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AN UPPER BOUND ON THE CRITICAL PERCOLATION
PROBABILITY FOR THE THREE-DIMENSIONAL CUBIC
LATTICE

By M. CamMpANINO' AND L. Russo?

Princeton University

We prove that the critical probability for site percolation on the three-
dimensional cubic lattice satisfies the inequality p® < %. An application to
the three-dimensional Ising model is given.

1. Introduction. Considerable progress has been obtained in the last few
years on the problem of two-dimensional percolation. For the case of Bernoulli
measures most of the recent results are contained in [8]. Percolation has also
been studied as a tool for the understanding of the two-dimensional Ising model
([9], [1], [5]) and other two-dimensional models in statistical mechanics. Very
few rigorous results, on the other hand, have been obtained for more than two
dimensions (see [2]). )

The aim of this paper is a rigorous proof of the bound p® < % for the critical
percolation probability in the site problem on the three-dimensional cubic lattice.
This result was expected on the basis of numerical investigations, but we think
it is interesting for the following reasons:

1. This bound proves that at least in a small interval surrounding % there
is, for d = 3, coexistence of infinite clusters both of “occupied” and “empty” sites.
This phenomenon, which is an essential qualitative difference between two-
dimensional and higher dimensional percolation, was a long-standing conjecture
since Harris proved his Theorem ([4]).

2. Our result can be easily extended to the three-dimensional Ising model in
order to prove that at low external field and large temperature there is coexistence
of infinite clusters of both types. At low external field, coexistence of infinite
clusters of both types is expected to persist even below the critical temperature
(see for example [3]). It is believed that possible extensions of this result in the
region h = 0, 8 > £., could be useful to understand the “roughening transition”
([2], [3D.

Our proof is based on two points. The first point, exposed in Section 2, is
essentially a simple remark concerning the comparison of percolation on a given
graph £ and on a graph obtained from £ by identification of sites. This remark,
in particular, can be applied to the comparison between the triangular planar
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graph .9 (for which the critical percolation probability is known ([8]) to be %)
and the three-dimensional cubic graph & and it easily yields the weak inequality
p& < 1,

In order to prove the strict inequality p® < % we use a technique recently
devised by H. Kesten ([8], see in particular Chapter 10) which can be successfully
used in many cases in the proof of strict inequalities between the critical
percolation probabilities of pairs of planar graphs. Unfortunately Kesten’s
method (as almost all of the techniques so far developed) seems to be essentially
confined to planar graphs. In our particular case we can overcome this difficulty
by introducing (in Section 3) a third graph .’ (nonplanar but still essentially
two-dimensional) chosen in such a way that the method of Section 2 is still
applicable to the pair (9, &) and Kesten’s technique can be extended to the
pair (97, 9'). This last point is exposed in Section 4. Section 5 contains the
extension to the three-dimensional Ising model.

2. Notation, definitions and proof of the inequality p® < %. Given a
measurable space €, i.e. a set endowed with a ¢-algebra, we shall denote by M,(Q)
the set of the probability measures on Q. For u € M;(Q) E,¢ will denote the
expectation of the random variable ¢ with respect to u. Given two measurable
spaces @; and Q, and a measurable map x: Q; — Q;, x* will denote the map x *:
M, (Q,) - M;(Q) defined by (x*u)(A) = u(x~1(A)) for every measurable A C Q,.

Let A be a finite or countable set. We shall consider the set Q, = {—1, 1}* as a
configuration space on A. For w € Q, and x € A, w, will denote the value taken
by w at the site x of A. If A; C A and w € Q,, w|, is the configuration of Q,,
obtained by restricting w to A;. Given a finite subset C of A, the positive cylinder
set corresponding to C is defined by

(2.1) E,C)={w€E QH|VxEC w, =1}

Q, will always be considered as a measurable space with the ¢-algebra %,
generated by the sets E,(C), as C varies among the finite subsets of A. If A; C A
the sub s-algebra of %, generated by the sets E,(C) with C C A, will be denoted
by % . The Bernoulli probability measure u¥ € M;(2,) is such that the random
variables wy, X € A, are independent and identically distributed w.r.t. u{ and
p (E+({x})) = p, Vx € A.

