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LARGE DEVIATION LOCAL LIMIT THEOREMS FOR
ARBITRARY SEQUENCES OF RANDOM VARIABLES'

BY NARASINGA R. CHAGANTY AND J. SETHURAMAN

Old Dominion University and Florida State University

The results of W. Richter (Theory Probab. Appl. (1957) 2 206-219) on
sums of independent, identically distributed random variables are generalized
to arbitrary sequences of random variables T,. Under simple conditions on
the moment generating function of T, which imply that T'»/n converges to
zero, it is shown, for arbitrary sequences {m,}, that k,(m,), the probability
density function of T,/n at m,, is asymptotic to an expression involving the
large deviation rate of T,/n. Analogous results for lattice valued random
variables are also given. Applications of these results to statistics appearing
in nonparametric inference are presented. Other applications to asymptotic
distributions in statistical mechanics are pursued in another paper.

1. Introduction. Let {X,, n = 1} be a sequence of i.i.d. random variables
with E(X;) = 0, Var(X;) = 1. Let y(s) be the cumulant generating function
(c.g.f.) and vy(u) = sups=o[us — ¥(s)] be the large deviation rate of X;. Let S, =
X; + .-+ + X,. Under some mild conditions on ¥, Richter (1957) obtained an
asymptotic expression for the probability density function, f,, of S,/n involving
the Cramer series. A close examination of the asymptotic expression for f,, for
the case of a nonlattice valued random variable X in his paper, reveals that it
can be rewritten as

(1.1) fa(x,) = [n/27]2e™™ @)1 + O(] x.])],

whenever x, = 0(1) and Vnx, > 1. The purpose of this paper is to obtain similar
large deviation local limit theorems for arbitrary sequences of random variables
which are not necessarily sums of i.i.d. random variables, thereby increasing the
applicability of Richter’s theorem.

Let {T,, n = I} be an arbitrary sequence of nonlattice random variables with
an analytic moment generating function (m.g.f.) ¢,(z), nonvanishing in the region
Q = {2 € C: | Real(2) | < a}, where C is the set of complex numbers and a > 0.
Let

(1.2) ¥n(2) = (1/n)log d)n(z) for z€ Q and

(1.3) Yn(l) = SUP,e(_anfis — Yn(s)] for real u.

The main Theorem 2.1 in Section 2 states that under some standard conditions
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98 CHAGANTY AND SETHURAMAN

on y,, which guarantee the existence of the density function, k,, of T,,/n and
further imply that T',/n converges to 0 in probability, we can write

1/2 1
—nyp(my,) =
(1.4) k,(m,) = [ D~ (n)] e [1 + O<n)],

where {m,} is any sequence of real numbers and 7, is defined by ¥ (7,) = m,.
When T, is taken to be the sum of n i.i.d. random variables the above theorem
reduces to Richter’s result.

Our extension of Richter’s theorem to arbitrary sequences of random variables
T, may be compared to Steinebach’s (1978) extension of the earlier work on large
deviations of Chernoff (1952) and Bahadur and Ranga Rao (1960) for sums of
ii.d. random variables. Steinebach’s (1978) results on large deviations of an
arbitrary sequence of random variables T',, which extended earlier work of Sievers
(1969), Plachky and Steinebach (1975) used conditions based solely on the
moment generating function of T),. In this sense Theorem 2.1 is comparable with
Steinebach’s (1978) results. We also present analogous results for lattice valued
random variables.

Some other results on large deviations related to the main results of this paper
are Sievers (1975), Vandermaele and Veraverbeke (1982) and Ellis (1984). This
last reference contains a generalization of Chernoff’s Theorem for R%-valued
random variables by applying the techniques of Gértner.

The proofs of our theorems follow the classical pattern of proofs in this area,
including that of Richter’s theorem. The p.d.f. of T,,/n is first expressed in terms
of its Laplace transform. Next, the claimed asymptotic expression for this p.d.f.
is extracted leaving a remainder term. The inverse transformation for Laplace
transforms still allows one to pick the value of the real argument in that
transform. We pick the value of the real argument in the appropriate way to use
a saddle point approximation. Our proof differs from Richter’s proof at this stage
in two respects. We split the integral in the remainder term into two parts which
depend on n (see (2.13)), and we use the Cauchy formula for derivatives of an
analytic function (see (2.5)) to obtain sharper estimates of all the quantities
involved. This allows us to generalize Richter’s theorem.

