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LIMITING MULTIVARIATE DISTRIBUTIONS OF
INTERMEDIATE ORDER STATISTICS®

By Bruce CooiL
Vanderbilt University

Let Z{™ represent the mth largest order statistic in a random sample of
size n from a distribution F. If m = m(n) is an intermediate sequence such
that m — o and m/n — 0 as n — o, the intermediate order statistics of the
form Z{m,, -+, Z{m.,, for 0 < t; < .-+ < t, can be used jointly for making
statistical inferences about the upper tail of F. We find the asymptotic joint
distribution of order statistics of this form, for various types of underlying
distributions F, by determining the limit (weak convergence) of a stochastic
process of the form (Z{, — B%))/al, t > 0, for appropriate normalizing
functions o > 0, 3.

1. Introduction. Let X, ---, X, be mutually independent random vari-
ables with common distribution function F and let Z{™ represent the kth largest
order statistic. The possible asymptotic distributions of the maximum Z{* have
been extensively investigated. Gnedenko (1943) gives necessary and sufficient
conditions on F under which there exist sequences a, > 0 and b, such that the
normalized maximum (Z{” — b,)/a, has a nondegenerate limiting distribution
A. in the following sense:

1.1 P[(Z{® — b,)/a, < x] = F™(a, x + b,) > A(x) as n—

for all x at which A.(x) is continuous. When such a limiting distribution exists,
F is said to be in the domain of attraction of A, F € A.:(A.), and A, can always
be written in the following parametric form (von Mises, 1936)

(]--2) Ac(x) = eXP(—gc(x))
where
(1.3) gc(x) = exp(— fo [(1 + cu),]™ du)

for some ¢ € R and for any x such that 0 < A.(x) < 1. As a distribution function,
A(x) is therefore continuous whenever x € R and the convergence in (1.1) is
therefore uniform for all x € R. The function g.(x) is itself a tail function
whenever x = 0. When ¢ > 0, g.(x) is the tail function of a Pareto distribution,
ge(x) = (1 + cx)7'/, so that —1/c is the exponent of regular variation for the tail
function 1 — F(x). When ¢ < 0, g.(x) is a natural generalization of this Pareto
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tail function (go(x) = ™). The upper tail of a distribution and its relationship
to the limiting extremal distribution has been studied by Resnick (1971) and
Pickands (1975). Of course, analogous results also hold for the normalized
minimum Z ™.

Various extensions of the basic results in extreme value theory are possible
when the underlying random variables are not mutually independent. Important
work in this area includes Berman (1964), Loynes (1965), and Leadbetter (1974).
The asymptotic multivariate distribution of the k largest order statistics was
found by Dwass (1966) and Weissman (1975). More recent work in this particular
area has been done by Weissman (1978) and Serfozo (1982). Galambos (1978) is
an important general reference on the probability theory underlying the study of
extreme values.

A related area of investigation concerns the limiting distribution of the
intermediate order statistic Z’ where the sequence of integers m = m(n) is such
that 1 <= m < n for all n, and

(1.4) m—oo©, m/n—-0 as n— o,

In this case, m(n) is called an intermediate sequence. Chibisov (1964) and Wu
(1966) have both shown that normal and lognormal distributions are possible
limiting distributions. Smirnov (1949), Cheng (1965) and Mejzler (1978) also
present conditions under which these limiting distributions apply for intermedi-
ate order statistics. Balkema and de Haan (1978a, b) provide a comprehensive
study of the limiting univariate distributions of various types of order statistics
and they consider the intermediate order statistics in this more general frame-
work. Watts, Rootzen, and Leadbetter (1982) show that the same limiting
univariate distributions also apply when the original random variables
X, - -+, X, satisfy a general dependence restriction.

Intermediate order statistics can be used to estimate probabilities of
future extreme observations and to estimate tail quantiles of the underlying
distribution that are extreme relative to the available sample size. Pickands
(1975) has shown that intermediate order statistics of the form Z f,’,‘,’tl], A f,',‘,)th]
for 0 <t, < ... < ti, where m = m(n) is an intermediate sequence ([x] denotes
the integer part of x), can be used in constructing consistent estimators of the
shape parameter ¢ of the limiting extremal distribution A, and in finding
consistent estimators for conditional tail functions of the form:

(1.5) hP(x) =P[X>ZP + x| X>ZP], x> 0.

