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UNIVERSALLY MEASURABLE STRATEGIES IN ZERO-SUM
STOCHASTIC GAMES

By ANDRZEJ S. NOWAK

Technical University of Wroclaw

This paper deals with zero-sum discrete-time stationary models of sto-
chastic games with Borel state and action spaces. A mathematical framework
introduced here for such games refers to the minimax theorem of Ky Fan
involving certain asymmetric assumptions on the primitive data. This ap-
proach ensures the existence and the universal measurability of the value
functions and the existence for either or both players of optimal or e-optimal
universally measurable strategies in the finite horizon games as well as in
certain infinite horizon games. The fundamental result of this paper is a
minimax selection theorem extending a selection theorem of Brown and
Purves. As applications of this basic result, we obtain some new theorems on
absorbing, discounted, and positive stochastic games.

1. Introduction. Sequential competitive decision processes, such as sto-
chastic games, represent the behavior of several competing decision makers
interacting over time under uncertainty and therefore they play an increasing
role as useful models for phenomena in the social sciences. We only mention
here the papers of Deshmukh and Winston [9], Kirman and Sobel [22], and the
book of Friedman [14], in which oligopoly situations are related to stochastic
games.

The theory of stochastic games started with the fundamental paper of Shapley
[43], in which two-person zero-sum stochastic games with finite state and action
spaces were considered. The results of Shapley were extended in various direc-
tions; for a good survey see [32] and [36]. In recent years many researchers have
been interested in formulating general mathematical frameworks for zero-sum
stochastic games with uncountable state space which are broad enough to include
the many applications of the methods and well-behaved enough to permit
analysis. First results in this direction were given by Maitra and Parthasarathy
(see [27] and [28]). For some extensions of their results we refer to [8], [13], [18],
[21], [23], [25], [29], [30], [34] and [38]. Most of these papers present only so-
called Borel space frameworks for stochastic games where the state space is an
uncountable Borel set and the primitive data and strategies are Borel measurable.
Stochastic games with more general state space are studied in [8], [29] and [30].

It is well-known that the value function of a stochastic game need not exist.
As noted by Rieder, in contrast with the dynamic programming, the value
function of a Borel space stochastic game which satisfies neither semi-continuity
nor compactness conditions need not be universally measurable (see [38, Example
4.1] and [48, Theorem 7.1] or [47, Theorem 1]). The main purpose of this paper
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is to present a general Borel space framework for two-person zero-sum stochastic
games that ensures the existence and the universal (not necessarily Borel)
measurability of the value functions of the games as well as the existence for
either or both players of optimal or ¢-optimal universally measurable strategies.
All the previous treatments, however, have mainly been directed toward formu-
lating some additional assumptions on the Borel space stochastic game model
that would guarantee the existence of a value function, its Borel measurability,
and the existence of e-optimal or optimal Borel measurable strategies for both
players. The model we introduce here assumes certain asymmetric conditions on
the primitive data (see Section 5, the assumption (RA)) inspired by the minimax
theorem of Ky Fan [12, Theorem 2]. The compactness of action spaces and the
semicontinuity or continuity of both the payoff per stage and the transition law,
which were usually assumed in the literature for both players, are here imposed
on one player only, say the minimizer. Thus, the other player need not have
compact action spaces and the pay-off per stage and the transition law need not
satisfy any semicontinuity requirements with respect to his actions. Therefore
our model involving also a convergence condition (see Section 5, the assumption
(FA)) generalizes the well-known discounted and positive stochastic dynamic
programming ones studied by Blackwell [4], [5] and Strauch [48]. The funda-
mental result of this paper is Theorem 5.1 which is an extension of a selection
theorem of Brown and Purves [7, Theorem 2]. The remaining results may be
regarded as game theoretic extensions of finite horizon, discounted and negative
dynamic programming results closely related to those of Shreve and Bertsekas
from [46] and [47].

The organization of this paper is as follows. Section 2 gives some terminology
and basic facts concerning Borel and analytic sets. Section 3 reviews some
auxiliary measure theoretic facts. The stochastic game model is described in
Section 4 with a minimum of assumptions. Section 4 also contains definitions of
the dynamic programming operators which are useful in our investigation. The
main results are provided in Section 5. Some auxiliary selection results are given
in Section 6. Finally, Section 7 presents the proofs of the main results.

2. Borel and analytic sets. Semi-analytic functions. Throughout this
paper a separable metric space X is called a Borel space or a Borel set if X is a
Borel subset of some Polish space, i.e. complete separable metric space, and is
endowed with the s-algebra Z(X) of all its Borel subsets.

We shall need the following facts.

(F 2.1) Let X and Y be Borel spaces and E be a Borel subset of X X Y such that
the set E(x) = {y € Y: (x, y) € E} is nonempty and compact for each x € X.
Then by [19, Theorem 3] and [17, Theorem 5.6], there is a sequence {f,} of Borel
measurable functions on X into Y such that

E(x) = cl{f.(x)} for each x € X,
where cl denotes the closure in Y.

(F 2.2) If X and Y are Borel spaces, then the product space X X Y endowed with
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the product topology is also a Borel space and #(X X Y) equals the product
g-algebra #(X) ® #(Y) on X X Y [33, Chapter 1, Theorem 1.10].

Let N be the set of sequences of positive integers, endowed with the product
topology. So N" is a Polish space. Let X be a separable metric space. Then X is
called an analytic space or an analytic set provided there is a continuous function
fon N¥ whose range f(N”V) is X.

In this section, we list some properties of analytic sets that we shall be using.

(F 2.3) Every Borel set is analytic [24, Section 38 VI].

(F 2.4) The countable union, intersection and product of analytic sets is analytic
[33, Chapter 1, Theorems 3.1 and 3.2].

(F 2.5) Let E be an analytic subset of an analytic space X. Then E is universally
measurable, that is, if p is any probability measure on the Borel subsets of X,
then E is in the completion of the Borel s-algebra with respect to p [40].

The complement of an analytic set relative to a Borel space is called comple-
mentary analytic. We have the following fact.

(F 2.6) According to Godel [16], it is consistent with the usual axioms of set
theory to assume there is a complementary analytic subset of the unit square
whose projection on the horizontal axis is not universally measurable.

