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A SAMPLE PATH PROOF OF THE DUALITY FOR
STOCHASTICALLY MONOTONE MARKOV PROCESSES

By PETER CLIFFORD! AND AIDAN SUDBURY
Oxford University and Monash University

This paper provides an explanation of Siegmund’s duality for absorbing
and reflecting Markov processes by means of a graphical representation of
the type used in the analysis of infinite particle systems. It is shown that
coupled realisations of a Markov process conditioned to start at each of the
points of the state space can be generated on the same probability space in
such a way that their ordering is preserved. Using the same probability space
a specific construction is then given for the dual process.

Introduction. Let Q be a set and let = be a set of subsets of Q. Let
{£(t), t € T} and {£(t), t € T} be two set valued Markov processes with state
space Z where T is either discrete or continuous time (i.e., T = {0, h, 2h, - - -}
with h > 0 or T = [0, «)). We write {£4(¢), t € T} to depote the process £
conditioned so that £(0) = A with a similar notation for £. We say (see for
example Harris, 1978) that £ is a dual of £ if and only if

1) P{ta(t) N B # ¢} = P{ép(t) N A # ¢}

for all A, B € £, t € T where ¢ is the empty set. Our first observation is that the
duality studied by Siegmund (1976) is the same as (1).

Let X = {X(t): t € T} be a Markov process with state space S C [0, «]. In
the sense of Siegmund, the process X is said to have a dual process Y =
{Y(t): t € T} if and only if Y is a Markov process such that

1) PX@)zy|X(0)=x)=P(Y(t) =x|Y(0) =)

forall0 =x,y<owandte T.

To relate (1) to (1) let £4(t) = [0, X, (t)] where A = [0, x] and X, denotes the
process X conditioned so that X(0) = x. Similarly let £5(t) = [Y,(t), ] where
B =y, ] and Y, denotes the process Y conditioned so that Y(0) = y. Evidently,

[0, X:()] N [y, ] # ¢ & X.(t) = y
and
[09 x] N [Yy(t)9 °°] # oo Yy(t) =X

which proves the equivalence of (1) and (1”).
Siegmund (1976) showed that if  (when attainable) is an absorbing state for
X then a necessary and sufficient condition for X to have a dual process is that
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X should be right continuous i.e. the left hand side of (1’) should be right
continuous in x for all y, ¢ and that X should be stochastically monotone (Daley,
1968) i.e. for some a > 0 (a = h, in discrete time)

@) P(X(t) =y | X(0) = x) is nondecreasingin x =0

foreach 0=y<ow, 0<t=<a.

Right continuity is obviously essential if the right hand side of (1’) is to be a
distribution function for each y. We also assume that for a process which is right
continuous and stochastically monotone the definition of (1’) has been extended
to all x = 0 by the convention that (1’) increases only when x € S.

Duality in the sense of Siegmund has been implicit in earlier work, see for
example Feller (1966), and Karlin (1957) and Van Doorn (1980). In particular
Levy (1948) exploits the duality for diffusion processes and Lindley (1952) uses
the duality for random walks.

The identification and exploitation of dual set valued Markov processes is a
fundamental technique in the study of infinite particle systems. For a certain
class of such processes, properties of the Markov process defined on the state
space of infinite subsets of lattice points can be deduced by studying in reverse
time a dual process whose state space is that of finite subsets. For example
properties of the invasion process or voter model can be investigated via a dual
process of coalescing random walks (Clifford and Sudbury, 1973, Holley and
Liggett, 1975). For such processes a simple graphical representation can be used
to demonstrate the connection between the primary process and its dual (Clifford
and Sudbury, 1973, Harris, 1978).

The purpose of the present paper is to provide an explanation of the Siegmund
duality by means of a graphical representation of the type used in the analysis
of infinite particle systems. We do this by associating with every stochastically
monotone Markov process, a space time diagram or percolation substructure
(Harris, 1978) which prescribes coupled realisations of the Markov processes
(X,, x € S) in a way that preserves order. With this representation it is possible
to identify sample paths of the dual process on the same space-time diagram and
thereby establish the pointwise identity of the events in (1’). We treat the case
of countable state space and continuous time in Section 1 since in this case the
graphical representation is particularly easy to visualise. The general case is
treated in Section 2.

1. Countable state space, continuous time. Suppose X is a Markov

process in continuous time with countable state space S = {0, 1, 2, ---} and
transition intensities g;;, { # j where
(3) i = lim,_or ' P(X(t) = j | X(0) = i).