We shall usually consider A as the support of some graph Z = (A, A), where
A is a family of subsets of A, each containing two elements. A defines a notion
of connection between points of A: two points x, y € A, x # y, are connected if
{x, ¥} € A. Given a subset A of A the internal and external boundaries of A are
defined by

(2.2) 0'A = {x € A| 3y € A\A such that {x, y} € A}, 9°A = §'(A\A).

A chain ¢ = (x%), is a finite or infinite sequence of points of A with

= {0, - -+, n} or I = N such that x“» and x) are connected for i € I\{0}. The
support of ¢ is the set supp(c) = U,e; {x?}. The chain c is called self-avoiding if
x® # x9 for i # j. Given w € Q, and a chain ¢, we say that ¢ is a +chain
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(respectively a —chain) in w if Vx € supp(c) w, = 1 (resp. w, = —1). The union
W.(x) (resp. W-(x)) of the supports of all the +chains (resp. —chains) starting
from x in the configuration w is called the +cluster (resp. the —cluster) to which
x belongs in the configuration w. W, (x) and W_(x) are sets depending on w € Q,.
They are empty if w, = —1, w, = 1 respectively. It is clear that in the definition
of W.(x) and W_(x) it is enough to consider self-avoiding chains.

We define now some measures which can be thought of as Bernoulli measures
“with identification of some points”. Theorem 2.1 will allow us to compare the
probabilities of some increasing events evaluated with two such measures. Let &
be a partition of A, 7 be the canonical map =: A —» F, w(x) = Fif x € F and x
be the map x: Qs — D, (xw)x = Wr(x). We define /-t,(,',\} € M,(Q,) by

: : / P :( / p
(A)

In the following we shall omit the superscript A of uf¥, u;'% when no confusion
can arise. #(A) will denote the number of elements belonging to the set A.
We have the following

THEOREM 2.1. Let A be finite or countable, ¥, F' two partitions of A with &’
finer than F. Let  be a finite family of finite subsets of A such that

(2.4) VFes, VCEZ thesetFN C intersects at most one element of 7'.

Then

(2.5) 1% (Ucer E+(C) = ui-(Uces E+(C)).
If#(FNC)<1VF€E %,VC EE, then

(2.6) 1 (Ucer E+(C)) = pi(Ucee E+(C)).

PROOF. It is clear that, even if A is infinite, the only relevant set is the finite
set A’ = Uceg C with the partitions induced in it by # and &”’. So we can assume
that A is finite. We can also assume that .’ is obtained from # by splitting
some element F € % into two nonempty subsets, say F; and F,, because any
partition of A finer than .# can be obtained by iterating this procedure a finite
number of times and condition (2.4) is preserved at each step.

Let us put
@2.7) A = Uceg EL(C), Ao = Uces;cnirury=e E+(C),
' A; = Uceg;cnrmo E+(C) for i=1,2.

A is the union of Ay, A; and A,. So we have
(2 8) ﬂp,y(A) = I-‘p,.?’(AO) + I-‘p,.?(Al) +I‘p,.7(A2)
' — pps(Ao N A1) — pp5(Ao N Ag) — pp5((A1 N A2)\Ap)

and a similar expression for u, s/(A). The definition of u, s and u, 5~ implies, as
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it is easy to see, that
(2.9) tp,7(E) = pp5(E) VE € BNp U BN

It is clear that A, € Qf{‘\)ﬁ U @f{‘\)ﬁ. On the other hand the condition (2.4)
implies that A;, Ao N A; € @X\’Fz and A;, AyN A, € %’f\"\),-l. Hence the first five
terms on the r.h.s. of equation (2.8) are unchanged if we replace the measure u, s
with u, 5. Let us consider the last term on the r.h.s. of (2.8). The following
formulae are a straightforward consequence of the definition of u, s and g, s

(2.10) Hp,7((A1 N A2)\Ao) = pup,s((A1 N A\Ao | G),
(2.11) po.s (A1 N A\Ag) = p2up (A1 N A\Ao| G),
where G = {w € Q, | Vx € F, », = 1}. (2.10) and (2.11) imply that
(2.12) p,5((A1 N A)\Ag) = pp o (A1 N A\A).