For any Borel space X, we denote by % (X) the o-algebra of all universally
measurable subsets of X. It is known that % (X) is closed with respect to the
Suslin operation (cf. [40, page 50]). Let . (X) be the smallest ¢-algebra contain-
ing the Borel subsets of X and closed with respect to the Suslin operation. The
g-algebra & (X) was studied by Selivanovskij [42] and is discussed in Appendix
B of [3] and in [45]. It is known that & (X) is contained in Z(X).

Let X and Y be Borel spaces. Following Bertsekas and Shreve [3], we say that
a function f: X — Y is limit measurable if f}(B) € < (X) for every B € #(Y).
We say f is universally measurable if f*(B) € %(X) for every B € #(Y).
Clearly, if f is limit measurable, then it is universally measurable.

By Theorem 5.5 of Leese [26] we have:

(F 2.7) Let X and Y be Borel spaces, and C € ¥ (X) ® #4(Y). Then the
projection projxC of C on X belongs to </ (X), and, moreover, there is a limit
measurable function f: X — Y such that (x, f(x)) € C for every x € proj xC.

If X is an analytic space and f is an extended real-valued function on X, then
we say f is upper semi-analytic (u.s.a.) if the set {x € X: f(x) > c}(equivalently,
{x € X: f(x) = c}) is analytic for each real number c. By (F 2.3) every Borel
measurable function is u.s.a., and by (F 2.5) every u.s.a. function is universally
measurable. Let X be a Borel space and f be an extended real-valued u.s.a.
function on X. Since analytic subsets of X are in & (X) [45], so f is limit
measurable.

3. Auxiliary measure theoretic facts. Throughout this section, let X be
a separable metric space, endowed with the ¢-algebra % (X) of all its Borel
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subsets. We write B(X) for the set of all bounded Borel measurable real-valued
functions on X, and C(X) for the set of all continuous functions in B(X). Let
P(X) be the set of all probability measures on 4 (X). Given any % C B(X),
we may endow P(X) with the F-topology defined as the coarsest topology on
P(X) in which all mappings p — [ u(x)u(dx), u € & are continuous. In the case
“ = C(X) the F-topology on P(X) is called the weak topology, and in the case
& = B(X) the F-topology on P(X) is called the strong topology.

From the theorem of Dini [39, Proposition 9.2.11] and Theorem 2.6 of Génssler
[15] we get

(F 3.1) For any D C P(X), the following statements are equivalent:

(a) D is relatively compact in the strong topology.
(b) For any sequence {u,} in B(X) which decreases to 0,

f u,(x)p(dx) | 0 as n — o, uniformly in p € D.

Let P(X) be endowed with the weak topology. We shall need the following
facts.

(F 3.2) By embedding X in a countable product of unit intervals and using the
fact that the unit ball in the space of uniformly continuous functions on a totally
bounded metric space (with the supremum norm || - ||) is separable we get: there
is a sequence {u,} of real-valued continuous functions on X with [|u,| < 1,
n € N, such that the metric p defined on P(X) by

fun(x)u(dx)—fun(x)k(dx) , M, N\ € P(X),

(3.1) p(u, N) =37, 27"

is equivalent to the weak topology on P(X) [33, page 47].
(F 3.3) If X is a Borel space, then P(X) is a Borel space too [20, page 91].
(F 3.4) If X is compact, so is P(X) [33, Theorem II 6.4]. -

(F 3.5) The o-algebra 4 (P (X)) of all Borel subsets of P(X) coincides with the
smallest o-algebra on P(X) for which the mapping p — p(E) is measurable for
each E € 4 (X)(cf. [37]).

(F 3.6) Let u be a bounded below real-valued lower semicontinuous function on
X. Then p — [ u(x)p(dx) is an extended real-valued lower semicontinuous
function on P(X). This fact follows from the theorem of Baire [1, page 390] and
the monotone convergence theorem.

(F 3.7) Let X and Y be analytic spaces and u be a bounded below extended real-
valued u.s.a. function on X X Y. Then from Corollary 31 of [6], it follows that
(x, p) = [ u(x, y)p(dy) is an extended real-valued u.s.a. function on X X P(Y).

If X and Y are Borel spaces, t(- | x) is a probability measure on 4(Y) for each
x € X, and the function ¢(B|-) from X into [0, 1] is Borel (universally)
measurable for each B € #4(Y), we say that ¢ is a Borel (universally) measurable
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transition probability from X into Y. It can be shown that ¢ is a Borel (universally)
measurable transition probability from X into Y if and only if the mapping
x — t(- ] x) from X into P(Y) is Borel (universally) measurable (cf. [37, Lemma
6.1] and [10, Theorems 2.1 and 3.1]).

By a modification of Lemma 29 of [6] (cf. [44]) we can obtain the following

fact.

(F 3.8) If f is a real-valued universally measurable (u.s.a., Borel measurable)
function on X X Y which is bounded below, and ¢t: X — P(Y) is universally
measurable (Borel measurable, Borel measurable), then x — [ f(x, y)t(dy| x) is
an extended real-valued universally measurable (u.s.a., Borel measurable) func-
tion on X. (A partial discussion of (F 3.8) is contained in appendix of [2]).

Finally, we give the following fact.

(F 3.9) Let f be a bounded real-valued universally measurable function on a Borel
space Y, and t be a Borel measurable transition probability from a Borel space
X into Y such that t(B]-) is continuous on X for each B € #(Y). Then the
function x — [ f(y)t(dy| x) is continuous on X.

For a proof, let x,, — x, as n — «. For each m = 0, there is a Borel measurable
function f,, on Y and there is a Borel subset B,, of Y such that f(y) = f..(y) for
ally € B,, and t(B,, | x») = 1. Let B = Uy B,,. Then t(B|x,) = 1 for each
m = 0, and since f is bounded we have

fyf(y)t(dylxn) = Lf(y)t(dylxn) - J;f(y)t(dylxo) = J;f(y)t(dylxo)
as n — oo, which terminates the proof.

