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COMPARISON OF THRESHOLD STOP RULES AND
MAXIMUM FOR INDEPENDENT NONNEGATIVE RANDOM
VARIABLES
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Hebrew University, Jerusalem

Let X; = 0 be independent, i =1, ..., n, and X} = max(X,, - - -, X,).
Let t(c) (s(c)) be the threshold stopping rule for Xj, - - -, X,, defined by t(c)
= smallest i for which X; = ¢ (s(c) = smallest i for which X; > ¢), = n
otherwise. Let m be a median of the distribution of X*. It is shown that for
every n and X either EX} < 2EX, or EX} < 2EX,m. This improves
previously known results, [1], [4]. Some results for i.i.d. X; are also included.

1. Introduction and theorem. Let X;=0,i=1, ..., n be independent
random variables, and denote by T, the set of stopping rules for the variables
X, -+, X,. Let X, = max(Xy, - -+, X,) and V,(X) = sup{EX,; t € T.,}. Krengel
and Sucheston (1978) show that EX¥ < 2V,(X) and Hill and Kertz (1981) show
that, in fact, strict inequality holds in all but trivial cases. The interpretation of
this result is that the expected return of an optimal gambler is at least half the
expected return of a prophet, with complete foresight. The constant “2” in the
above statement cannot be improved upon, for any n = 2, as is easily seen by
taking X,,—; = p and X,, = 1 and 0 with probability x and 1 — pu, respectively, and
taking X;, - - -, X,—, smaller than u. Letting x — 0 yields the result.

For i.i.d. X;, 2 is no longer the best constant. Hill and Kertz (1982) show that
the best constant, a,, depends on n, and is bounded by 1.6 for all n, but 1.6 is
not the best bound. This result has recently been improved on (see Kertz, 1983).
He conjectures that the best bound is 1 + a* = 1.341. . ., where o* is the unique
solution to [§ [y — ¥ Iny + a]™' dy = 1. He proves that lim a, = 1 + a*.

Optimal rules are nice in theory, but they are often difficult to compute, and
sometimes difficult to implement, even if computed. In the present note we
therefore consider the class of “threshold rules” which are simple in practical
implementation and are defined as follows. Let ¢ = 0 be a constant. Let t(c) =
smallest i < n such that X; = ¢, t(c) = n otherwise; and let s(c) = smallest i < n
such that X; > ¢, s(c) = n otherwise.

The purpose of the present note is to show that the constant “2” can be
achieved as a bound when one uses a good threshold rule, rather than an optimal
stopping rule. To abbreviate, set E*X; = E[Xyol( Xy = ¢)] and E* X, =
E[XI(Xc) > ¢)]. Let m be a median of the distribution of X}, i.e.

(1.1) PXi<m)=q=Y% PXi>m)=p=<2l.
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Let
(1.2) B = X E(X; — m)*.
THEOREM 1. Let X,, ---, X, be independent nonnegative random variables,
X¥ =max(X,, .-, X,) and m and 8 satisfy (1.1) and (1.2).
(I) If B = m then EX} < 2E*X,(m) < 2EX,(m).
(II) If B < m then EX} < 2E*X,(n) < 2EX;(m)-
ProoF. First note
(1.3) EXr=m+ EX:r—m)*=m+8.
Suppose 8 = m. By (1.1)
E*Xym = mp + E(Xsmy — m)* = mp + E Ty (X; — m)*I(s(m) = i)
= mp + T, E[(X; — m)*I(s(m) > i — 1)]
=mp + Y. E(X; — m)*P(s(m) > i — 1)
=mp+ 6(1 —p)=(m+ B)/2=EX}/2.
The fourth equality in (1.4) uses independence. Similarly, when 8 < m,
E*Xym = m(1 — q) + Tii E(X; — m)*P(¢(m) > i — 1)
=2m(l —q)+ Bg=(m+ B)/2 = EX}/2.

