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THE EXISTENCE OF REGULAR CONDITIONAL
PROBABILITIES: NECESSARY AND SUFFICIENT CONDITIONS

By ARNOLD M. FADEN

ITowa State University

Different necessary and sufficient conditions for the existence of regular
conditional probabilities are found for the cases of countably generated,
countably separated, and complete probability spaces. Perfection is n. and s.
for countably generated spaces, “almost pre-standardness” for the countably
generated and countably separated cases, and discreteness for complete spaces.
Several different forms of the regular conditional probability property must
be distinguished.

1. Introduction. A number of distinct regular conditional probability con-
cepts appear in the literature, and it is of considerable interest to probabilists to
find conditions under which a space will have one or another of the corresponding
properties.

Many sufficient conditions are known for a measure space to have a regular
conditional probability property but except for Pachl (1978), page 161, the search
for necessary conditions has so far yielded only isolated counterexamples (Dieu-
donné, 1948; Doob, 1953, page 624; Halmos, 1950, page 210f). We distinguish
product, quotient and subfield forms of the rcp property, and show that for the
first two it is necessary that the measure be perfect. Perfection is both necessary
and sufficient for countably generated spaces. A complete measure space has the
product or quotient rcp property iff it is discrete.

2. Regular conditional probability concepts. All measures in this paper
are (countably-additive) probabilities. Given a measure space (Y, T, u) and a
measurable space (X, S), a function f: Y — X is measurable if f~}(S) C T. It is
u-measurable if f~(S) C T*, the completion of T with respect to u.

Given (Y, T, p) and (X, S), a kernel is a function of the form »» Y X S —
[0, 1] satisfying two conditions: (i) »(y, -) is a measure on (X, S) for each
y €Y, and (ii) »(-, F) is measurable for each F € S.

A D-kernel is a function of the same form satisfying (i) but with »(., F
having to be only u-measurable for each F € S.

Let (X X Y, S X T, A) be a product measure space. A product regular conditional
probability (rcp) is a kernel v: Y X S — [0, 1] satisfying

1) AMF X E) = L (y, F)N/(dy)

forall E €T, F € S, where ), is the Y-marginal of A. (X, S, ) has the product
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EXISTENCE OF CONDITIONAL PROBABILITIES 289

regular conditional probability property (rcpp) if any space (X X Y, S X T, \) for
which u is the X-marginal has a product rcp.

Let (R, B) be the real line with Borel field. Given (X, S, u) and measurable f:
X — R, a quotient rep is a kernel v: R X S — [0, 1] satisfying

(2 wFNfUE)) = J; v(t, F)ur(dt)

for all E € B, F € S, where pup is the induced measure on (R, B). A 9 -quotient
rep is the same, except that » need be only a D-kernel (with respect to measure
ur). (X, S, u) has the quotient rcpp if there is a quotient rcp for every measurable
f: X — R. It has the 9 -quotient rcpp if there is a D-quotient rcp for every such
function. (The D stands for Doob, who introduced this weakened rcp concept in
the subfield context (Doob, 1953, pages 26, 29).)

Let T be a sub-o-field of (X, S, u). A subfield rcp is a kernel »: X X S — [0, 1]
(with »(-, F) T-measurable, all F € S) satisfying

(3) wFNE)= J; v(x, F)u(dx)
foral FES, E€T. (X, S, u) has the subfield rcpp if there is a subfield rcp for
every T CS.

This completes our roster of rcp concepts. We now give some simple properties
of them.

THEOREM 1. (X, S, ) has the product rcpp iff it has the following property:
For every measurable space (Y, T), measure space (Z, U, p), and measurable
functions f: Z — Y, g: Z — X, such that u is the measure induced from p by g,
there exists a kernel v: Y X S — [0, 1] satisfying

(4) p(g(F) NfYE)) = J; v(y, F)p,(dy)
foral E €T, F € S, where p, is the induced measure on (Y, T).

PrROOF. If. Let(Z,U,p)=(XXY,SxT,N\),fand g the projections on Y,
X. The marginal y is induced from A. Hence there exists v satisfying (4), which
reduces to (1) on noting that p, = A, and

Mg F)NfYE) =MFXY)N(XXE))=\NF X E).