4. The stochastic game model. The stochastic game model we consider
is defined by a two-person discrete-time stochastic control system (S, A, B, F,
G, q, r, 8) of the following meaning:

(i) S stands for the state space and is assumed to be a nonempty Borel space.
(ii) A and B are the action spaces for players I and II, respectively. A and B are
assumed to be nonempty Borel spaces.
(iii) F and G are Borel subsets of S X A and S X B, respectively. For any s € S,
the nonempty s-section F(s) = {a.€ A: (s, a) € F} of F is called the set of
all admissible actions for player I when the system is at the state s.
Analogously for G. We assume that

(4.1) H={(s,a,b):s€S,a€ F(s),be G(s)}
is a Borel subset of S X A X B. ’

(iv) g: H — P(S) is a Borel measurable transition probability from H into S
# called the transition law of the system. Here, q(- | s, a, b) is the probability
distribution of the state next visited by the system if the system is at the
state s and the actions a and b are taken by the players I and II, respectively.
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(v) r: H— R, is a nonnegative Borel measurable function called the immediate
pay-off function or the pay-off function per stage.
(vi) B € [0, 1] and is called the discount factor.

We write H; = S, Hprn = H X H, for n € N, and H. = X3, H,, where
H, = H for each n € N.

As usual, a strategy for player I is defined as a sequence = = {r,} of universally
measurable transition probabilities 7,: H, — P(A) such that m,(- | s3, a1, by, - - -,
s,) assigns probability one to F (s,) for each (s;, ay, by, - -+, s,) € H,,n € N. We
write II for the set of all strategies for player 1. We denote by D, the set of all
decision functions of player I, i.e., f € D, if and only if f is a universally measurable
function f: S — P(A) such that f(s) € P(F (s)) for every s € S. A Markov strategy
for player I is a sequence {f,} where f, € D, for each n € N. We write I for
the set of all Markov strategies for player 1. A stationary strategy for player I is
a Markov strategy {f.} where f, = f is independent of n. We identify D, with the
set of all stationary strategies for player 1. Similarly, the sets I', Dg and I's of
all strategies, all decision functions (stationary strategies), and all Markov
strategies, respectively, are defined for player II.

Let ¢, an, and B8,, n € N, denote the projections from H, onto the nth state
space, nth action space for player I, and the nth action space for player II,
respectively. Then the random variables {,, a,, and 8, describe the state of the
system at stage n, and the actions chosen by the players I and II, respectively, at
stage n.

The transition law q and a pair =, v of strategies of players I and II define a
conditional probability m,.: S — P(H.). There, m,. associates with each s, € S
a probability measure on H. which is concentrated on {s;} X F(s;) X G(s1) X H
X H X H X ...and is defined through s, =, v, and g according to the theorem of
Ionescu Tulcea (see, e.g., [20, page 80]. We write E..[ - | {1 = s] for the respective
conditional expectation.

Define

(4.2) L(x, ¥)(8) = Ery[Yfe1 57 r($h, ar, Bi) | $1 = 5]

wheren E N=NU {x}, r €Il,and y €T.

Under our assumptions I, is a nonnegative extended real-valued function on
II X T X S which is universally measurable in s. The function I,,(w, v)(-) is the
total expected n-stage pay-off function of the initial state when players I and II
use strategies = and v, respectively. For n = o we shall write I(, v) instead of
1 n(7r, 'Y)

Let

Upn = SuprGl]inf-yEl‘In(W’ 'Y) and En = infyersuPrenIn(ﬂ', 7), neE N°
The function v,(0,) is called the lower (upper) value function of the n-stage
stochastic game. We say that the n-stage stochastic game has a value function v,
if v, = v, = D,. Assume that i, < © where n € N is fixed. Let ¢ = 0 be given.

A strategy =* € II is called e-optimal for player I at the n-stage stochastic
game if
Up < infierl (7%, v) + &



STOCHASTIC GAMES 275

A strategy v* € T is called e-optimal for player II at the n-stage stochastic
game if

Un = SuprEFIn(ﬂ" 7*) - &

The 0-optimal strategies are called optimal.
We shall write v, 0, and v instead of v,, 0,, and v,, respectively, when n = oo,
Putting Pr(s) = P(F (s)) and Pg(s) = P(G(s)) we define the sets:

KI = {(S, ”’): s € S, I € PF(S)},
(4.3) Ku = {(s, \: s €5, A € Pg(s)},
K= {(S, 2] A) s € S, (S, ﬂ) € Klv (S, >\) € KII}'

Let M. (S) be the set of all nonnegative universally measurable functions on
S. Many of our results will be stated in terms of the following dynamic program-
ming operators defined on M..(S). If u € M. (S) and (s, u, A) € K, then we define

(4.4) L(s,n,k)(u)=ff [r(s,a,b)-i'ﬁfu(t)Q(dtIs,a,b)]u(da)%(db)-

Iffe Dy, g € Dg, and u € M, (S), then we put

(4.5) (Lggu) (s) = L(s, f(s), g(s))(w), s €S,

(4.6) (Ugu) (s) = supsep,(Lyu)(s), s € S.

Finally, we define

4.7) (Uu)(s) = infeep,(Ugu)(s), s €S.

We shall often omit the variable s in writing the operators (4.5)-(4.7).

5. Main results. The main results of this paper concern the existence and
the universal (limit) measurability of the value functions v,, n € N, of the n-
stage stochastic games, and existence of ¢-optimal strategies for both players.

Let n € N be fixed. Suppose the value function v, of an n-stage stochastic
game exists. Then an important question arises as to whether the value function
U, is universally measurable (cf. [35, Chapter 11] and [36, Problem 6.8]). A
negative answer to the above question was recently given by Rieder [38, Example
4.1]. In particular, Rieder, using (F 2.5), showed that it is consistent with the
usual axioms of set theory to assume there is an n-stage stochastic game satisfying
(i) — (vi) that possesses the value function v,,, but v, is not universally measurable.
Because of the Rieder’s example we impose some regularity conditions on the
model described in Section 4.

We shall study the stochastic games under the following additional assump-
tion: ’

(RA) G(s) is compact for each s € S, r(s, a, -) is lower semicontinuous, and

g(E|s, a, -) is continuous on G(s) for each (s, a) € F and E € 4(S).
Because of our concept of e-optimality, we shall assume that the following
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statement holds:

(FA) If we consider an n-stage stochastic game (n € N), then there is a stationary
strategy g € Djp for player II such that

suprenl,(rw, g)(s) < foreach s € S.