We assume Y« g;; < o for all { € S. If X is stochastically monotone then from
(2) we have

(4) Trzj Gnk = Dkejqie 0=h=i<j
V=g Qe = Dr=g Gt 0 < g<h =i.
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We wish to construct a probability space on which it is possible simultaneously
to couple realisations of the conditional processes {X(¢), t = 0 | X(0) = i}, whilst
preserving their order. We denote each such process by X; = {X;(t), t = 0} and
write X = {X(t), t = 0} = {Xo(t), Xu(¢), ---, t = 0}.

At time ¢t = 0, X equals {0, 1, 2, - - -}, that is, each of the processes is at its
initial value. We now define a “flight” f to be an order preserving mapping from
S into S. An “upflight” has the additional property that f(i) =i, Vi € S and a
“downflight” is such that f (i) = i, V i € S. A flight can be represented graphically
as a set of arrows, a single arrow originating from each of the points in S and
each arrow leading to some point in S. We visualise the process X as the
development of the initial configuration subject to the effect of randomly chosen
flights. Each flight determines the new position of each of the coupled processes
{Xo, X1, - - -} whilst preserving the order. The problem is, therefore, to choose a
distribution for the flights so that marginally each of the.component processes
X; has the distribution X | X(0) =i,i € S.

For each i € S define the collection of numbers {a:, bi} as follows:

i = X jsk Qijs  bir = X j=k Qij; k>1i
(5) @10 = —q10, bio = 0; iz1

i = —Xjs<k Qijy  bie = =2 j<k Qij i>1, 0<k<i
and for notational convenience let ap—; = 0. For each real number w # 0 define
a flight £, by

©) fo@) =k if o € [aw, ba), kE#1

=i if w €& [aii-1, bii+1)

For notational convenience we define f, to be the identity function. Notice that
if h < i then by, < by, for k > i by (4) and that for k < i we have ax. < a;. To
check that £, is a flight, we consider the cases w > 0 and w <0.

LEMMA. If w> 0, f, is an upflight and if v <0, f,, is a downflight.

PROOF. Suppose w > 0 then either w = b;;4; in which case f,(i) = i or
w < b, ;+1 in which case f, (i) = k and » € [ax, bx) for some k > i. Let j be less
than i + 1 then either w = b;;+; in which case w = b;;+1 = aj; by (4) and (5),
which implies that fw(]) = i, orwe€ [a,-k, b;.) so that w = ay = b,"k+1 Z0j r+1 = Qjr
which implies £, (j) < k. This concludes the proof for the case w > 0 and a similar
argument gives the case of w < 0.

Having described the class of flights to be used, we turn now to the probability
space and here it suffices to consider &2 a Poisson process on R X T. The only
modification we make is that each of the random points (w, t) € £ is labelled
with f, the flight associated with the first coordinate of the point. We denote
this marked point process by (%, f). We are now in a position to construct the
process X.

THEOREM 1. Let X be a right continuous, stochastically monotone Markov
process for which © (when attainable) is an absorbing state then there exists a
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substructure (2, f) prescribing the evolution of an infinite dimensional process
= {X,, x € S} such that

i) X, (¢), teT=4X(t), teT|X(0)=x
(ii) X.(t) = X,(t), t€T forall x<y; x,y€ES.

PROOF. We show first that (£, f) provides a construction for a single
coordinate X; of X. Let X;(0) = i and consider the Poisson process  restricted
to the set [a;, b;) X T where a;, b; are any numbers such that a; < a;;—1 and b; =
bii+1. In this set there will be a point (W, t;) with the smallest time coordinate
t: and furthermore from elementary properties of the Poisson process, ¢, has an
exponential distribution with parameter ¢; = b; — a; and W is independently and
uniformly distributed on the interval [a;, b;). We recall that the point (W, ¢,) is
marked with the flight fw,. We now define X;(t) =i, 0 < t < t; and X;(t;) =
fw,(i). The construction of X; is continued from the new position in a similar
manner, that is, if X;(¢;) = k, the process is considered on a set [a, bs) X (¢, )
and the first point in this restricted process is denoted by (Wx, t,). Now let X;(t)
=k, t1 =t <t and Xi(tz) = fw,(k). Because of the homogeneity of . it only
remains to show that

(7) TP(Xi(r) = k| Xi(0) = i) > qu, i#k as 70

i.e. that the constructed process has the same transition intensities as X. This
follows directly since in the interval [a;, b;) points fall at an intensity of ¢; and a
point uniformly distributed on [a;, b;) has probability (b — ax)/c; of falling in
the interval [ax, bi). This means that the intensity with which points fall in
[air, bix) is ¢; X (by — ai)/c; = qix by (5).