In Section 3 we present various applications of the theorems of Section 2, for
statistics occurring in nonparametric inference. Prominent examples are
the Wilcoxon signed rank statistic and Kendall’s tau statistic for testing inde-
pendence in a bivariate population. For example consider Kendall’s tau W,. We
show that

6 1
(1.5) P(W,=0) = T Den + 5).[1 + O(n)]

as n tends to o through the appropriate sequence for which 0 is in the range of
W,. ’

2. Local limit theorems for arbitrary sequence of random vari-
ables. This section contains the main theorems of this paper, namely Theorems
2.1 and 2.2. We develop some notations before stating these theorems. Let
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{T,., n = 1} be a sequence of nonlattice valued random variables with m.g.f. ¢,(z)
which is analytic and nonvanishing for z in Q = {2: | Real(z)| < a} with a > 0.
Let ¢, and v, be as defined in (1.2) and (1.3). Let I = (—a, a) and I, = (—ay, a;)
for some a; with 0 < a; < a. Let {m,} be a sequence of real numbers and let
G, (t) = Yn(r) + itm, — Yn(v + it), for 7 € I,. The following theorems provide
an asymptotic expansion for the density function of T,/n in terms of the large
deviation rate v,
THEOREM 2.1. Assume the following conditions for T,:
(A) There exists 8 < o such that |Y.(2)| <B,forz€ Qand n = 1.

(B) There exists « > 0 and 1, € I, such that ¥, (r,) = m, and Y, (1) = « for
tr€lLandn=1.

(C) There exists n > 0 such that for any 0 < 6 < g,
inf|;=;Real (G,.(¢)) = min[Real(G,(6)), Real(G.(—6))], for n =1, where
G.(t) = Gn,.,(2).
(D) There exists p, Z > 0 such that

Sup,es f [ $nlr + it)/$n(7)| 7" dt = O(nP).

Then

n vz 1
— N —ny,(my,) —
(2.1) kn(m,) = [27r¢ff(‘rn)] e [1 + O(n>].

For lattice valued random variables T, we have the following analogous
theorem.

THEOREM 2.2. Let T, take values in the set {a, + kh,: k=0,+1,+2, ...}.
Let {m, = (a, + k,h,)/n} be a sequence of real numbers, where {k,} is a sequence
of integers. Assume that conditions (A), (B) of Theorem 2.1 hold and replace
conditions (C), (D) by the following:

(C") There exists n > 0 such that for any 0 <6 <,
infs<|¢ </ 0, Real(G,(t)) = min[Real(G,(8)), Real(G.(—é))] for n = 1.
(D’) There exists p, Z > 0 such that

7/hy
sllp’EIJ: " | $n(r + it)/p(r) | dt = O(nP).

.4

Then

N
(2.2) ol Pr(T, = nm,) = g () e 1+0 Ik
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We now make a few observations which will explain the implications of the
Conditions (A)-(D). The proofs of the above two theorems will be given after
Lemma 2.10.

REMARK 2.3. Condition (A) of Theorem 2.1 implies, as is shown later, that
the first and the second derivatives of ¢, at 0 are bounded in n, which in turn
implies that (T, — E(T,))/n is converging in probability to 0.

REMARK 2.4. One can easily verify that if T, satisfies Conditions (A)-(D) of
Theorem 2.1 then T}, = (T, — E(T,)) also satisfies the same four conditions.
Hence one can assume that E(7T,) = 0, although this assumption is not really
needed in the proof of Theorem 2.1. '

REMARK 2.5. Condition (B) is really a condition on the sequence {m,}. This
is trivially satisfied if m, is equal to E(T,)/n; however, in practice we would like
to choose m,, so that m, — E(T,)/n tends to a limit.

REMARK 2.6. Condition (C) is easily verified if G,(¢) is increasing with | ¢],
otherwise it seems to be a rather difficult condition to check. The following
lemma, which holds for any sequence of real valued functions f(¢), n = 1, provides
an easily verifiable sufficient condition. In Example 3.1 we will be verifying this
sufficient condition instead of Condition (C).

LEMMA 2.7. Let f,(t) be a sequence of continuous real valued functions such
that f,(0) = 0 and zero is the unique minimum of f, for all n = 1. Assume that the
following conditions hold for all n = 1.

(i) There exists n; > 0 such that f,(t) is increasing on (0, n:) and decreasing on
; (=m1, 0).
(ii) There exists ¢ > 0 such that inf ;) >, f2(t) > e.
(iii) There exists 0 < n < n; such that sup; <,f.(t) <e.
Then forany 0 <é<n
(2.3) infjs25fx(¢) = min[f,(8), f(—0)] for n=1.