So that (2.5) is proved. (2.6) is a particular case of (2.5) when %’ is the total
partition of A i.e. #(F) = 1, VF € #”. Indeed in this case u'}, = p{V.0

We exhibit now a first easy application of Theorem 2.1, by obtaining the weak
inequality p® < 1 for the critical probability for site percolation on the three-
dimensional cubic graph Z. £ is defined by introducing in Z® the following notion
of connection: x = (x;, x2, x3) and y = (1, ys, y3) are said to be connected if

(2.13) lx —y| =34 |x— ¥ =1

The triangular graph 9~ can be defined by introducing in Z? the following notion
of connection: x = (x;, x2) and y = (1, y.) are said to be connected if

either |x—y|=|xi— 3|+ |xx— 3] =1
2.14) 1 1 2 2

or X1 — Y1=%X2 — Yy = 1.
We can think of .7~ as obtained from & via the map

¢: Z° > Z%,  p(x1, X2, x3) = (%1 — X3, Xz — X3).

Indeed it is easy to see that two points x, y € Z? satisfy (2.14) if and only if there
are x’, y' € Z® such that x = ¢(x’), y = #(y’) and |x’ — y’| = 1, i.e. x’ and y’
are connected in .

In the future we shall exploit the following easy lemma:

LEMMA 2.2. For every self-avoiding chain ¢ in J with the origin of Z? as
initial point there exists a unique self-avoiding chain d(c) in & with the origin of
Z?® as initial point such that:

(2.15) #(supp(d(c))) = supp(c).
Furthermore ¢ | quppe)) is a bijection beween supp(d(c)) and supp(c).

PROOF. If ¢ = (), then the chain d(c) = (x’®);; is obtained by induction



482 CAMPANINO AND RUSSO

by putting x’® = (0, 0, 0) and
X/ = (x{(i) +1, xé(“, xé(“) if xU+D = (xii) + 1, xz)’
x/(i+1) = (x{(i)’ xé“" + 1’ xé(i)) if x(i+1) = (xii)’ xg) + 1)

and
x/D = (219, 259, 24O F 1) if 2@V = (@ £ 1, 2§ £ 1).

It is easy to check that d(c) has all the required properties. O
Now we are in the condition to prove the following:

THEOREM 2.3. Let p® be the critical probability for site percolation on the
cubic lattice:

(2.16) p® = inf{p | p,(#H(W.(0)) = =) > 0}.
Then
(2.17) p® < W,

PRrROOF. (2.17) is equivalent to the fact that for any p > % the u,-probability
that the origin is connected to the internal boundary of the cube A’(L) =
[-L, LP by a +chain is bounded from below by a strictly positive constant a
uniformly in L. It is known (see [8] Chapter 3, Section 3, Application i) that the
critical probability for site percolation on the triangular lattice 9 is Y. Let us
consider the square A(2L) = [-2L, 2L)? in Z? and let %,;, be the family of all the
self-avoiding chains of .7~ in A(2L) starting from the origin and ending on 9°A(2L).
Let @51, be the family of all the chains d(c) for ¢ € &1, where d is the map
constructed in Lemma 2.2. It is easy to see that each chain of #3;, connects the
origin with 8°A’(L), since it must end either on 8°A’(L) or on Z*\A’(L).