Before we describe our main results, let us briefly comment on the regularity
conditions (RA) and compare them to those appearing in the literature. We
require here the strong continuity of the transition law g in the minimizer’s
actions. However, we do not impose any continuity conditions on ¢ and r with
respect to the maximizer’s actions and the state variable. Often in the literature
g is assumed to be strongly continuous in the action variables of both players.
Similarly, the semicontinuity or even continuity condition concerning the payoff
function r has been made for both players. For details see [8], [23], [29], [30],
[38] and their references. It should be noted that there is an alternative approach
to stochastic games with an uncountable state space, where the set H satisfies
some additional regularity conditions, the payoff function r is continuous on H,
and q: H — P(S) is continuous on H in the weak topology of P(S). For results
in that approach we refer to [8], [23], [38] and the references therein.

Now, let us state our main results. Let u be a nonnegative u.s.a. function on
S. First, we consider an auxiliary one stage game with terminal reward u. If the
players choose f € D4 and g € Dp, respectively, then the total expected pay-off
is given by Lu.

The following result is basic for this paper.

THEOREM 5.1. Let u be a nonnegative upper semianalytic function on S such
that (Uu)(s) < o for each s € S. Suppose (RA) holds. Then the function (Uu)(-)
is the value function of the one stage game wt:th terminal reward u. Moreover,
(Uu)(-) is upper semianalytic, player 11 has an optimal limit measurable strategy,
and for any ¢ > 0 player 1 has an e-optimal limit measurable strategy.

REMARK 5.1. The conclusions of Theorem 5.1 hold if instead of assuming
that r and u are nonnegative, we assume only that r and u are bounded below.
Define

0. = {s € S: (Uu)(s) = infeepys)L(s, us, (s))(u) for some u, € Pr(s)},
where u is any nonnegative u.s.a. function on S.

REMARK 5.2. If O, =S, then (RA) implies that player I has an optimal limit
measurable strategy in the one stage game (cf. Lemma 6.1 and the proof of
Theorem 5.1).

The next theorem deals with the finite horizon stochastic games where n < .

THEOREM 5.2. Assume (FA) and (RA). Then for any n € N, the n-stage
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stochastic game has a value function v,, the function v, is upper semianalytic, and
v, = Uv,—; for n €N,

where vy = 0 is the function which vanishes identically.
Moreover, player 11 has an optimal Markov strategy, and for any ¢ > 0, player 1
has an e-optimal Markov strategy.

REMARK 5.3. From Theorem 5.2 we infer that v, = U"v, for each n € N.
Here U' = U and U" = UU™ ! for n = 2.

REMARK 5.4. Let O, = S for u = vy, vy, --+, Un—1. Then player I has an
optimal Markov strategy in the n-stage game, which follows from Remark 5.2
and the proof of Theorem 5.2. One can say that the above condition is implicit
and it cannot be checked a priori. Therefore, we would like to indicate some
explicit conditions that guarantee the existence of optimal Markov strategies for
player I in finite horizon games. Here they are: besides the semicontinuity
and compactness assumptions concerning player II we assume that F(s) is
compact for each s € S, r is bounded, r(s, -, b) is upper semicontinuous, and
qg(E|s, -, b) is continuous on F(s) for each (s, b) € G and E € #4(S). It should
also be noted here that under such additional assumptions the value function of
any finite horizon game is Borel measurable and optimal Markov strategies for
both players in that game may be chosen to be Borel measurable (cf. [29, Theorem
4.1)).

The next theorems concern the infinite horizon stochastic games where n = .
In this case we write I, v instead of I., v., respectively, and so on. First, we
consider so-called discounted stochastic games where the payoff function r is
bounded and 8 < 1. In this case the condition (FA) is satisfied trivially.

THEOREM 5.3. Assume (RA). Then the discounted stochastic game has a value
function v, the function v is bounded and upper semianalytic, and v is the unique
solution of the equation:

v = Uv.

Moreover, player I1 has an optimal stationary strategy, and for any ¢ > 0 player
I has an e-optimal stationary strategy.

REMARK 5.5 If ©, = S, then by the proof of Theorem 5.3 and Remark 5.2
player I has an optimal stationary strategy.

Let {3,} be any sequence of real numbers 3, € [0, 1] such that 8,18 as n — .
We associate with each n € N an auxiliary discounted stochastic game DSG,,
where the immediate payoff function is given by r, = min {r, n}, and the discount
factor is equal to 8,. From Theorem 5.3, it follows that each game DSG, has a
bounded upper semianalytic value function w,.

The next theorems concern so-called positive stochastic games where 8 = 1,
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and so-called absorbing stochastic games where 8 < 1, but the immediate payoff
function r is unbounded.

THEOREM 5.4. Assume (FA) and (RA). Then the infinite horizon positive or
absorbing stochastic game has a value function v, the function v is upper semian-
alytic, and

v=Uv = lim,w, = lim,v,,

where w,(v,) denotes the value function of the game DSG, (respectively, the
n-stage stochastic game).
Moreover, player II has an optimal stationary strategy g € Dg satisfying
v=Uv = Uy,
and there is a sequence {f,} C D, of stationary strategies for player I such that

L= limninf'yEPI(fn’ ’Y)

REMARK 5.6. Theorem 5.4 implies that for any ¢ > 0 there is a measurable
partition {S,} of the state space S and a subsequence {f,,} of {f,} C D4 such that

v(s) < inf,erI(fn,, v)(s) + ¢ forevery s€ S,, k€ N.

A strategy 7 = {m,} where m,(-|s1, a1, by, -+, $p) = fn,(5,) Whenever s; € S,
n € N, is called semistationary. Thus, Theorem 5.4 implies that for any ¢ > 0
player I has an e-optimal semistationary strategy.

REMARK 5.7. Van der Wal has given an example of the positive stochastic
game with countable state space in which player I has no e-optimal stationary
(even Markov) strategies although he has finite action spaces [49, Example 2.26].
The optimal strategies for player I (stationary or otherwise) need not exist in the
positive stochastic game even if the state and action spaces are finite [23, Example

1].

REMARK 5.8. All the results of this paper regarding the finite horizon,
discounted, and absorbing stochastic games remain true if instead of assuming
in the definitions of these games that r is nonnegative, we assume only that r is
bounded below.

THEOREM 5.5. Let (FA) and (RA) be satisfied. Assume further that the value
function of the positive or absorbing stochastic game is bounded and the set

(5.1) {q(-]s, a, b) : (s, a, b) € H}

is relatively compact in the strong topology in P(S). Then the sequence {w,} of
value functions of the games DSG,, n € N, converges to v uniformly in s € S.
Thus, for any ¢ > 0 player I has an e-optimal stationary strategy.