PrOOF. Let 0 < é < 7 be fixed. Conditions (ii) and (iii) imply that
inf )2y, fo(t) > &> £,(3).
Using Condition (i) we obtain
inf|;25fa(t) = inf, 24 2sf2(t) = min[f,(3),.fo(=8)]. O
Lemma 2.7 provides a simple way to verify Condition (C) of Theorem 2.1. Let
f2(#) = Real(G,(t)). Note that f,(0) = 0 and 0 is the unique minimum for f, for

all n = 1 since T, is nonlattice valued. If f, satisfies conditions (i), (ii) and (iii)
of Lemma 2.7, then T, will satisfy Condition (C) of Theorem 2.1.
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REMARK 2.8. When T, is the sum of i.i.d. random variables with c.g.f.  then
Real(y,.(r + it)) = Real(y(r + it)) for all n and G,(t) does not depend on n. Also
f(t) = Real G,(t) = ¥(r) — Real(y(r + it)). Since ¥ is the c.g.f. of a nonlattice
valued random variable, f(¢) has a unique minimum at ¢ = 0 and it satisfies all
the three assumptions of Lemma 2.7. Thus Condition (C) holds automatically
when T, is the sum of i.i.d. nonlattice random variables.

REMARK 2.9. Condition (D) of Theorem 2.1 not only guarantees the existence
of the density function of T, but also permits the use of the inversion formula
to get an expression for the p.d.f. of T',. It is also used to show that the term I,
appearing in the proof of Theorem 2.1 goes exponentially fast to 0 (see (2.15)).

We will need the following lemma in the proof of Theorem 2.1.

LEMMA 2.10. Assume that Conditions (A), (B) and (C) of Theorem 2.1 are
satisfied. Recall that G,(t) = G, (t) = [Yu(7,) + itm, — Yu(r, + it)]. There exists
8, less than 1y such that for 0 < 6 < 64,

(2.4) inf|,|=;Real(G,(t)) = ad’/4 forall n=1.

PROOF. Forz € C and r > 0, define c(z2,r) = {w € C: |z — w| = r}. Since ¢,
is analytic in Q and | 7, | < a1, by Cauchy’s theorem for derivatives we have

k! f ¥n(w)
(*) =
(2.5) Un (1) 2 Jetosamay (0 — 7)o dw forall k=1.
Using Condition (A), we obtain
k) k! 1
| ¢n (Tn) I = Supch(-r,,,a—al) I \0,,(11)) I ol dw
n 27 c(7p,a—ay) I W — Tn I

(2.6) "

= —— f = 1.

<(a—al)k or k=1

Choose a positive number 8; < min(n, (a — a1)/2) such that
8:8[1 + 26,/(a — a))] < ala — a1)*/4.

Since ¥, is analytic in  and | 7,| < a, the following expansion is valid for all
n=1and |t]| <dy, '

Yn(Tn + it) = Yulra) + itYilra) + ((i)*/21) Y7 (70)

2.7
+ ((1)3/3") ¥/ (75) + Ru(rn + it),
where '
LG f » YA
Bolrn + ) = 271 Jetrgamay (W — 7o) w — 1, — i) dw.

An upper bound for the modulus of the remainder term R, can be obtained as
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follows:
| Ro(rn + it) |
4 1
29 = 5 SWPuccrpa—ay | ¥n(w)| IR P Y P —— dw
28t*
T (a=a)?
since |w—71,—it| = |w—1,] — |t| =(a—a) — | t] = (a — a1)/2. Noting that

Yn(7,) = m,, we get from (2.7) that for | ¢| < 6,

BYa(ma) | itV ()

9 3" - Rn(Tn + I't)y

(2.9) Gn(t) =

so that

Gn(t) _ ;{(Tn)

< L ()] + | Rn(7n + it)]
t? 2 -

3! t?

2
= (alflfl)a + (02_621)4 [from (2.6) and (2.8)]

o
S —
4
because of our choice of ;. Since ¥ (7,) = a, it follows that
2
(2.10) Real(G.(t)) = ‘—’f for all .

Since 8, < », it follows from Condition (C) that, for 6 < 4, inf jt1=s Real(G,(t))
= min[Real (G,(9)), Real(G,(—4))] = aé*/4. This completes the proof of Lemma

2.10.0

PROOF OF THEOREM 2.1. Let F, be the d.f. of T,. For 7 € I, define the
conjugate distribution H, by

TX

e
(2.11) dH,(x) = e dF,(x).

The c.f. of the d.f. H,, which is given by ¢.(r + it)/¢.(r), is absolutely
integrable in view of Condition (D). Thus the p.d.f. of H, exists and from the
inversion formula, it is given by

1 f " [tz + it)] .,
o _w_[ 6.(7) ]e dt.