The case in which ¥ jx; g;; < ¢, i € S (or equivalently, a < a;;—;, b;;+; < b with
¢ = b — a) has a particularly simple representation. The process # need only be
considered in [a, b) X T and is equivalent to a sequence (W}, t;),j=1,2, ---,
where the inter-arrival times for ¢; are independent and exponentially distributed
with mean ¢™" and the W; are independently and uniformly distributed on [a, b).
The successive values of X; are then given by

(8) Xl(tn) = fW,,(Xt(t —1)), n= 1’ 2, Tty b= 09 XI(O) =1

Turning now to the construction of X we wish to show that we can consistently
define the process for all finite subsets of coordinates. Let A C S be a finite set
of elements of S, and let X, = {X;, i € A}. Let

9) a1 < mines(@ii-1), B1 = maxiea (biiv1).

As before we consider & restricted to [a;, 8;) X T and for such a process there
is a first point (Wi, ¢;). We then apply the flight fw, simultaneously to each of
the coordinates X;, i € A. This process has a new set of coordinates X;(t;) =
fw,(X:(0)), i € A in the same order as the original, since a flight is order preserving.

Notice that each of the coordinates is being constructed in precisely the same
manner as that used to construct a single coordinate, although, of course, points
in & falling outside [a;;-1, b;i+1) X T will have no effect on X; at the first jump



562 CLIFFORD AND SUDBURY

of X4. Suppose that the effect of fw, is to move X4 to {Xi(t1), i € A} and let
A, = {k: X;(t;) = k, i € A}, then we define a3, 82 to be any numbers such that
az < a;;—; and b; ;41 < B, for all i € A;. We then restrict attention to points of &
falling in [ag, B2) X (t1, ) and denote the first such point by (W, t;). This
defines the second jump of the process X, and subsequent jumps are defined in
a similar manner. It should be noted that the numbers («;, 8;) have not been
uniquely defined and that the effect of increasing the number of elements in A
is to widen the interval (ay, ;). If we can show that the evolution of X, is
independent of («;, 8;) subject only to bounds of the type in (9), then we will
have shown that X, is consistently defined as regards the application of the
Kolmogorov consistency theorem. But, points of & falling outside [min;caa;;-1,
max;e4b;;+1) X T do not effect the coordinates {X;, i € A} so that our proof is
complete.

Again in the uniformly bounded case, in which }};x; q;; < ¢, V i € S the
representation is much simpler. As before let ¢ < a;;—1, bi41 < b, i € S and
consider & restricted to [a, b) X T. The equivalent process (W;, ¢;),j=1,2, ---
then gives simultaneous representations of the processes X; by the equation (8)
foralli € S.

The Dual Process. Given the process X we can construct a set valued process
{na(t), t € T} by considering,

14(t) = {Xa(8): x € A},

the set of coordinates of an original subset A of X for any A C S. This is a process
of coalescing random walks. Notice that, by construction, if A = [0, x] then
na(t) = [0, X,(t)] since the process X is order preserving. The dual is an “in-
vasion process” started from an arbitrary set of infected sites. However to ex-
plain the Siegmund duality we need only start from sets of the form [y, «]. We
will show that the set of infected sites after time ¢ is always a semi-infinite
interval [Y (), ] where Y is a Markov process. Effectively, Y represents the
front of the invasion and its path is given by tracing the arrows of the flights of
(2, f) in reverse direction and reverse time. Any arrow which has its head in the
infected region will provoke infection at the site from which it originates. Arrows
whose heads are not in the infected region do not. In Figure 1 the invasion front
jumps from y, to y;.

Formally, we construct the dual process Y(t), ¢t = 0 as follows: first set
Y (0) = y for some fixed y € S. Then, since the intensity for entering [0, y — 1]
from 1 is Y k<y Gnx Where Y <y @ue < X i<y Gy, 1 >y, We consider & on (a;, by) X
(0, t), where b; = max;<,b;;+1 and a; = min;<,a;;—;. Let (Vy, t — s1) be the last

Y

39 .
FiG. 1.
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point in (ai, b;) X (0, ¢) then we define Y(t')=y,0<t’ <s;,and
(10) Y(s:) = min{i: Y(0) = fv,(0)}.

If Y(s;) = j then for the next jump we consider & restricted to (ag, by) X
(0, t — s;) with @z = min;<;a;;—1, by = max;<;b;;+1. Let (V,, t — s;) be the last
point in this process then we define Y(t’) = Y(s;), s1 = t’ <s,, and Y(ss) =
min{i: Y(s;) < fv,(i)}, and so on for successive jumps.

For the uniformly bounded case, there is again simplification. Let 0 < ¢; <
«++ <ty < tu+1 be the times of successive jumps for the X process then

Y(s)=y, 0=ss<t-—t,
and
Y(s) = minfi: Y(t — &) < fw,(0)}, t —te<s<t— tp,

(11)
k=1,---,n, t,=0.