Only if. Given (Z, U, p), (Y, T), f and g, let X be the measure induced on
(XX Y,S x T) from p by the mapping z — (£(2), f(2)). Then p is the X-marginal
of A, so there exists kernel v satisfying (1). But (1) reduces to (4), since A, = p,,
and the inverse image of F X E is f"}(E) N g™}(F).0

THEOREM 2. The following imblications hold among the various rcpp’s:
product = quotient = D-quotient
S subfield
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PROOF. quotient = D-quotient is obvious. The other statements follow from
Theorem 1, on noting that quotient and subfield rcpp are the special cases
(Z, U, p) = (X, S, u), g the identity, and in addition (Y, T) = (R, B) for quotient;
and Y = X, f the identity for subfield. 0

Given a sequence Gy, Gq, - -- of subsets of space Y, the Marczewski function
m: Y — R is given by m(y) = 3, 2 - 3™I,(y), where I,(y) = 1if y €EG,, =0
otherwise. (Marczewski, 1938).

In the definition of quotient rcpp, the restriction of mappings to the real line
can be relaxed considerably.

THEOREM 3. Let (X, S, u) have the quotient (or D-quotient) rcpp, let (Y, T)
be a measurable space with T countably generated, and let f: X — Y be measurable.

Then

(i) There exists a kernel (or D-kernel) v: Y X S — [0, 1] satisfying (2) with
(Y, T) in place of (R, B).

(ii) Let f: X — Y be merely u-measurable. Then a kernel (or D-kernel) still
exists.

ProOF. (i) Let Gy, G,, --- be a sequence in Y generating T, and let m:
Y — R be the Marczewski function. The composite function m o f: X — R is
measurable, so there exists a (D-)kernel »’: R X S — [0, 1]. Now define »: Y X S
— [0, 1] by the rule: »(y, F) = »’(m(y), F). Clearly v is a (D-)kernel. By countable
generation, for any E € T there is a Borel set H with E = m~'(H), and it follows
easily from this observation that (2) holds for » with (Y, T) replacing (R, B).

(ii) Given f, there is a measurable g: X — Y such that g = f uy—a.s., by T
countably generated. Let » be a (D-)quotient rcp for g. Then it remains a
(D-)quotient rcp for f. 0

3. Necessary condition for regular conditional probability.

LEMMA 1. Given (X, S, p), let v: R X S — [0, 1] be a D-quotient rcp for
measurable f: X — R. Then there is a Borel set B, with u((f *(B)) = 1, such that
v(t, f7Y(t)) =1,allt €B.

PROOF. Let E;, E,, --- enumerate the intervals with rational endpoints.
From (2) we obtain u(f(E,)) = [g, v(t, f (E,))ur(dt), so that v(¢, fN(E,)) = 1,
ur—a.s.on t € E,. Also (2) yields [z v(t, f " (E,))ur(dt) = 0 (E;, is the complement
of E,), so that v(t, f"(E,)) = 0 a.s. on t € E¢. Choose B, € B, ur(B,) = 1, so
that .
v(it,f"(E,)) =1 on B,NE,,

=0 on B,NE:.

Let B =N B,. Then B € B, ug(B) = 1. Let t € B. For each n, let A, = E,
ift € E,, A, = E;, if t € E},. Then »(t, f"%(A,)) = 1, all n. Hence 1 =
v(t, On f7H(AR) = v(t, f7H(N AL)) = (¢, fN(2)).0
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(X, S, u) is a perfect measure space if, for any measurable f: X — R, there is a
real Borel set E C f(X) such that u(f~(E)) = 1.

Many conditions equivalent to perfection are known (Ryll-Nardzewski, 1953;
Sazonov, 1965; Ramachandran, 1979, I & II). The concept was introduced by
Gnedenko and Kolmogorov (1949).

THEOREM 4. If (X, S, u) has the D-quotient rcpp, then it is perfect.

PROOF. Given measurable f: X — R, we must find a Borel set B C f(X) with
u(f~X(B)) = 1. Take the B in Lemma 1. If ¢t € B, then »(¢, f‘l(t)) =1,s0f7'(¢) is
not empty. Thus ¢t € f(X).0

4. A note on disintegrations. Given measure spaces (X, S, u), (Y, T, p)
a quasi-kernel is a family of measures »(¢, -): S; — [0, 1], S;is a sub-os-field of
S for each t € Y, such that, for all F € S, we have F € S;, p—a.s., and v(-, F)
(defined p—a.s.) is T-measurable.