The p.d.f. of F, therefore is given by (1/27) [“ ¢,(r + it)e~"+= gt
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Thus the p.d.f. of T),/n is given by
ka(x) = o= f Pulr + it)e 0% gy,
27!' —o
The above expression is valid for any 7 € I;. Since we are interested only in

k.(m,), we substitute x = m, and 7 = 7, in the above and arrive at the relation
below, which is the starting point of the analysis of the error terms:

ko(m,) = % J: _ fulrn + it)exp(—n(r, + it)m,) dt

(2.12)
1/2
[ 2wy (r )} exp(—nyn(mn)) Iy,

where

[ ” q1/2 0

In = n‘l’ézjr‘fn) I«, exp(n[‘yn(m,.) -— (‘rn + it)mn])¢n(7n + lt) dt
1/2 0
= Fanz"(rTn) I GXP(n[¢n(Tn + it) — lpn(Tn) - itmn]) dt

(2.13) - -

[ ” 11/2

~ ‘ = nlﬁ;i‘n;) [J':Iz - exp(—nG,(t)) dt + fltl<n‘* exp(—nG.(t)) dt]

= Inl + In2 (Say)9

wherein we have used the fact that v, (m,) = 7.m, — ¥xn(7,), and X is chosen to
be a constant such that s < A\ < %. The proof is completed by showing that I,
goes exponentially fast to zero and I, = I + O(1/n), as n goes to . First consider
- the term I,,;. By Lemma 2.10 we can find an N such that for n = N we have

—2)\

(2.14) inf).j2n-Real (G,(t)) = =
Forn = N,
[nyn(ra) [ f
[In] < Tor | e | exp(—nG.(t))| dt
J1/2
< [P it expi—tn = NG [ Tesp(- G e
n#x (Tn) 1~ _ _ f ¢n(7n ] n

(2.15) =< - SUP | ¢j=n-r| €XP(—(n = £)Gn(t)) | ———¢n(1n) dt

= 0(n**'2)exp[—(n — 2)inf =~ {Real(Ga(t))}]
= 0(nP*?)exp[—(n — A)a/4n?] (by (2.14))
= 0(n?P*?)exp[—an'~?/4],

which goes exponentially fast to zero since ¥ < A < %. Our next step is to show
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that I, = 1 + O(1/n). Recall that

) 1/2
[ Tn ] » _, exp(—nGa(t)) dt

// ) 1/2
[ - ] |s]<nl/2=A eXp(_nGn(s/‘/ﬁ)) ds.

For | s| < n*2™, s/v/n goes to zero uniformly in s as n — . Hence we can use
(2.9) to get

_ \I/”(T 8_2_ ” m
L = ] f|s|<nm-x < [_ an VA7) = ~/_ V() + R (T" i ﬁ)]) as

M(m Ve s
(2.16) = o t<ate -3 Yn(rs) ) expl| — \/— Yy (1) + nR, |7, + i —= J— ds
L s|<nl/ ')‘ n
_ ‘p:l,(T") V2 sZ ” lS m
=| ] s|<nl/"* -3 V() ) [1— ovn Yo' (1a) + nR| 7 + i — «/_ + L,(s)| ds,
where

is® m .ﬁ.
(2.17) Ln(s) - [e n— 1 — zn] and Z2n = [ \/— (Tn) + nR ( JE)].

The right-hand side of (2.16) can be written as the sum of four integrals. The
first integral equals 1 — 2®(—n'?>vy (,)) which by Mill’s ratio (e.g. see Feller
(1968) page 175, (1.8)) is 1 + 0(1/n) and the second integral is zero. Thus we get

T - Fl 5
I,=1+ O<n> + n[ . ] |3|<,,l/2—k Vi (7o) |Ro\ 7 + 7 ds
” 1/2
* [ "2(7:"):' J|;|<,,1/z—x exp<— 9 "(7")>L (s) ds.

We now show that the last two terms on the r.h.s. are O(1/n). Consider the
third term. The second inequality below follows from (2.8) since s/vn goes
uniformly to zero for |s| < n/?>7\

Vi) [ f )
" 27 |s|<n1/2—a Y \0 (1) )Rul 7 + i — \/_ s
Lk ] o b(= SO ) | Rl i

n) [ 28 f ( g o
S[ 27 :I n(a - a1)4 |s|<n1/2-X Xp - n(Tn) ds )
Thus,

: ;'(T,.)”Zf ’ (_ ) ( g) _ (1)
(2.19) n[ 9x ] o<t exp| — n(7n) «/ﬁ ds=0 R

We now get an upper bound for L, (s) which will be used to show that the fourth

(2.18)

ds
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integral on the r.h.s. of (2.16) is O(1/n). For |s| < n'/?™, since ¥4 < A\ < Y%,
| s|3/+n and s*/n converges to zero uniformly in s as n — . Hence there exists
N, not depending on s, such that for n = N, the following inequalities are valid.
The second inequality follows from (2.6) and (2.8). Recall that

e

2] = | — —"s-ﬁ U (tn) + nR,,(T,, + l-\/s—;>

(2.20) <Ll yrea +n R<T +ii>
' Sevn " Vn
__BlsI® 26s' _ _1
“ Vn@-a)® nla-—a)* 2

It is easy to check that | z| < V2 implies |e* — 1 — z| < 2e|z |2 Thus for n = N,
and | s| < n'/?™ we get