Let & be the partition of Z° induced by the map ¢: Z* — Z? (two points of
Z? belong to the same element of & iff their image under ¢ is equal). The
definition of %%, and Lemma 2.2 imply that if ¢ € %3, and F € & then
#(supp(c) N F) = 1 so that by Theorem 2.1:

(2.18) 1 (Useery, E+(supp(c))) = u(z Y(Ucesy, E-+(supp(c))).
On the other hand, by the definitions of the partition .# and of &5,
(2.19) £ (Ueesy, E+(supp(c))) = p(Uses,, E+(supp(c))) = a

for some positive a independent of L, since the critical probability on 7 is Y.
But if there is a +chain of %3, then the origin is connected by a +chain to
8'A’(L), so that (2.18) and (2.19) imply the Theorem. O

3. Percolation in some intermediate graphs between 9 and £. We
consider the graph 9’ defined by introducing on the set K = Z2 X {0, 1} the
following notion of connection: x = (x,, x2, ¢) and y = (y1, y2, ¢’) are connected
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iff
3.1) either |x; — y| + |x2— y2|=1 and e=¢
or X1 =Y =% —Ye=%1 and e=1-¢".
Similarly to the case of 77, we can think of .7 as the image of & via the map
¢': Z® — K defined by

’ _ J(xy — x3, x3 — x3, 0) if x5 is even
3.2) ¢'x, 7, 33) = {(xl — X3, X2 — x3, 1) if x5 is odd.

Two points x, y € K satisfy (3.1) if and only if there are x’, y’ such that x’ and
¥’ are Z-connected and x = ¢’(x’), y = ¢'(y’).

We need some more definitions. Given an integer q (we shall take g = 3), we
put

(3.3) Tq = {(xl, x2) (S 22 I X1 = (2k1 + l)q, Xo = (2k2 + l)q, kl, kz € Z}
For x € Z? we define the sets

(3.4) F, = Fg, ., = {(x1, %2, 0), (21, x2, 1)}
and
(3.5) K, = User, F.,.
Given x = (%, x;) € Z?, X, will be the indicator of the event E(x) of %y
(3.6) E@x) = {0 € Qx| w, = 1, Vy € N,}
where

Ne={lx: + 1, %), (x1 + 1, 25 + 1), (x1 — 1, x3), (x; — 1, x2 — 1)},
N, =N, x {0, 1}.

For 0 < p = 1 we define the probability measures f,;,i =0, - - -, 3 by

(3.7) fip,0 = p°,

(3.8) fip1 = RoF,

where &, = {F, | x € Z\T} U {{y} |y € K,}.

(3.91) fip2(A) = fip1(4) for ACQx, A€ BR
(3.9ii) fo2(| Bik,) log, = BEL

where the partition & () is defined by

'97(‘-')) = {Fxlxe Tq, Xx(w) = 0} U {{y“yEFx’xe Tq, Xx(w) = 1}-

Note that the functions x. for x € T, are measurable with respect to %’}f\’Kq, S0

that (3.9ii) makes sense.
(3.10) fips = pyo, where % = {F,|x € Z%.
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A chain ¢ = (y");e; in I is called totally self-avoiding (t.s.a.) if for i, j € I,
i # j, y© and ¥y belong to different elements of the partition .
Let E be the event

E = {w € Qx| in w there exists an infinite totally self-avoiding +chain
of 7' starting from (0, 0, 0)}.

We define the critical percolation probabilities p.;i =0, ---, 3 as
(3.11) Pei = inf{p| fpi(E) > 0}.

We have the following:

THEOREM 3.1. The critical percolation probabilities satisfy the inequalities
(312) Pga) = ﬁc,O, ﬁc,i = ﬁc,i+1 for l = 09 19 2.

PROOF. The proof of the inequalities p® < p.o and p.,, < P,1 is analogous to
the proof of Theorem 2.3. We only need the remark that Lemma 2.2 still holds
(in particular for t.s.a. chains) if we replace Z2, .7, ¢ respectively with K, 7, ¢’.
Furthermore, since the definitions of p.; involve t.s.a. chains, Theorem 2.1 can
be applied here in the same way as in the proof of Theorem 2.3.