Having constructed the processes X and Y on the same substructure (%, f)
we can prove the following theorem.

THEOREM 2. If X is a right continuous stochastically monotone Markov process
for which  (when attainable) is an absorbing state, there is a probability space on
which ‘

X)) zyes Y,(t)=x as.
for all x, y, t € [0, ©) where Y is the dual of X in the sense of Siegmund (1976).

We construct X and Y on the same substructure (%, f). We observe that if,
by time t, the infection starting from [y, ] has reached some point in [0, x],
x € S then starting from x we have X, (t) € [y, «]. Similarly if X,(t) € [y, «]
then since the processes {X;} do not cross each other Y(t) < x, which concludes
the proof.

We now calculate the intensities for the Y process (it is Markov by construction
(11)). The transition k — i occurs when a flight f, has the effect of sending i into
[k, ©) and i — 1 into [0, & — 1] when i # 0. In other words we require w < b;, and
@ = @141 for i # 0 and w < box and w = 0 for i = 0, using the definition of £, in
(6). Equivalently w € [a;—1 -1, bix), i # 0 or w € [0, bgz), i = 0 and since & is
homogeneous the intensity at which points in the process arrive in this interval
is given by its length namely from (5)

Yizk Qij — Djzk Qi-1,j 1 # 0
(12) .
Y=k Qoj 1=0
which is the formula (12) given by Siegmund.
Notice that it is not essential to assume that « is an absorbing state for X.
However, when X can return from o instantaneously then Y must be able to
make corresponding jumps to .
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2. The general case. For discrete time and countable space the construc-
tion is essentially that of the uniformly bounded case in continuous time. So that
if

pij=PX(Mh)=j|X0) =i ij€E€S

then we define for each i a partition of the interval (0, 1] which depends on the
pairs of numbers {a;, bix} where

(13) @i = X j>k Pijy b = Dj=x Dij, k=0.
We define a flight £, for all w € (0, 1] by
fo@) =k if w € [aw, br)
=0 if w>by forall E=0.

Note that as before from the stochastic monotonicity requirement we have
bjr < by and a;x < aw, k = 0 whenever j < i. It is straightforward to verify that
such a function f, is a flight but here there is no requirement that the flight be
either an upflight or a downflight. The construction of the process X is by (8)
and the process Y is by (11) where the times are now discrete and the W’s are
uniformly and independently distributed on (0, 1].

For more general Markov processes on [0, ©] we define

(14) G(y|x) =P(Xh) zy|X(0) =x)
so that by (2) we have

(15) G(y|x) =2 G(y|2) whenever x = z.
Now let

(16) G '(u | x) = sup.fz: u < G(z | x)}

where 0 < u < 1. From (15) it follows that
amn G'(u|x) =G '(u|z2) whenever x <z

Furthermore, if U is uniformly distributed on [0, 1] then G™*(U | x) has the same
distribution as X (h) conditional on X(0) = x. Let Uy, U,, - -- be a sequence of
independent random variables uniformly distributed on [0, 1] then the continuum
of coupled process X is defined by

X.(0) =x
X.(nh) = G'(U, | X.((n — 1)h))

n=1,2, ..., x €0, »). Because of (17) we have X,(t) < X,(t), V t € T whenever
x < y; that is, the processes preserve their ordering. Thus, the coupled processes
are jointly generated by the single sequence of independent uniform random
variables U, U,, - - - . The dual process is then generated by the same sequence,
as follows. Consider a fixed time t, € T say t, = mh and define the process

(18)
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{Y(@),t=0,h, ..., mh}
Y(0) =y
(19) Y(h) = infies{x: y <= G (Up | x)}
Y(nh) = infiesix: Yip-vm < G (Up-psa | %)}, n=1, ---, m.

Notice that if Y((n — 1)) < G™(Un-n+1 | 0) the process Y is absorbed into zero.
It is also worth noting that by the construction Y is Markov. The duality is
explained now, since [Y(h), ®] contains the set of points which the X process
would send into [y, ®] when U, is taken account of. Similarly [Y(mh), ]
contains the set of points which the X process would send in [y, ] when U,
Un-1, - -+, Uz, U have been used. Evidently x is mapped into [y, «] after m
steps if and only if Y originates from some point in [y, o]. Here we have used
the right continuity in x of G™(u | x) which follows from the right continuity of
the left hand side of (1’).

For arbitrary state space and continuous time for any fixed time ¢ we merely
choose h so that h < a and t = mh where m is integer; that is, we consider the
imbedded Markov process at discrete points of time where the interval size h is
chosen to maintain stochastic monotonicity.
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