Bls|? 28s* }“’
Vn(a — a1)? n(a—al)“

=A—4|:|s|3+_28_4.__.:|2
n \/ﬁ(a—al) ’

where M = 2¢3%/(a — a,)®. Therefore for n = N,
n(r) [ f
l [ 2m ] IsI5n1/2—A <_ 5 ¥n ("n))L (s) ds
2
%F . @) f.. e""(' %) | Lu(s)| ds  [using (2.6)]
M
n

—_ f exp(— ﬁs—zi)[l s|®+ —234——}2 ds
Vr(a — ai) Jisizn 2 Vn(a - ay)

- 0(1),

From (2.18), (2.19) and (2.22) we get that I, =1+ 0O(1/n) and the proof is
complete. 0

| Ln(s)| = 2e[
(2:21)

- (2.22)

él

IA

REMARK 2.11. In the above proof, we only need the weaker condition that
the second derivative of ¥, at the point 7, is bounded below by « for all n = 1.
The stronger condition ¢, (r) = « for 7 € I, and n = 1 will be used to obtain
further refinements of the expression (2.1).

COROLLARY 2.12. Let {T',, n = 1} be a sequence of random variables satisfying
the conditions of Theorem 2.1. Let m be a real number such that for each n = 1
there exists &, € I, satisfying Y. (£,) = m. Suppose that m, — m and n®| m, — m |
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> 1 for fixed 0 < é < 1. Then

1/2
(2.23)  ku(my) =[V”(“] exp(—nya(m)[1 + 0| m, — m|)].

PROOF. The mean value theorem for real valued functions yields
(224) Imp—m| = |¥i(ra) = ¥YalE) | = |70 = Eall WX N | = |70 = Enl @,

where A, € I, for each n = 1. Thus | 7, — £,| = O(| m,, — m|). By Condition (B),
a version of (2.6) with 6, instead of 7, and the mean value theorem, we obtain

Y (£n) = Vi () (&n — 7n)¥n" (8n)

[for some 6, in I;]

(2.25) Wil(r) Y AAIAS)
38

= | — 7l = 0(|m, — m]).

(@ — &)’

For Theorem 2.1 we obtain

3 [ n /2 1
bima) = || expmaman|1+ o}
_n_]” [ RARAH) J [ (1>]

= ) exp(—ny.(m,))|1 + . 1+0(L

(2.26) ’:27l'¢n (En)fl/z \/T‘rn) n
1

N _2W¢Z(£n)j exp(—nya(ma))[1 + O(| m, — m|)][1 + 0('_)]

_ ( n /2

- 27yl (£,) | exp(—ny,(m,))[1 + O(| m, — m])],

since n’|m, — m| > 1.0
REMARK 2.13. Theorem 2.1 is still true if Condition (C) is replaced by the
weaker condition below:
(C1) There exists > 0 and 0 < k < 1 such that for any 0 < 6 < 5,
inf|;=;Real(G,(t)) = k min[Real(G,(5)), Real(G,(—6))] forall n=1.

Condition (C) was used mainly in the inequalities in relation (2.15). It can be
easily checked that Condition (C1) will provide a similar inequality.

REMARK 2.14. We can omit Condition (C) in Theorem 2.1 and obtain the
same conclusion (2.1) if there exists functions H,(t) satisfying the following two
properties. .

(i) nH,(xn™) — ® as n — o, for some ¥4 < \ < V.
(ii) There exists >0 suchthat 0 <é<n

inf|;|=;Real(G,(t)) = H,(+4) forall n=1.
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The only modification in the proof is in the inequalities (2.15) where we will use
(i) and (ii). We will use this remark in Example 3.2.

PrOOF OF THEOREM 2.2. The proof of this theorem parallels the proof of
Theorem 2.1 and the only major change is that the range of integration is from
—7/h, to w/h, instead of the whole real line.