Also the inequalities p.,;1 < p.,2 and p,2 < P.,s can be obtained using the method
of the proof of Theorem 2.3. One observes that the measures (1, fip2 and fip3
are equal when restricted to the o-algebra Z4&. . K, On the other hand for
each condition in QK\Kq, the restrictions of thelr conditional measures to
Qk, can be written as u K}) , i =1, 2, 3, where &, is the total partition of
K,, F2 = F(w) (see 3.9ii) and S5 is the partltlon of K into the sets F,x€T,.
For any condition in Qx\x,, &, is finer than &, and ¥, is finer than & so that
the method of the proof of Theorem 2.3 applies to the conditional measures for
any condition. The result is then readily obtained by taking the average with
respect to the common restriction of the three measures to Qx\k,. 0

From now on we shall concentrate our attention on the measures f,2 and
fp,3. We shall reduce the problem to one involving the planar graph .7°. First we
need some more definitions.

We define the map y: Qx — Q22 by

(3.13) (V) (g, %) = MAX(W(x;,2,0)r Diay,23,1))-

Let A(L) and A(L) be the sets:
ML) = {(x1, %2, 2) EK || x| = L, | %] =< L},
A(L) = {(x1, x2) € Z*| | %1 | < L, | x2| = L}.

71, (resp. 71) is the event that there exists a t.s.a. +chain of 9 in A(L) (resp. a
self-avoiding +chain of 7 in A(L)) starting from the origin (0, 0, 0) of K (resp.
from the origin (0, 0) of Z2) and ending on 6°A(L) (resp. 8°A(L)). We explicitly
remark that the word “self-avoiding” can be dropped in the definition of 7.
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LEMMA 3.2. Let L be such that

(3.14) OAL) N K, = 2.

Then

(3.15) bp,2(TL) = (Y¥pip2)(71),
(3.16) fips(F1) = (W¥iipa)(11) = p(r1).

PROOF. The proof of (3.16) is immediate. Indeed the definition of f,, s implies
that y*ji,3 = pf*”. On the other hand for the measure fi,,s, @, 5,00 = W, z1) for
every (x;, x2) € Z® with probability 1. If this condition is verified in the
configuration w € Q, then it is easy to verify that in w there exists a t.s.a. +chain
connecting the origin to &A(L) if and only if a self-avoiding +chain of 9 connects
the origin to 8°A(L) in the configuration yw € Q2. This fact implies (3.16).

In order to prove (3.15), we shall show that for fi,.-a.e. w if in Yw a self-
avoiding +chain connects the origin to °A(L), then a t.s.a. +chain in » connects
the origin to 8A(L) (the other implication is trivial).

Let

T(w) = {x € Ty| Yw): = 1, xu(w) = 1}.

We shall denote by D(w) the set of all the chains ¢ = (y®);e; of I~ such that for
any x € T(w) the set

{i€I|y? € {x} U N,

is an interval of consecutive integers.

We remark that if for a given configuration w € Q there is a self-avoiding
+chain ¢ = (y?”) of 9 in Yw joining (0, 0) to 8°A(L), then for the same
configuration w there is also a chain ¢’ = (y'"’) € D(w) with the same property.
Indeed, since for any x € T(w) the set {x} U N, is a connected set included in
(Yw)™(1), the chain ¢’ can be easily constructed by induction on x € T(w)
by cutting the part of the chain ¢ between the first and the last i for which
y @ € {x} U N, (and possibly inserting the site x).

Now we construct the chain ¢” = (y"®);g; of 7’ by induction by putting
¥"©@ = (0, 0, 0) and by choosing y”“*" as the only site in K such that:

(i) y"®*"is connected in 7 with y”?,
(ii) the projection of y”“*V on Z* is y'**?.

We remark that ¢” is a t.s.a. chain but, in general, it is not a +chain in w.
However a t.s.a. +chain in w can be easily obtained by modifying ¢” in some of
the sets {(x1, x2, 0), (x1, x2, 1)} U N(xl,xz), (%1, x2) € T;. We only need the remark
that if " = (%1, %2, ¢), w(y”?) = —1, then fi,2-a.s. (x;, x;) € T(w) and y”¢V
and y”*? are both connected with the connected set

N~(xlyx2) v {(xly X2, 1- 8)} (@ w—l(l). 1}
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4. Proof of the inequality p® < %. In this section we shall prove the
following:

THEOREM 4.1. p¥® < %.