Product, quotient, and subfield disintegration properties may be defined ex-
actly as the corresponding rcp properties, except that quasi-kernels replace
kernels. (See Ramachandran, 1979, Part II, pages 83, 88). The rcp properties
imply the corresponding disintegration properties. In particular, the D-quotient
rcpp implies the quotient disintegration property, since quotient and D-quotient
are logically equivalent for disintegrations.

THEOREM 4’. Quotient disintegration property implies perfection.

Proor. Identical to Theorem 4, since the proof of Lemma 1 works for
quotient disintegrations. O

Theorem 2.2 of Pachl (1978), page 161, yields the result that the product
disintegration property implies compactness of (X, S, u) (which in turn implies
perfection). Neither this result nor Theorem 4’ includes the other.

We shall not discuss disintegrations further.

5. Almost pre-standard measures. The atoms (or S-atoms) of the count-
ably generated (X, S) are the smallest non-empty measurable sets. (X, S) is
standard if it is Borel-isomorphic to a real Borel set. (Any Borel subspace of any
complete separable metric space is standard (Parthasarathy, 1967, pages 7-14).)
It is pre-standard if the space of its atoms, with the natural induced Borel
structure, is standard.

Finally, (X, S, u) is almost pre-standard if there exists X, € S with u(Xo) =1
and (X, S) pre-standard when restricted to X,. (S itself need not be countably
generated).

THEOREM 5. If (X, S, u) is almost pre-standard then it has the product rcpp.

PrOOF. First do the special case (X, S) = (R, B). Given (R X Y, B X T, A\)
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with R-marginal u, let F, = {t|t < r} for each rational r, and define A,,: T —
[0, 1] by A,(E) = A[F, X E]. Then A,. < \,, the Y-marginal. Let h, = d\,,/d),.
There exists Y, € T, with A\, (Y,) = 1, such that, for all y € Yy, h,(y) is monotone
in r,—1 as r — %, and — 0 as r — —o. This distribution function on the rationals
. determines a unique measure on (R, B). Let »(y, -) be this measure, all y € Y,,
" and define »(y, -) = u for y € Y§. It is easily verified that » is a product rcp for
A (cf. Doob, 1953, page 30).

Next, let (X, S) be a Borel subset of R. Map into R, determine » as above and
make an adjustment on a Y-null set to guarantee »(y, X) = 1 for all y € Y. This
is a product rcp.

Now the general case. Let Sy = S restricted to X, be pre-standard, where
u(Xo) = 1. Let g: Xo — Ry € B be a Borel isomorphism from the S-atoms of X,
to Ry. Given (Xo X Y, So X T, A), the map (x, y) — (g(x), y) induces a measure
Non(RyX Y). Letv': Y X B— [0, 1] be a product rcp for A’. Then define v: Y
X S — [0, 1] by »(y, F) = v'(y, g(F)), and extend it to Y X S by letting
v(y, X§) = 0 for all y. Then v is a product rcp for A\, as may be easily verified. 0

6. The countably generated case.

THEOREM 6. Given (X, S, u), with S countably generated. The following
conditions are logically equivalent:

(i) almost pre-standard,
(ii) product rcpp,
(iii) quotient rcpp,
(iv) D-quotient rcpp,

(v) perfect.

PrROOF. (i) = (ii) = (iii) = (iv) = (v) by Theorems 5, 2, and 4. It remains
only to show that (v) = (i). Let G;, G,, - - - be a sequence generating S, and let
m: X — R be the corresponding Marczewski function. Let E C m(X) be a Borel
set with u(m~(E)) = 1. Then m is a Borel isomorphism between E and the atoms
of m™Y(E). Thus (X, S, ) is almost pre-standard (cf. Ryll-Nardzewski, 1953,
page 129).0

7. The subfield regular conditional probability property. Subfield
rcpp has been an orphan to this point. However, it works well with the assumption

of perfection.