Note that in nontrivial cases strict inequality holds in (1.3), and hence also in
the results of (I) and (II).

(1.4)

NoOTE. The “median rule” of Theorem 1 is not (necessarily) the only thresh-
old rule for which the constant 2 is achieved.

Let a* be the unique solution to a = E(X} — a)* and b* be the unique solution
tob=E Y%, (X; — b)*. Clearly ¢* < b*, and since for any a X} =a + (X} — a)*
it follows that EX} < 2a*. We have

ASSERTION. Leta* <c < b* Then EX} < 2E*X,) < 2EXy-

PROOF. Similarly to (1.4)
E*Xyy=cP{Xt=c}+ EXL (Xi— o) I(tlc) >i—1)
2cPiXtzcl+ EYL (Xi—b*)'PIX: <}
= a*P{X} = ¢} + b*P{X} < ¢} = a*.
2. Identically distributed X;. Let T be the set of all threshold rules s(c)

and t(c), ¢ = 0, for X, --., X,. We shall show that the constant 2 cannot be
improved upon (for large n), when considering threshold rules, even when the X;
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are i.i.d. We have

THEOREM 2. Let X;= 0 be i.id.

sup,su |__EX: = sup,su __EX% =2
PSP suprerE'X, |~ " P supiersEX,) ¢

PROOF. Because of Theorem 1, it suffices to exhibit i.i.d. X{”, - .., X" such
that lim, .. EX™*/(sup,er*EX{") is arbitrarily close to 2. This can be achieved
by X{” = 0, a and 1 with probabilities 1 — (b + ¢)/n, ¢/n and b/n respectively,
where0<a<1, 0<b, 0<c, b+ c<nwill bechosen later. It is easily seen
that for fixed a, b, ¢

E=1lim, -EX™ =1—-e¢?+afe™® - e

There are essentially only two competing rules in T, viz. t(a) and t(1). Easy
computations yield

(1-e)0b + ac)
b+e¢

W(1) = lim,EX{)) =1 — e

If we let a = a* where

W(a) = lim, . EX{) =

_cl- e’ —be (1 —e™)

%*
¢ (1 — e
then W(1) = W(a*), and 0 < a* < 1. Thus
o E(X:,")*) _ e—b — e—b—c b(e—b — e-b-c)z
Q, ) = lim, .. super*EX™ 1+ 1—e? cl-e* )1 —-eb"

Now Q(b, ¢) can be arbitrarily close to 2, since as ¢ — ® and b — 0, Q(b, ¢) — 2
(e.g. Q(107% 10%) = 1.99).

REMARK 1. If the X; can achieve only two values (whether identically
distributed or not), then EX} = sup;er*,EX;. Thus the r.v. X; must take on at
least three values to achieve the bound 2 for EX}/sup.er*.EX;.

REMARK 2. I;et X = (X, .-+, X,) where n is fixed and the X; are i.i.d. Let

= su {——————EX: 1 Br = su _EX:
on Px supertEX,|’ " Px supeer*E*X,|

Then a, < 8,, and the proof of Theorem 2 shows that lim «, = lim 8, = 2. By
considering X; taking on two values only, it is easy to show that 8, = 2 — 1/n,
(and presumably equality holds). The values a, are harder to compute, e.g. ay =
4 — 2¥2 = 1.171..., and coincides with the extremal value for the prophet
problem comparison with optimal stopping rules. See [2].
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REMARK 3. Consider the goal of stopping at the maximal observation with
high probability. Professor Aryeh Dvoretzky has recently shown (oral commu-
nication) that for continuous, i.i.d. random variables there exists a threshold rule
t(c) for which P{X,.) = X}} = g, where g, | § = max,-oe™ [§ (¢“* — Du"' du =
.517. ... This interesting fact stands in no contradiction to the results in the
present paper. It indicates that when t(c) stops at the maximal observation, that
observation has a (comparatively) low value.
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