Theorem 4.1 will be an immediate consequence of Theorem 3.1 and of the
following proposition:

PROPOSITION 4.2. P2 < Pe,s = Y.

The equality p.s = % follows from (3.16) and the fact that the critical
percolation probability on the triangular lattice is %. The remainder of this
section is devoted to the proof of the inequality p. s < P,3-

We decompose K as K, U K;, where K, = Z* X {0} and K; = Z* X {1}, so that
Qx can be identified with Qx, X Qk,. The map o: Qx = Qx, X Qk, — Q2 is defined
by (0@, V), = max(w?, o) if x € T, and 0¥ =1 for y € N,, ¢(0?, o), =
w® otherwise. .

REMARK 4.3. If we define the measures vp, v; on Qx = Qg, X Qx, by

0 _— , (K (K; — ,, (Ko) K
vy = ”I(? 0 % u 1)’ V}, = “pKo X '“'1(7 1),
then
~ 2 ~
(4.1) U*Vg = ¢*/-"p,3 = /11(72 )3 U*V; = ‘p*ﬂp,%

This remark, which is an immediate consequence of the definitions, together
with the proof of Lemma 3.2 allows us to consider only Bernoulli measures in
this section. It will be useful to interpolate between the measures v and v} by
considering for A € [0, 1] the measures v) = u¥0 x uE.

Let R(L, M) be the rectangle [0, L] X [0, M] C Z2 For L # M let /,, /7, (resp.
71, 72) be the two shorter (resp. longer) sides of R(L, M) and let Gy, » and G.. be
the events:

Gy = {w € Qk| in o(w) there is a +chain of 9 in R(L, M) connecting
the sides #; and #; of R(L, M)},
Gs = {w € Qx| in ¢(w) there is an infinite +chain of J7}.

The following lemma establishes a connection between the events Gy, and
Ge.
LEMMA 4.4. There exists a constant C > 0 such that if for some \, p, L
V:;(GLygL) >1-C and VS(GZL,L) =>1- C, then V;;(Gw) =1.
ProOOF. This lemma can be proved exactly in the same way as the analogous

results in [10]. We only need to remark that the events Gy, .1, Gor1 and G are
increasing, so that F.K.G. inequalities can be applied. O
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In the remainder of this section we shall use freely the notation introduced in
[10] (see also [8]). In particular we shall denote by 4.G, x € K, the event: “x is a
pivotal site for the event G”. Furthermore the number of pivotal sites for the
event Gy, in the configuration w = (0@, ™) € Qx will be denoted simply by
nLu(w@®, ). Throughout this section the constant ¢ which appears in the
definition of T, is assumed to take some fixed value with the condition g = 3.

The following lemma provides a lower bound of the »}-probability for a site of
the type (x, 1) with x € T, to be a pivotal site for the event Gf, y.

LEMMA 4.5. Let 0 <p <1, 0 < X be fixed. There exists a constant A(X, p)
such that for every L, M > 4q, L # M, every x € R(L, M) and every \ > X there
exists y € T, N R(L, M) such that

(4.2) |x—y| <4q
(4.3) vp(00GLm) < A(X, p)vp(d¢y,1GL,m)-

PrROOF. For x € R(L, M), let Q. be the square:
Q:={2€Z%| |2y — x| <4q, | 2 — x| <4gq}.

We put Q: = Q\I'Q., Q2 = Q\I'QL, Q' = Q1\IQL.

We choose ¥ = (y1, %) € Q7 N T, Such a y exists because of the
definition of Q. and the choice g = 3. From now on we shall deal with the case
Q. C R(L, M)\3'R(L, M) (the other possible cases do not present any additional
difficulties and can be dealt with by the same method with obvious changes).

We consider the following event:

A, = {w € Qx| in the configuration ¢(w) | rz,m\e, there exist +chains ci, c;
connecting /; and /; to 9°Q; and —chains ¢, and ¢; connecting /; and
/s to 6eQx}.