THEOREM 7. If (X, S, n) has the subfield rcpp and is perfect, then it has the
quotient rcpp.

PrOOF. Let f: X — R be measurable, and let T = f(B). T C S, so there
exists a kernel »’: X X S8 — [0, 1] satisfying (3). Let E; C f(X) be a Borel set
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with u(f~'(E,)) = 1. Now define v: R X S — [0, 1] as follows:
if t€E§, v, F)=ulF)
if t€Ey,, vt,F)=v'(x,F), where f(x)=1=1.

This definition is sound. For suppose f(x;) = f(x2) = t. Then x,, x, are in the
same T-atom. Since »’(-, F) is T-measurable we must have v’ (x;, F) = v (%2, F),
all FE 8. »(-, F) is Borel-measurable by the argument of Doob, 1953, page 603;
hence, v is a kernel. Finally, from (3) we get

r(f(E)NF) = f . V(% Fuldx) = f . V(f(x), F)u(dx)
E) f~HE)

f~(
= L v(t, F)ur(dt) forall EEB, FES,
verifying (2). Thus » is a quotient rcp. 0
Theorem 2 may now be strengthened.

COROLLARY. product rcpp = subfield rcpp and perfect = quotient rcp =
D-quotient rcpp.

PrROOF. From Theorems 2, 4 and 5.0

8. The countably separated case. A measurable space (X, S) is countably
separated if there is a sequence F, F,, --- in S such that any pair of points x,,
x2 € X separated by some S-set are separated by some F,,.

. Equivalently, S has a countably generated sub-o-field with the same atoms.
(Note we do not assume that the atoms are singletons). It follows that every
countably generated space is countably separated.

THEOREM 8. Let (X, S, u) be countably separated. Then the following condi-
tions are logically equivalent:

(i) almost pre-standard,

(ii) product rcpp,
(iii) subfield rcpp and perfect,
(iv) quotient rcpp.

Proor. (i) = (ii) = (iii) = (iv) hold in general, by Theorems 5, 4, 7 and 2.

(iv) = (i). Let T C S be countably generated with the same atoms as S. By
Theorem 3 there is a quotient rcp v: X X S — [0, 1] with »(-, F) T-measurable,
all F € S. By Musiat (1972), Corollary 2, page 12 it follows that there exists X,
€ T, with u(X,) = 1, such that, inside Xo, S = T and so is countably generated.

Since u must also be perfect (Theorem 4), it follows that it is almost pre-
standard (Theorem 6).0
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REMARK. Comparing this result with Theorem 6, we see that the former
equivalents “perfect” and “D-quotient rcpp” have dropped out. Indeed, Lebesgue
measure complete on [0, 1] is countably separated and perfect, but not almost
pre-standard. The agument above for D-quotient rcpp yields the existence of an
almost pre-standard T with T C S C T*. (This last condition may be shown to
be logically equivalent to perfection, for countably separated spaces.)

9. Discrete measure spaces. Given (X, S, u), a u-atom is a set F € S such
that u(F) > 0, and, for all G C F, G € S, either u(G) = u(F) or u(G) = 0. p is
discrete if there is a countable partition of X into u-atoms.

THEOREM 9. If (X, S, u) is discrete, then it has the product rcpp.

PrOOF. Let X, Xs, --- be a partition of X into u-atoms (the sequence may
be finite). Given (X X Y, 8 X T, \) with X-marginal u, define A\,,: T — [0, 1] by
Mn(E) = MX, X E). Then Ay, < A, the Y-marginal, so we may write g, =
dMyn/d),. Then g,: Y — R is measurable, and, except for a A,-null set N € T,
Y.8.=1andg, = 0. Define »: Y X S — [0, 1] as follows:

v(y, F) = u(F) if y€N;
Wy, F) = 3 gn(y)u(F N Xp)/u(X,) if y € N°
It is easily verified that v is a product rcp. O

10. Complete measure spaces. A much deeper result than Theorem 9 is
that, for complete measure spaces, discreteness is a necessary condition for the
existence of the rcpp.

THEOREM 10. Let (X, S, u) be a complete measure space with the quotient
repp. Then u is discrete.

PROOF. The proof of Theorem 10 is long, and we begin with several lemmas.