For a detailed discussion of the relative compactness in the space of all



STOCHASTIC GAMES 279

probability measures on arbitrary measurable space endowed with the strong
topology, we refer to [11, IV 8.9, IV 9.1, 9.2] and [15, Theorem 2.6]. In this paper
we would like to point out two simple examples interesting from the point of
view of stochastic games in which the set (5.1) is relatively compact in the strong

topology of P(S).

EXAMPLE 5.1. Assume that H is a compact subset of S X A X B, and P(S)
is endowed with the strong topology. Then the set (5.1) is compact in P(S) for
each continuous q: H — P(S).

EXAMPLE 5.2. Assume that the set (5.1) is dominated by some probability
measure m on %(S), and the set of Radon-Nikodym derivatives of the measures
q(-|s,a, b)((s, a, b) € H) with respect to m is bounded in some Lebesgue space
LP(S, B(S), m), p > 1. Then the set (5.1) is relatively compact in P(S) endowed
with the strong topology by [11, IV 8.4]. (This fact can be also verified by means
of (F 3.1), the Holder inequality and the monotone convergence theorem.)

THEOREM 5.6. The condition (FA) holds for each n € N if and only if there
are u € M. (S) and g € Dg such that

(5.2) Ugu = u.

REMARK 5.9. The function u satisfying (5.2) is called excessive for U,. If (5.2)
holds for n € N, then by the proof of Theorem 5.6 we have

Un < suprenly(m g) <u for n€ N.

REMARK 5.10. Theorem 5.1 is a game theoretic extension of Theorem 2 of
" Brown and Purves [7]. Similar minimax selection theorems with the asymmetric
assumptions corresponding with the assumptions of the Fan minimax theorem
[12, Theorem 2] can be found in [31]. For results related to Theorem 5.2 we refer
to [8, Lemma 3.5], {29, Theorem 4.1] and [38, Theorem 6.1]. Theorems 5.3 and
5.4 have predecessors in [29], [30], [38] and in their references. A closely related
result to Theorem 5.5 is Theorem 7.2 from [30]. For predecessors of Theorem
5.6 consult [5, Theorem 2] and [23, Theorem 1 (P)].

6. Measurable selections of extrema. Let X and Y be Borel spaces, and
EC X X Ybe such that E(x) ={y € Y: (x,y) € E} # 0 for each x € X.
Let u: E — R be such that

u*(x) = supyegmu(x, y) <o for each x € X.

Define #Z = {x € X: u*(x) = u(x, y,) for some y, € E(x)}.
A function f: X — Y is called an e-maximizer of u if (x, f(x)) € E for each
x € X and

u*(x) = u(x, f(x)) for x € .7,
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and
u*(x) < ulx, f(x)) +¢ for x€ X - 2

If # = X then an e-maximizer of u is called a maximizer of u.
We shall need the following results:

LEMMA 6.1 ([46, page 968 and Remark on page 971]). Assume thal E is an
analytic set, u is an upper semianalytic function on E. Then u* is upper semian-
alytic, ©# € < (X) (is limit measurable), and for any ¢ > 0 there is a limit
measurable e-maximizer of u.

LEMMA 6.2. Assume that E € & (X) ® B(Y),and uisan & (X) ® B(Y)-
measurable function. Then u* is limit measurable, & € & (X), and for any ¢ >0
there is a limit measurable e-maximizer of u.

ProOOF. Note that for each real number ¢

C = {x € X: u*(x) > c} = projx{(x, y) € E: u(x, y) > c}.

By (F 2.7) the set C belongs to & (X). This obviously proves the measurability
of u*.
Define

Do = {(x, y) € E: u*(x) = u(x, y)},
and, for any given ¢ > 0,
D = {(x,y) € E: u*(x) < u(x, y) + ¢} — D,.
It is clear that Dy and D belong to & (X) ® #(Y), and & = projxD,. Now the

lemma follows from (F 2.7).

7. Proofs of the main results. We start with some auxiliary lemmas. By
means of Proposition 10.1 of Schél [41] we can easily prove the following:

LEMMA 7.1. Let X and Y be separable metric spaces and u,: X X Y - R,
n € N. Assume that u, < up+1, and u,(x, -) is lower semicontinuous on Y for each
x€ X,n€E€ N. Then

(a) limnsuprXinny YUn (x’ y) = SuprXinny Ylimnun (x’ y) ’
and
(b) lim,infye ysup.exun(x, y) = infyeysupsexlimuun(x, ),

provided that Y is a compact metric space.

* Let M.(S) be the set of all ﬁonnegative upper_semianalytic functions on S,
and B. (S) be the set of all bounded functions in M. (S).
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LEMMA 7.2. Assume (4.1) and (RA). Then
(a) The sets K1, Ki1, and K defined by (4.3) are Borel sets, and Pg(s) is compact

for each s € S.

(b) For any u € M.(S) the (extended real-valued) function L(-, -, -)(u)
defined on K by (4.4) is upper semianalytic.

(¢) If r is bounded and r(s, a, -) is continuous on G(s), (s, a) € F, and
u € B,(S), then the function L(s, u, -) () is continuous on Pg(s), (s, u) € Ki.

(d) For any u € M.(8S), the function L(s, u, -)(u) is lower semicontinuous on
PG(S)’ (3, ﬂ) € KI-

PrOOF. The part (a) follows from (F 2.2) and (F 3.3) — (F 3.5). To prove (b)
it is sufficient to use (F 2.2), (F 2.3), (F 3.7), and (F 3.8). The part (c) follows
immediately from (F 3.9). For proving (d), let u, = min {u, n}, n € N. Then by
(F 3.6) and (F 3.9) each function L(s, u, -)(u,) is lower semicontinuous on Pg(s),
n € N, and by the monotone convergence theorem

L(S, My ’)(un) T L(S, 122 ')(u)’ (S, Il') € KI~
This obviously implies (d).
The following lemma is apparent from (4.2) and (4.5).

LEMMA 7.3. Let m = {f,} € ) and v = {g,} € Ty For any u € M.(S) we
define a sequence

(71) Lflglszgz e Lfngnu, n € N.
The sequence (1.1) is convergent to I(w, ) (uniformly in s € S) if u = 0 (if r and
u are bounded and 8 < 1).
LEMMA 74. Letf€ D,and g € Dg. Then foranyn € N,s € S, r € I1, and
v €T there are n’ € Il and v’ € T'ps such that
L.(f, ) (s) = I.(f, v')(s) and I.(m, g)(s) = I.(x’, g)(s).