It is easy to check that A, D 6.0 Gr m. Hence, if we choose y = (y, 1) with y €
7 N T,, we have

(4.4)  v)(85GLm) = vy(AIv(0;Grm | AY) = vp(85,0GLm)vp(85GLu | AL);

on the other hand it is not difficult to get a lower bound independent from L and
M for the conditional probability appearing on the r.h.s. of (4.4). Namely it is
true that:

(4.5) v3(05GLm | A;) = min(p, 1 — p)®*’min(Xp, 1 - p)®.

Indeed for w € A,, let a, b € 3°Q, be two points connected by a —chain in the
configuration ¢(w) | rz,mne, Tespectively to 7, and 7,. We remark that, by the
definition of A,, a and b are not connected. Then we can find a’, b’ € 9'Q, such
that a and a’ are connected, b and b’ are connected and a’ and b’ are not
connected.

We put

(4.6) Y= {(tl, tz) (S Zzl th, = yl} N Q;:.
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Then we can find two integers m, n and a self-avoiding chain ¢ = (2@, - - ., z®™),
N =8¢ + m + n — 2 such that:

1 2(0) =a z(l) =q’. 20D = b’ 2N = b
(@) , , ,

(i1) (2?, ..., 2Dy N-mD L N2 gigy
(i) {z("+2)’ e, z(N""‘2)} = 7.

Now we define a configuration «’ € Qx by putting:

Vt € Q.\supp(c) w/9=1 /Y=e?
Vt € supp(c)\T, wi©®=-1 w/W=e®
Vt € Z2\Q; w!Q = 00 /O =u?

Vi€supp(c) N T, w/@=-1 w/P=-1

It is clear that our construction implies w’ & Gy, .

We note that «’ is such that sw’ contains two +clusters connected respectively
to 7, and /. and separated in Q7 by v. Moreover since y € Q7 , (¢w’); = 1 for
every t € N, and this implies by the definition of o that (os;w’), = 1, where s;w’
is the configuration obtained from w’ by changing the value in y from —1 to 1.
The two previous remarks imply that s;w’ € Gy and hence o’ € §;Gr ). The
estimate (4.5) follows from the fact that ’ is obtained by changing the values of
wonly in @, = (@ X {0}) U ((Q: N T,) X {1}) and the quantity appearing on the
r.h.s. of (4.5) is a lower bound for the v}-probabilities of any configuration in

Q..0

By using the estimates (4.2) and (4.3), we are able to prove the following:

LEMMA 4.6. For every X >0
(4.7i) limy w}s(Grar) = 1
(4.7ii) limg wrd)2(Garr) = 1.
PROOF. In the same way as in [7] (see also [10] and [8]) we can prove that
for every N there exists L, such that for L > L, and for every A = 0
(4.8) E, (npor| Q\Gror) = N.

Note that even if the measure o*v},; on Q.2 is not a Bernoulli measure, it has
finite range of dependgnce, so that only minor changes in the proofs are required.
Let X be such that A/2 = X\ < \. (4.8) implies:

(4.9) Eu{‘/g(nL,2L) = N(1 — v}2(GLa1))
for L > Ly. On the other hand, if we put
Z, = (R(L, 2L) x {0}) U ((R(L, 2L) N T,) X {1})
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and
Zy, = (R(L, 2L) N T,) x {1},
we get
E,(npor) = Yeez, v1/2(6.GL2r)
(4.10) < (A(N/2, %)(8q + 1) + 1) Y.ez, v}2(5.GL2r)
= 2(A(A/2, ¥%)(8g + 1)? + 1)(8/0N)wa(Gr 1),

where, in the last step, we have used Lemma 4.5 and the formula (4.18) of [8]
page 78 (see also [10]) to express the derivative of v}/2(Gr o) w.r.t. X in terms of
the expectation of the number of pivotal sites.

