by parts formula for the nuclear space-valued semi-
martingales (cf.[13]) one can show that y = (y,;; t = 0) is a semimartingale with
values in &’(R?) satisfying the following stochastic partial differential equation:

dy, = %(82/8x3((dn./dx;) %o nt - y,) — 8/9x:((6*n./0xF)ons - y,)) dt
+ L*y, dt + dZ, — 8/dx:(g;y.) dBY,

Yo = ‘EO’

where L* is the adjoint of the infinitesimal generator of (nt(x); t = 0). Let us
also note that, if one calculates

(Xe, $ony)

using the integration by parts formula and Theorem III:1, then the distribution
u,, defined by - ‘

u(P) = E((X,, #on.))
satisfies the following partial differential equation:
du _ L*u +f el x + __a_) (dx);
at A t “Jke ﬂ(Kc) I ’ ’

of course in order that this equation makes sense one has to impose some
conditions of integrability on X.
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3) Let us suppose again that &} = & ’(R9) and X, = W, for t = 0, where
6.(¥, #) =t || ? || 12x. Then the following equation has a unique solution

dL; = —(=A + m»)"’L,dt + dW,, m#0, L,E€ ¥ '(RY).

In fact the uniqueness follows from the fact that —A + m? is invertible on
< ’(RY). Since the semigroup T, associated to —(—A + m?)? operates on
< (R?), the solution is given explicitly by (cf.[17])

t
Lt = TtLO + f Tt—des
0

where the stochastic integral is defined on each test function (cf. [13]). Then the
nuclearity of & (IR¢) implies the existence of an & ’(R?)-valued semimartingale
having almost surely continuous trajectories. This process is called the Ornstein-
Uhlenbeck process of the free quantum field and it is used to construct the free
field (cf.[1]).
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