ProOF. The proof follows similar lines as that of Proposition 1 of Shreve
and Bertsekas from [47].

REMARK 7.1. We do not assume (FA) in Lemma 7.4.
Now we are ready to prove the theorems.

ProoOF OF THEOREM 5.1. The fact that Uu is the value function of the one
stage game with terminal reward u follows from the compactness of sets Pg(s),
s € S, Lemma 7.2(d), and the Fan minimax theorem [12, Theorem 2].

Define

q)(s’ ﬂ) = inf)\EPG(s)L(s’ My A)(u)’ (S, ﬂ) € KI-
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Note that
(Uu)(s) = sup,epps)®(s, n), sE€S.

To prove that Uu is u.s.a., and player I has an e-optimal limit measurable
strategy for each ¢ > 0, it is sufficient to show that & is u.s.a. on the Borel space
K; and apply Lemma 6.1. In order to show that ® is u.s.a. on K, we-construct
an auxiliary sequence {®,} of u.s.a. functions on K that converges to ®. Thus, ¢
becomes a u.s.a. function on Kj.

Let

(7.2) ¢, = min{Y,, n}, n € N,
where
%(3, a, b) = innyG(s)[r(s’ a, y) + nd(b’ y)]’ (8, a, b) € F X B’ n e N’

and d is the metric in B.

By [19, Theorem 2], ¢, is a Borel measurable function on F X B, and so is ¢,
n € N. It is easy to check that ©,(s, a, -) is continuous on B for each (s, a) € F,
n € N. By the proof of the theorem of Baire [1, page 390], 1 r on H. Hence

#.1ronH.
Let L,(-, -, -)(un) be defined by (4.4) where the function r is replaced by ¢,
and u is replaced by u, = min{u, n}. Clearly, the facts listed in Lemma 7.2 for

L(-, -, -)(u) carry over to L,(-, -, -)(us).
Define

q)n(s, ﬂ) = inf)\EPg(s)Ln(s, 122 A) (un)’ (S, ﬂ) S KI’ ne N’

Because ¥, 1 r on H, and u, | u on S, from the monotone convergence theorem
we get

(7.3) Lp(-y +5 -)(un) 1 L(-, -, -)(w) on K.

This fact, the compactness of Pg(s), s € S, Lemma 7.2(c), and Proposition 10.1
of [41] imply that &, 1 ® on K;. Now, it remains to show that ®, is u.s.a. on K;

for each n € N.
By Lemma 7.2(a) and (F 2.1) there is a sequence {g.} of Borel measurable

mappings gx: S — P(B) such that
(7.4) Pg(s) = cligr(s)}, foreach s €S,

where cl denotes the closure in the weak topology on P(B). This together with
Lemma 7.2(c) implies

(7.5) P (s, ) = infiLn(s, 1, 8x(s))(un), (s, ) € Ki, n€N.
From the Borel measurability of g, and (F 3.8), we infer that the function
(s, @) = Liu(s, pa; 81(5)) (ur), (s, a) EF,

where uq({a}) = 1, is u.s.a. on F for each k, n € N. Using this fact and (F 3.7) we
can easily show that L,(-, -, gx(+)) (u,) is us.a. on K, for each k, n € N, which
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together with (7.5) and (F 2.4) (used for the intersection) implies that so is ®,,

n € N.
For proving that player II has an optimal limit measurable strategy we define

the function

\I’(S, >‘) = SupuEPp(s)L(s9 My A)(u')’ (S, >\) € KII-
Note that
(7.6) (Uu)(s) = infrepy ¥ (s, \) = ¥(s, As)
for each s € S and some A\, € Pg(s). The last equality follows from the
compactness of the sets Pg(s), s € S, and Lemma 7.2(d). We shall show that ¥
is an < (S) ® #(P(B))-measurable function on Ky (being Borel space). Then

the existence of the required strategy for player II follows immediately from (7.6)

and Lemma 6.2.
In order to prove the measurability of ¥ we use the following sequences of

functions:
V,.(s, N) = supuepyis)Lin(s, #, \)(4s), (s, \) € Ku, n € N,
and
Apm(s, N) = inf,epyo)[¥n(s, 1) + mp(n, N)], n, m € N,

where (s, \) € S X P(B), and p is the metric on P(B) defined according to (3.1).
Let n, m € N be arbitrary. Note that A,,(s, -) is continuous on P(B) for each
s € S. We shall prove that A,,(-, A) is u.s.a. on S for each A € P(B).

Denote

wnm(s’ My 7, >\) = Ln(s, My 77) (un) + mP(ﬂ, >\)’

where (s, u, 7) € K and A € P(B). From the properties of L,(s, -, -)(us)
and (3.1) we infer that w,.(s, -, n, A) is linear on a convex set Pr(s) and
Wnm(S, p, -, A) is convex and continuous on Pg(s) being compact convex space.
Applying the Fan minimax theorem [12, Theorem 2] to the function
Wpm(s, -, -, \) we get:

(7.7)  Apm(s, N) = SupuEPp(s)inanPG(s)wnm(s, By M, N), (s, \) € S X P(B).

It is clear that wp.(-, -, -, A\) is u.s.a. on K, and since w,n(s, u, -, A) is
continuous on Pg(s), (s, p) € Ki, so using the sequence {g;} satisfying (7.4) we
can show that the function

(s, p) = inf,epys)Wnm(s, u, m, N) is u.s.a. on Ki.

This fact together with (7.7) and Lemma 6.1 implies that A,.(-, A) is u.s.a. on
S. Thus, we have shown that A,,(-, A) is < (S)-measurable on S for each
A € P(B), and A,n(s, -) is continuous on P(B) for each s € S. By [17, Theorem
6.1], the function A,, is & (S) ® Z(P(B))-measurable on S X P(B) because
P(B) endowed with the weak topology is a separable metric space.

Now observe that ¥, (s, -) is lower semicontinuous on Pg(s) for each s € S,
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n € N. By the proof of the theorem of Baire [1, page 390] we obtain A,, | ¥, as
m — . Hence, it follows that ¥, is SAS) ® #(P(B))-measurable on Kj; for
each n € N, and from (7.3) we can easily derive that ¥, 1 ¥ as n — o. Thus, ¥
is also an &/ (S) ® #(P(B))-measurable function on Ky, which terminates the

proof.