By combining (4.9) and (4.10) we get

(4.11) @/0N (1 = v}a(Gr2r)) = —NB(X) (1 — v}a(Grar)),
where B(X) = 24(X/2, 1%)(8q + 1)? + 2. Integrating (4.11) from A/2 to X we get
(4.12) 1 — »}5(Gr2r) =< exp(=NX/(2B(}))).

As L — o, N can be chosen arbitrarily large, so that (4.12) gives (4.7i). The
proof of (4.7i1) is identical. O

Now we can prove Proposition 4.2.

PROOF OF PROPOSITION 4.2. As remarked before, it is enough to prove the
inequality p., < % and, by Remark 4.3, this will be achieved if some p < % is
found such that »;(G.) = 1. By Lemma 4.6, for L large enough,

(413) V}/Z(GL,ZL) =1- C/2, V%/Z(GZL,L) =1- C/2,

where C is the constant introduced in the statement of Lemma 4.4. Since the
events G1,or and Gy, are local, we get by continuity that for some p < 1%

(4.14) Vll,(GL,zL) =1- C, V})(GZL,L) =1-0C.
By virtue of Lemma 4.4, for the same p

(4.15) 3G = 1. [

5. An application to the three-dimensional Ising model. In this sec-
tion we prove that our inequality p® < % implies percolation of both signs for
the three-dimensional Ising model if the parameter 3 is small enough in depend-
ence with h. Higuchi applied a completely analogous method to a two-dimensional
problem ([6]).

Let Pg), be a Gibbs measure for the three-dimensional Ising model. That
means that Pg, is a probability measure on Q.3 such that, for every finite subset
A of Z?, the conditional distribution on @, of P, given the configuration & in
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Z*\A is given by
(5.1) Phin(w| @) = Z(A | &) 'exp(-fH (w | ®))
with
H(w|®) = h Teer 0 T V2 Tnyenmy Jiywsy + Tienyerdia Joywr®y
and
Z(A| ®) = Tueo, exp(—BH(w | @)).

Here 8 > 0 and h are real parameters and J is a map J: Z*\{0} — R that we
assume to verify J, = J_, and || J || = Yo | J: | < .

It is a consequence of our result of the last section that in a specified range of
the parameters h and § an infinite +cluster exists in the three-dimensional Ising
model and for h and 8 sufficiently small infinite + and — clusters coexist. The
result is contained in the following

THEOREM 5.1. Let Pg}, be a Gibbs measure defined as above. If

(5.2) (1 + exp(28(|| J || = h)))™* > p¢®
then

(5.3) Pp(#(W.(0)) = @) > 0.
Similarly, if

(5.4) (1 + exp(28(I| J|| + 1)))7* > p&
then

(5.5) Py h(#(W-(0)) = ) > 0.

(5.8) and (5.5) are true, in particular, for any given h for 3 small enough depending
on h.

ProOOF. It is enough to prove (5.3), since (5.5) follows from (5.3) by means
of the transformation £: Q.3 — Qu3, () = —w,.
Let p = (1 + exp(28(||J|| — h)))~". The conditional Pg,-probability that
w, = 1 for some x € Z?, given the configuration & in Z*\{x} satisfies:
Pl(w. = 1]6)
(5.6) = exp(B(h — Tumo J2))(€xp(B = Tuno J2)) + exp(B(Tiro J: — h))7!
= (1 + exp(28(Tixo J: — B)))7' > (1 + exp(2B(| J || — b))~ = p.

Then it is easy to see (see e.g. Lemma 1, Section 3 of [11] in the particular,
simpler case ¢ = 0) that the measure P, is bounded from below in the F.K.G.
sense by the Bernoulli measure u,‘,"‘a’. That means that we can find a joint
representation v in Qs X Qs of Py, and pf” such that

(5.7) ({(s, t) | 5. = t. Vx € Z%)) = 1.
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In particular (5.7) implies
(5.8) P s(#(Wo(0)) = ) = pI(#(We(0)) = ) >0

since (W.(0)) = o is an increasing event.
The last statement of the theorem follows from Theorem 4.1.0

Acknowledgment. We are deeply indebted to Harry Kesten for his critical
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proof of Theorem 3.1.
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