Let P,(R) = Pr(T, = a, + kh,). Then by definition,

(2.27) $n(2) = Yi-—w Pn(k)exp(z(a, + khy)).
Multiplying both sides by exp(—z(a, + k,h.)) and integrating from

—imw/h, to 7, + in/h, along the imaginary axis, we obtain

(2.28) P,(k,) = -Ill—"l f " on(7, + it)exp(—(7, + it)(a, + k,h,)) dt.
27 J-z/n,

Therefore,
I;/:‘ P.(k,) = — f qS,,(r,, + it)exp(—(7r, + it)nm,) dt
(2.29) . "
[2 ‘0 ( ):I eXp(_n‘Yn(mn))In,
where

ngr () [ [ ) )
I, = » exp(nyn(m,))¢n(r, + it)exp(—(7, + it)nm,) dt

27 »

1/2 /by
[”‘p n(7 ")] f exp(—nG,(t)) dt
27 —n/hp,

and G,(t) = [Yn(1,) + itm, — Yn(7, + it)]. Imitating the proof of Theorem 2.1 we
can show that

(2.30) I,=14 0(1/n).
We thus obtain

vn Pr(% - m,,) _ b

[l
/N 1
=[ w,.)] exp<_n«,,,<m,,»[1+o(;)]. 0

REMARK 2.15. Let m be a real number such that there exists ¢, €I, and
¥h(&,) = m. Under the further assumption that m, — m and n’|m, — m| >1

(2.31)
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for some 0 < 6 < 1 we can show that

vn T,
Ihnl Pr ;—mn>

(2.32) "
[ ‘I/ (En)] exp(_n'Yn(mn))[l + O(I m, — ml)]'

REMARK 2.16. Condition (D’) of Theorem 2.2 can be replaced by a stronger
but more easily verifiable Condition (D1):

(D1) There exists p > 0 such that 1/| h,| = O(n?).

3. Applications. In this section we present two examples to illustrate the
theorems of Section 2. These applications concern local limit theorems of random
variables T, which are not sums of i.i.d. random variables. It is usually condition
(C) that is difficult to verify. These two examples illustrate some techniques used

to do this.
In another paper, Chaganty and Sethuraman (1982), we assume that 7',

satisfies the conditions of the theorems of Section 2, and study the asymptotic
distributions of other random variables whose distributions involve the m.g.f. of
T'.. Such random variables are akin to those that arise in statistical mechanics,
and our asymptotic distributions are Gaussian for a range of a parameter and
become non-Gaussian at a special value of the parameter. This has been inter-
preted to qualitatively describe phase transitions.

EXAMPLE 3.1.  Wilcoxon signed-rank test. Let X, X,, --- be a sequence of
iid. random variables with common absolutely continuous d.f., F, which is
symmetric about the median m. Arrange | X; |, | Xz|, ---, | X,| in increasing
order of magnitude and assign ranks 1, 2, - - -, n. Let

_ |1 if the X; having rank i is positive.
i = .
10 otherwise.

Define
U, = sum of the ranks of positive X;’s
= Yk iz '
The statistic U, is known as the Wilcoxon statistic and is used to test the

hypothesis
Hp:m=0 vs H;:m#0.

Let T, = U,/n. The m.g.f. of T,, $.(2), under the null hypothesis is given by
(3.1) ¢n(2) = 151 [(e¥/™ + 1)/2],

and

(3.2) ¥n(2) = (1/n) Ti- logl(e®™ +1)/2], z € C.
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Here {T,, n = 1} is a sequence of lattice random variables with a, = 0,
h, = 1/n. The range of ¥/, (7), —% < 7 < o, contains the open interval (0, %)
for n = 1. Thus if {m,, n = 1} is a sequence of real numbers contained in a proper
subinterval of (0, ), we can find a constant a; > 0 and 7, € (—a,, a,) such that
¥ (7,) = m, for all n = 1. Let us now check all the conditions of Theorem 2.2.

CONDITION (A). Let a = 2a;, then it is easy to check that there exists 3 > 0
such that | z| < a implies | ¥,(2)| < 8.

CoNDITION (B). The existence of {r,, n = 1} is already discussed above.
Straightforward calculations show that ¢ (7) is bounded below by a positive
number for | 7| < a.

CoNDITION (C’). Let
fa(t) = Real(Gn(t)) = Real(Yn(1,) — Yn(rn + it))

Ly [1 _ 2(1 — cos(kt/n)) ]
T o2n Zi-1 log [exp(kr,/2n) + exp(—k7r,./2n))2|

Note that f,,(0) = 0 for all n. Condition (C’) is verified by showing that f,
satisfies the three assumptions of Lemma 2.7 for all n = n,.

3.3)

(i) Take n, = =/2. Since cosine is decreasing with |¢| in the interval
(—n1, m), fn(t) is increasing with | ¢ | in that interval for all n.