REMARK 7.2. The Borel measurability of the functions {g;} is very important
in the proof of Theorem 5.1 because of the fact that the composition of two
analytically measurable functions need not be analytically measurable (cf. [3,
page 187] or [6, Example 24]).

PrROOF OF THEOREM 5.2. The proof is based on Theorem 5.1 and proceeds
along similar lines as that of Theorem 4.1 in [29], or Lemma 3.5 in [8].

PROOF OF THEOREM 5.3. Assume that B, (S) is endowed with the supremum
metric. Then B,(S) is a complete metric space. With the help of Theorem 5.1
we can easily show that U is a contraction mapping from B, (S) into B.(S). By
the Banach fixed point theorem there is unique function v* in B,(S) such that
v* = Uv*. We shall prove that v* is the value function of the discounted stochastic

game.
Let ¢ > 0 be arbitrary. By Theorem 5.1 there are f* € D4 and g* € Dg such

that
(7.8) Lfg*l)* =v*=Uv* < Lpgv* +¢e(1 — B),

for every f€ Dy and g € Dp.
Let 7’ = {f,} € Iy and v’ = {g,} € Ty be any Markov strategies for players
I and II. By means of (7.8) we can show that, for each n,

Lyg+Lpygr -+ Lygv* < 0*
= Uv* < Lpg Lpsg,Lpwg 0* + (1 = B)L + B+ --- + B"7Y).
This and Lemma 7.3 imply
(7.9) I(z', g*) <= v* = Uv* <= I(f*, v') + -
Since =’ and v’ are arbitrary, so from (7.9) and Lemma 7.4 we infer
U < suprenl(w, 8*) < v* = Uv* < inf,er I(f*, v) +e < v + e

This implies that the value function v of the game exists and v = v*. At the same
time we have shown that player II has an optimal stationary strategy g* and
player I has an e-optimal stationary strategy f*, which completes the proof.

REMARK 7.3. If there are Borel measurable functions f* € D, and g* € Dp
which satisfy (7.8), then the rest part of the proof of Theorem 5.3 after (7.8) can
be reduced to a direct application of dynamic programming results of Shreve and
Bertsekas [47, Theorems 1 and 2(D)]. However, f* and g* need not be Borel
measurable [6, Example 47], so we use slight different arguments.
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PROOF OF THEOREM 5.4. Let L, and U, denote the operators defined by
(4.4) and (4.7), respectively, where 8 is replaced by 8, and r is replaced by r, =
min{r, n}.

By Theorem 5.3, we have w, = U,w, where w, is the value function of the
game DSG,. Clearly, w, < w,+; < v for each n € N. Hence

(7.10) 0<w-=lim,w, <v,

and by (FA) and Theorem 5.3 we have w € M, (S).
From the monotone convergence theorem, Lemma 7.2(a), (d) (applied to L,),
and Lemma 7.1 we infer that

w = lim,w, = lim,U,w, = U lim,w, = Uw.
By Theorem 5.1, there is g € D such that
(711) w = Uw = U,w, where U, is the operator defined by (4.6).
Let Uz = U, and Ug = U,U;" for n = 2. Then from (7.11) we get
w= Uzw foreach n &€ N.

Note that
w=Ugw=I,(7’, g)

for each n € N and each =’ € II ;. Hence
w = lim, I, (x’, g) = I(x’, g)
for each w’ € Il This and Lemma 7.4 imply that
(7.12) w = sup,en, (7', g = suprenl(x, g) = 0.
Combining (7.10), (7.11), and (7.12) we get
" (7.13) w=Uw=Uw=p=0=v

for some g € Dg. This and (7.12) imply also that g is an optimal stationary

strategy for player II.
The proof of v = lim,v, follows similar lines as that of (7.13), but we use

Theorem 5.2 instead of Theorem 5.3.
Now, let ¢, = 1/n, n € N. By Theorem 5.3, for each n € N, there is an

e,-optimal stationary strategy f, for player I in the discounted stochastic game
DSG,.. It is easy to check that {f,,} is the required sequence of stationary strategies

for player 1.

PRrROOF OF THEOREM 5.5. Suppose that |v(s)| < ¢ for all s € S and some
¢ > 0. Then for each s € S we have

[v(s) — wa(s)] = c(B = Bn)
+ Sup(‘s,a,b)EH f [U(t) - wn(t)]Q(dtl& a, b)'

By Theorem 5.3, (v — w,) | 0, so the theorem follows from (7.14) and (F 3.1).

(7.14)
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PROOF OF THEOREM 5.6. If (FA) holds for each n € N, then (5.2) follows
from Theorem 5.4. Suppose that (5.2) holds for some u € M. (S) and g € Dp.
Then

(7.15) u= Liu foreach f€ Dy.

Let #’ = {f,} € 11, be arbitrary Markov strategy for player I. From (7.15) we
obtain

u=LgLsg -+ Lyou=1I,(x’',g) for each n € N.
Hence
u = lim,I,(x’, g) = I(x', g), = € Iln.
This and Lemma 7.4 imply that (FA) holds, which completes the proof.