LEMMA 2. Lebesgue measure complete on the unit interval does not have the
quotient rcpp.

PROOF. Let f be the natural injection into (R, B), and let » be a quotient rcp.
By Lemma 1, there exists B € B, with u(B) = 1, such that »(¢, {t}) = 1,all t € B.
Hence, v(t, F) = 1ift € F,=0if t € F, for all t € B. Taking F to be a non-
Borel set C B, one sees that »(-, F) cannot be (Borel) measurable. 0

REMARK. (., F) is Lebesgue-measurable for all F. Hence the argument
above leaves open the possibility that Lebesgue measure has the D-quotient rcpp.
See Section 11 below. (The proof of Lemma 2 is from Ramachandran I, 1979,
page 46; the result itself was mentioned by Sazonov, 1965, page 242. It also
follows at once from the remark after Theorem 8).
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The next two lemmas are stated both for the quotient rcpp and the D-quotient
rcpp, the latter version being needed later.

LEMMA 3. Let (X, S, u) have the (D-)quotient rcpp, let g: X — (Y, T) be
measurable and induce measure p on (Y, T). Then (Y, T, p) has the (D-)quotient

repp.

Proor. Let f: Y — R be measurable. Then the composite function f ¢ g:
X — R is measurable, so there exists a (D-)quotient rcp »': R X S — [0, 1].
Define v: R X T — [0, 1] by »(¢, G) = v’ (¢, g7X(G)). It is easily verified that » is a
(D-)quotient rcp for (Y, T, p) and f: Y —- R.0O

LEMMA 4. Let (X, S, p) have the (D-)quotient rcpp, let Xo € S with u(X,) >
0, let So be S restricted to subsets of Xo, and let \ on (Xo, So) be given by u/u(Xo).
Then (Xo, So, A) has the (D-)quotient rcpp.

Proor. Fix measurable f: X, — R. Let g: X — R be a measurable extension
of f. Let v': R X S — [0, 1] be a (D-)quotient rcp for g. Define v: R X So — [0, 1]
as follows:
if v (i, Xo) =0, let »(t, F) = NF)
if vt Xo) >0, let w(t, F) =v'(t, F)/v'(t, Xo).

v is clearly a (D-)kernel. It remains to verify (2).

Let pug, Az be the measures induced on R from u, A by g, f, respectively. Then,
for any E € B,

()

L v'(t, Xo)ur(dt) = p(Xo N g7Y(E))
= u(f7UE)) = MfUE)) - p(Xo) = Ar(E) - u(Xo).
Hence (dAr/dug)(t) = (v'(t, Xo))/u(Xo). Hence for any F € S,, E € B, we have

f v(t, F)Ag(dt)
E

3 v (t, Xo) B f v (t, F)
= fE Wt F) — 5 waldt) = ) =" ualdt) - from (9),

_uFNgE) _ wFN[HE)
w(Xo) ﬂ(XO)

Thus, v is a (D-)quotient rcp for \. 00

= NF N fTYE)).

We now prove Theorem 10 by contradiction. Suppose (X, S, u) is complete,
has the quotient rcpp, but is not discrete. Then there exists X, € S with u(X,) >
0, such that (Xo, So, A) is nonatomic, where A = u/u(Xo). X remains complete,
and by Lemma 4 retains the quotient rcpp.
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Let B be the Borel field on [0, 1], and let ([0, 1], B, p) be Lebesgue measure.
Since ) is nonatomic, there exists a measurable function g: (X, So) — ([0, 1],
B) such that p is the measure induced from A.

Next, g remains measurable for B¥, the completion of B with respect to p, on
[0, 1]. For, g71(B) C S, yields g~1(B*) C S§ = S,, since S, is complete.

Now (Xo, So, M) has the quotient rcpp. Hence ([0, 1], B*, p) has the quotient
rcpp by Lemma 3. But this contradicts Lemma 2.0

Putting these results together yields:

THEOREM 11. Let (X, S, u) be complete; then the following properties are
logically equivalent:

(1) discrete,

(ii) product rcpp,
(iii) subfield rcpp and perfect,
(iv) quotient rcpp.