(ii) Since 1/h, = n, all we need to show is that there exist ¢ > 0 and ny = 1
such that
(3.4) inf jociti=nafn(t) > ¢ for n = n,.
We will show this with ¢ = ¢’/4¢e°% where ¢’ =1 — 8/3 7. From (3.3) we have
1 2(1 — cos(kt/n))
—fu(t) = — XF, log|1 —
fall) = 5 2kt °g[ [exp(krn/2n) + exp(—krn/2n)

R [ (1 — cos(kt/n)) J
~ n X [exp(kr,/2n) + exp(—k7,/2n)]?

- 1., (1 — cos(kt/n)) .
(8.5) =- k=1 [——4e" J [since | 7,| < a]
11, kt
= i Vine 2 (';)
_ _i_'_i[sin((n + 1)t/n) + sin(t) _i]
T 4e®  4e° 2n sin(t/n) on|’

Substituting ¢ = ns in (3.5), we can see that (3.4) is verified once we show that
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there exists no = 1 such that

sin((n + 1)s) + sin(ns)
2n sin(s)

(3.6) SUPajon=<(s|=x <1-—¢" forall n=n,

There exists n, such that n sin(w/2n) > 37 /8 for all n = n,. Thus for n = n,

sin((n + 1)s) + sin(ns)

SUPx/2n=<|s|<x—n/2n

2n sin(s)
G 1 1 8
= SUPx/2n=|s|<w—n/2n . = . =—=1-¢"
n sin(s) n sin(w/2n) ~ 3w
Now,

sin((n + 1)s) + sin(ns)
2n sin(s)

SUPr—x/2n<|s|=n

sin((n + 1) (7 — 0)) + sin(n(x — 9))
2n sin(w — 6)

= SUPo<|0|=x/2n

sin((n + 1)8) — sin(nd)
2n sin(6)

(3.8) = SUPo=<|6|==/2n

cos((2n + 1)60/2)sin(6/2)
n sin(6)

= SUPo<|0|=<x/2n

’

which goes to 0 as n — . Thus there exists n, such that n = n, implies that the
r.h.s. of (3.8) is less than 1 — ¢’. Then ny = max(n,, n,) satisfies (3.6) and the
proof is complete.

(iii) Let ¢ be as in (ii). We want to show that there exists n < 7/2 such that
foralln=1
(3.9) SUPo<|¢<afn(t) < e
Since log(1 — x) > —x/(1 — x) for 0 < x < 1, we get

D G _ 2(1 — cos(kt/n))
~h(t) = 2n Li= log[l [exp(kT./2n) + exp(—kr,./2n)]2]

1., 2(1 — cos(kt/n))
(3.10) = “on L [[exp(k1,,/2n) + exp(—kr,/2n)] — 2(1 — cos(kt/n))]

S 2i S [(1 - cos(kt/n))]
n (1 + cos(kt/n))

since e* + e™* = 2. Let 6 = 4¢/(1 + 2¢). Choose 7 such that » < 7/2 and cos(n) >
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1 — 4. From (3.10) it follows that, for | t| <1,

_ 1 g, [ cos(kt/n) o _
f(t) = 5 Xl [(1 + cos(kt/n))] =2@-9)

This establishes (3.9).

€.

CoNDITION (D’). Since 1/h, = n, this condition is trivially satisfied for
p=1

Thus from Theorem 2.2 we can get an asymptotic expression for Pr(T, =
nmy,). In this example T, is the sum of n independent but not identically
distributed random variables. O

ExXAMPLE 3.2. Kendall’s distribution-free test for independence. Let
(X1, Y1), (X5, Yy), -+, (X,, Y,) have a common bivariate distribution with
continuous c.d.f., F(x, y), and marginals G(x) and H(y). We wish to test the
hypothesis Hy: F(x, y) = G(x)H(y) for all x, y.

Define

sn(x) = J1if >0
gn -1 if x<0.

Let
Vi=sgn(Xi — X;j)sgn(Y; - Y;), 1=si<j=n
Let '
Qn = Yi=icj=n (1 — V;;)/2 and W, =1 - 4Q,/(n(n — 1)).

Suppose the ranks of Y’s are arranged in the natural order 1, 2, - - -, n and let
the corresponding ranks of X’s be x;, x2, ---, x,. @, measures the extent of
departure of the x’s from the natural order (1, 2, 3, ---, n) by counting the
number of inversions among them. The statistic W, was proposed by Kendall
(1938) as a nonparametric test statistic for testing the null hypothesis H,.