REFERENCES

[1] AsH, R. B. (1972). Real Analysis and Probability. Academic, New York.
[2] BARBAROSHIE, A. (1977). On the theory of controlled Markov processes. Theory Probab. Appl.
22 53-69.
[3] BERTSEKAS, D. P. and SHREVE, S. E. (1978). Stochastic Optimal Control: The Discrete Time
Case. Academic, New York.
[4] BLACKWELL, D. (1965). Discounted dynamic programming. Ann. Math. Statist. 36 226-235.
[5] BLACKWELL, D. (1967). Positive dynamic programming. Proc. Fifth Berkeley Symp. Math.
Statist. Probab. 2 415-418. Univ. of California Press.
[6] BLACKWELL, D., FREEDMAN, D. and ORKIN, M. (1974). The optimal reward operator in dynamic
programming. Ann. Probab. 2 926-941.
[7] BROWN, L. D. and PURVES, R. (1973). Measurable selections of extrema. Ann. Statist. 1 902-
912.
[8] COUWENBERG, H. A. M. (1980). Stochastic games with metric state space. Internat. J. Game
Theory 9 25-36.
[9] DESHMUKH, S. D. and WINSTON, W. (1978). A zero-sum stochastic game model of duopoly.
Internat. J. Game Theory 7 19-30.
[10] DusINs, L. E. and FREEDMAN, D. (1965). Measurable sets of measures. Pacific J. Math. 14
1211-1222.
[11] DUNFORD, N. and SCHWARTZ, J. T. (1958). Linear Operators, Part I: General Theory. Intersci-
ence, New York.
[12] FaN, K. (1953). Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39 42-47.
[13] FriD, E. B. (1973). On stochastic games. Theory Probab. Appl. 18 389-393.
[14] FRIEDMAN, J. W. (1977). Oligopoly and the Theory of Games. North Holland, Amsterdam.
[15] GANSSLER, P. (1971). Compactness and -sequential compactness in spaces of measures. Z.
Wahrsch. verw. Gebiete 17 124-146.
[16] GODEL, K. (1938). The consistency of the axiom of choice and of the generalized continuum
hypothesis. Proc. Nat. Acad. Sci. U.S.A. 24 556-557.
[17] HIMMELBERG, C. J. (1975). Measurable relations. Fund. Math. 87 53-72.
[18] HIMMELBERG, C. J., PARTHASARATHY, T. RAGHAVAN, T. E. S. and VAN VLECK, F. S. (1976).
Existence of p-equilibrium and optimal stationary strategies in stochastic games. Proc.
Amer. Math. Soc. 60 245-251.
[19] HIMMELBERG, C. J., PARTHASARATHY, T. and VAN VLECK, F. S. (1976). Optimal plans for
- dynamic programming problems. Math. Oper. Res. 1 390-394.
[20] HINDERER, K. (1970). Foundations of non-stationary dynamic programming with discrete-time
parameter. Lecture Notes in Operations Research and Mathematical Systems (M. Beckman
and H. P. Kiinzi, eds.) 33. Springer, New York.



STOCHASTIC GAMES 287

[21] IDzIK, A. (1979). Remarks on discounted stochastic games. Trans. Eighth Prague Conf. Infor-
mation Theory, Statist. Decision Functions, Random Processes. Vol. C, Academia, Prague.

[22] KIRMAN, A. P. and SOBEL, M. J. (1974). Dynamic oligopoly with inventories. Econometrica 42
279-2817.

[23] KUMAR, P. R. and SHiAuU, T. H. (1981). Existence of value and randomized strategies in zero-
sum discrete-time stochastic dynamic games. SIAM J. Control Optim. 19 617-634.

[24] KURATOWSKI, K. (1966). Topology I. Academic, New York.

[25] KUENLE, H. U. (1982). On ¢-optimal strategies in discounted Markov games. Banach’ Center
Publications, Ser. Math. Control Theory. To appear.

[26] LEESE, S. J. (1978). Measurable selections and the uniformization of Souslin sets. Amer. J.
Math. 100 19-41.

[27] MAITRA, A. and PARTHASARATHY, T. (1970). On stochastic games. J. Optim. Theory Appl. 5
289-300.

[28] MAITRA, A. and PARTHASARATHY, T. (1971). On stochastic games II. J. Optim. Theory Appl. 8
154-160.

[29] NowaAK, A. S. (1984). On zero-sum stochastic games with general state space 1. Probab. Math.
Statist. 4 13-32.

[30] NowaK, A. S. (1984). On zero-sum stochastic games with general state space II. Probab. Math.
Statist. 4 143-152.

[31] NowaK, A. S. (1984). Minimax selection theorems. J. Math. Anal. Appl. 103 106-116.

[32] NUNEN VAN, J. and WESSELS, J. (1979). Successive approximations for Markov decision
processes and Markov games with unbounded rewards. Math. Oper. Statist., Ser. Optim.
10 431-455.

[33] PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic, New York.

[34] PARTHASARATHY, T. (1973). Discounted, positive and non-cooperative stochastic games. Inter-
nat. J. Game Theory 2 25-31.

[35] PARTHASARATHY, T. and RAGHAVAN, T. E. S. (1971). Some Topics in Two Person Games.
American Elsevier, New York.

[36] PARTHASARATHY, T. and STERN, M. (1977). Markov games—a survey. In Differential Games
and Control Theory II. (E. Roxin, P. Liu and R. Sternberg, eds.). Dekker, New York.

[37] RIEDER, U. (1975). Bayesian dynamic programming. Adv. Appl. Probab. 7 330-348.

[38] RIEDER, U. (1978). On semi-continuous dynamic games. Preprint Univ. Karlsruhe.

[39] ROYDEN, H. L. (1968). Real Analysis. MacMillan, London.

-+ [40] SAKS, S. (1937). Theory of the Integral. Stechert, New York.

[41] ScHAL, M. (1975). Conditions for optimality in dynamic programming and for the limit of n-
stage optimal policies to be optimal. Z. Wahrsch. verw. Gebiete 32 179-196.

[42] SELIVANOVSKLJ, E. (1928). Ob odnom klasse effektivnyh mnozestv (mnozestva C). Mat. Sb. 35
379-413.

[43] SHAPLEY, L. S. (1953). Stochastic games. Proc. Nat. Acad. Sci. U.S.A. 39 1095-1100.

[44] SHREVE, S. E. (1977). Dynamic programming in complete separable spaces. Ph.D. thesis, Dept.
of Math., Univ. of Illinois, Urbana, IL.

[45] SHREVE, S. E. (1978). Probability measures and the C-sets of Selivanovskij. Pacific J. Math. 79
189-196. :

[46] SHREVE, S. E. and BERTSEKAS, D. P. (1978). Alternative theoretical frameworks for finite
horizon discrete-time stochastic optimal control. SIAM J. Control Optim. 16 953-978.

[47] SHREVE, S. E. and BERTSEKAS, D. P. (1979). Universally measurable policies in dynamic
programming. Math. Oper. Res. 4 15-30.

[48] STRAUCH, R. E. (1966). Negative dynamic programming. Ann. Math. Statist. 37 871-890.

[49] WAL VAN DER, J. (1981). Stochastic dynamic programming. Math. Centre Tract 139. Mathe-
matisch Centrum Amsterdam.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCELAW
WYBRZEZE WYSPIANSKIEGO 27

50-370 WROCLAW, POLAND