PROOF. (i) = (ii) = (iii) = (iv) are given (without assuming completeness)
by Theorems 9, 2, 4 and 7; (iv) = (i) is Theorem 10.0

11. Complete spaces and the D-quotient regular conditional proba-
bility property. Theorem 10 is not altogether satisfying from the viewpoint
of probability theory. The distinction between quotient and D-quotient rcpp’s is
slight, and one would like to see equally strong conclusions flowing from the
latter. This can be accomplished by introducing a plausible set-theoretic assump-
tion.

ASSUMPTION L. There is no countably-additive extension of Lebesgue meas-
ure to the class of all subsets of [0, 1].

The set-theoretic situation is this. If assumption L is false, the continuum
must contain a weakly inaccessible cardinal. Hence L is implied by the continuum
hypothesis (Drake, 1974, page 178, Example 3; Birkhoff, 1948). Thus, L is
certainly consistent with the axioms of set theory, and may be implied by them.
(There are some versions of set theory, involving a weakened axiom of choice, in
which L. may be consistently denied (Solovay, 1970).)

LEMMA 5. Under assumption L, Lebesgue measure completed on the unit
square does not have the D-quotient rcpp.

Proor. Let ([0, 1], B, p) be Lebesgue measure on the Borel field of the unit
interval, so that the space in question is ([0, 1]%, (B X B)*, p X p). Consider the
map f: [0, 1]> — R given by f(x, y) = x. Note that the induced measure (p X p)r
= p, Lebesgue measure on [0, 1]. Suppose »: R X (B X B)* — [0, 1] were a D-
quotient rcp.
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From Lemma 1 we conclude that p-almost surely,
=u(t, f71(t)) = w(¢, {t} X [0, 1]), t € [0, 1].

Next, let By, B, - -- enumerate the intervals with rational endpoints in [0, 1].
Then, for all E € B, p(B,)p(E) = (p X p)(([0, 1] X B,) N f7(E)) = [g»(t, [0, 1]
X B,)p(dt), which implies »(t, [0, 1] X B,) = p(B,), for p-almost all t. Combined
with the argument above, this yields »(t, {t} X B,) = p(B,), p-almost surely, for
all n. Thus, »(t, -) is (one-dimensional) Lebesgue measure concentrated on the
line with x-coordinate ¢ in the unit square. Let ¢, be such a t.

Now (p X p)({to} X [0, 1]) = 0, hence the completed o-field (B X B)* in-
cludes all subsets of {to} X [0, 1], that is, all sets of the form {to,} X F, F C [0, 1].
v(to, {to} X F) must be defined for all F, countably additive, and = p(F) when F
is a Borel set, violating assumption L. [

(A related but more complicated example may be found in Pachl, 1978, page
158; see the note, Ramachandran, 1981).

THEOREM 12. Under assumption L, if (X, S, u) is complete and has the
D-quotient rcpp, then it is discrete.

PrROOF. Follows exactly the lines of Theorem 10, with Lemmas 3 and 4 in
their D-quotient versions. (X, So, A) is mapped onto Lebesgue measure on the
unit square instead of the unit interval. This is permissible since there is a Borel
isomorphism between Lebesgue measure on the unit interval and on the unit
square (e.g., Ramachandran, 1979, Part II, page 25). The conclusion is that
Lebesgue measure completed on the square has the D-quotient rcpp, contradicting
Lemma 5.0

Summarizing:

THEOREM 13. Under assumption L, if (X, S, u) is complete, the following
properties are logically equivalent:

(i) discrete,

(ii) product rcpp,
(iii) subfield rcpp and perfect,
(iv) quotient rcpp,

(v) D-quotient rcpp.

ProOF. Theorems 11, 12, and 2.0

12. Open questions. A number of unresolved questions concern the rela-
tions among the various rcp concepts.

Is there a space having quotient rcpp but not product rcpp? D-quotient rcpp
but not quotient? One of quotient rcpp or subfield rcpp, but not the other?
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The subfield rcpp seems to be the most popular in the literature, but we have
found it the least useful. Is there a nonperfect subfield rcpp space?

In the last part, is assumption L really needed for Theorems 12 and 137

Finally, is there a simple n. and s. condition for any of the rcpp’s, not requiring
any special assumptions such as completeness or countable separability?
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