Let T, = nW, = n — 4Q,./(n — 1). It is clear that T, is a lattice random
variable with a, = n and h, = 4/(n — 1). The m.g.f. of T}, under the assumption
of independence of X and Y is given by (Kendall and Stuart, 1979, pages 505—
506),

Pl o—tkz/(n=1) _ |
(8.11) on(z) = — 12 [Wi—l]
Thus
1 1 1 — g~4ke/(n=1)
‘ (2) =2—=1log n! + = Y2, log| ————
(312) ¢ (Z) Z n og n n Zk 1 Og[l _ e-—4z/(n—1)

=z- rlz Siy [log k= log(1l — e~#*/"D) 4 log(1 — e~**/*™D)].

The range of ¥, (r) for —0 < 7 < o, is the interval (=1, 1) and the random
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variable T, /n takes values in this interval. Thus if {m,, n = 1} is a sequence of
real numbers contained in (—M, M), 0 < M < 1, then for sufficiently large a;,
we can find {r,, n = 1} such that ¥, (7,) = m, with | 7,| < a;. For simplicity let
us choose m,, = 0. Then 7, = 0 for all n = 1 and we will verify the conditions of
the Theorem 2.2. The verification for general sequence m,, is similar but a little

more tedious.

CONDITION (A). Let a = 2a,. It follows from (3.12) that
|z] <a implies [¢,(2)| <2[1 + a + log(1 + e*®) + log(4a)] = B.

CoNDITION (B). By Remark 2.11 we only need to verify that ¢/ (r,) = « for
n = 2. Since 7, = 0 we have

#(0) = Var(T,)/n = 2(2n + 5)/9(n — 1)

=a forall n=2, with a=%.

CONDITION (C’). Let
(3.13) H,(t) = n*'Real[G.«((n* — 1)t/(n — 1))],

where u = 17/18. Let A = 7/18. Note that
(3.14) <A< Wh<u<l 0<3u—2\-—2=Ys.

We will now verify conditions (i) and (ii) of Remark (2.14) and thus establish
Condition (C’). Since T, is lattice valued with span h, = 4/(n — 1), we need only
verify

. (3.15) nH,(xn™) —
and that there exists 7 > 0 such that for 0 < § <1,
(3.16) infs<¢)<(n-1)x/aReal(Gn(t)) = H,(£4).

Using Lemma 2.10, we find that

+nN and*2A-2
+ > ’
n—1 8

nH,(xn™) = n"Real[G,,»((n" -1)

which goes to ® as n — ®, in view of (3.14). This establishes (3.15). Let n < 7 /4
and 0 < § < 9. Since 7, =0,

sin(2kt/(n — 1)) }
k sin(2t/(n — 1))

:ll/n

Real(G,.(t)) = —Real(y,(it)) = —% k=1 log [

3.17)
* sin(2kt/(n — 1))

k sin(2t/(n — 1))

= —X k=1 log [



LARGE DEVIATION LOCAL LIMIT THEOREMS 113

Thus
Infs(n—1)1-e<it)=(n-1)x/4 Real (G4 (2))
= inf&(n—l)"‘sltl51/4Real(Gn((n - 1)t))

sin 2kt
k sin2t
1

N
1/n
= —log[ [T { k sin(26(n — 1)™) ] '

Using the arithmetic-geometric mean inequality and the fact | sin x| > | x|/2
for small values of | x |, we get

= infa(n—n-ﬂsmsf/«t [—log [ | §

. (n=—D*_ 1
lnfé(n—l)"“sltl5(n—l)1r/4Real(Gn(t)) = -2 log[ o0n 2k=1 E]
(3.18)
log n
2 log [25n1"‘]’

which goes to . We will now use the easily established facts that log(| sin ¢/ t])
~ —t?/6 as |t| — 0 in (3.19) and that |sin(ks)/(k sin s)| is less than 1 and
decreasing for s in [0, ¢] if k ¢ < 7 to obtain the inequality (3.20). Recall

sin(2kd/(n—1)) ]
k sin(26/n-1))

|
Hn(ia) = _; 22=1 10g [

(3.19)
R 48
T Lk [6(n—1)2 e(n—nJ_O(n” ) e
Also,
. ) — sin(2ké/(n—1))
620) infs<¢<s(n-1-+Real (G, (t)) = - Yh=1 log [ k sin(20/(n=1)) ]

= H,(%)).
Relations (3.18), (3.19) and (3.20) establish (3.16).
This completes the verification of condition (C’).

ConprTtiON (D1). Since h, = 4(n — 1), clearly 1/h, = O(n?) for p = 1. Thus
we have verified all the conditions of Theorem 2.2. Since E(T,) = 0 = m,, b,
(2.31) we get '

Tn _ _ 6 .]'_ —> 00
(3‘?1) Pr(; B 0) ~ Van@n+ 5)(n - 1) [1 * O(")J wn

through the subsequence of {n} for which 0 is the range of T, /n.0
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