De Haan and Resnick (1980), Teugels (1981) and Mason (1982) have also found
estimators that are based, in part, on intermediate order statistics. In this context,
the joint asymptotic distribution of intermediate order statistics that are based
on the same intermediate sequence is of some interest. One can of course study
such asymptotic joint distributions by considering a stochastic process of the
form

(1.6) vIAt) = (Z7hy — B /e, t>0

and determining when a limiting (weak convergence) stochastic process exists
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for appropriate normalizing sequences a,,; > 0 and 8,.. In general, we will write
vP(t) ->pv(t), >0, for t fixed with respect to n, whenever all finite dimensional
distributions of the process v%(t) converge to those of v(t):

OD(t1), -, V() —a (L), - -, v(E))

for any values 0 < t; < --. <t < oo.

In addition to considering the more general process of (1.6), we will show that
whenever F € A (A.), one can construct an intermediate sequence m = m(n)
and corresponding normalizing sequences a{”’ > 0 (which does not need to be
indexed by t) and 8% such that

(1.7) wA(t) = (Z{7hy — B /aP

converges weakly to a Gaussian stochastic process as n — . When F satisfies
an additional constraint, such a limiting stochastic process exists for all inter-
mediate sequences m = m(n). Define the tail quantile z, = inf{u: F(u) = 1 — p},
0 < p < 1. The existence of a limiting process for w(t) makes it possible to
estimate functions of ratios of differences between extreme quantiles of the form
Zmi/ns t > 0, or the limits of such functions as n — , by using the same functions
of the corresponding intermediate order statistics. This approach is possible if

w(t) has a limiting process because the locationally adjusted order statistics

Z{My — B®, t > 0, must then be of the same stochastic order for all ¢ > 0. For
example, Pickands (1975) has shown that consistent estimators of this form exist
for h{M(x) of (1.5) and for the shape parameter ¢ whenever F is continuous and
F € Au(A.). A knowledge of the limiting stochastic process for w(t) also
makes it possible to evaluate such estimators in terms of their asymptotic
distributions.

2. The intermediate domains of attraction. Let m(n) be a nondecreas-
ing intermediate sequence. Wu (1966) proved that whenever there exist sequences
ot and B such that P[Z{ < o x + 8] has a nondegenerate limit, the
limiting distribution must be of the form ®(h(x)), where ® is the standard normal
distribution and where h(x) is of the following form (up to an affine transfor-
mation of x):

(2.1) h(x) = —log(gx(x)), inf{y: g\(y) < o} < x < g7'(0)

for A € R and for g,(x) as defined in (1.3). When A = 0, ®®h is a normal
distribution, so that with the appropriate choice of normalizing sequences, the
limiting distribution is simply ®.

DEFINITION 2.1. We will say that F is in the intermediate domain of attrac-
tion of ®eh for an intermediate sequence m(n), F € Ai.(Poh, m(n)), if there
exist sequences a{” > 0 and 8 such that

PIZ® < a x + W] — &(h(x))

as n — oo, for all continuity points of deh.
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A necessary and sufficient condition for F € A, ($®h, m(n)) is that there
exist sequences o’ > 0 and 3 such that

(2.2) 1—F@Px + 8%) = mn™[1 — m™2(h(x) + 0(1))]

as n — o whenever x is a continuity point of ®@h. This condition is due to
Smirnov (1949). Also see Watts, Rootzen and Leadbetter (1982, page 654). The
next theorem gives a condition for the general multivariate result. Given any
normalizing sequence k,, the corresponding normalizing function k., will be
defined as

Kx = K1, 0=<sx<1
2.3)

= Ky X = 1.

THEOREM 2.1. Let m = m(n) be an intermediate sequence and define v (t)
as in (1.6). Then F € Ay (POh, m(n)t) for all t > 0 (¢ fixed with respect to n) if
and only if there exist normalizing functions a'y! > 0 and B™ such that

(2.4) v®(t) =p KUt V2u(t)) as n— o,
where u(t) is standard Brownian motion and h is defined in (2.1).
Note that F € A, (Peh, m(n)) does not imply F € A, (P®h, m(n)t) for any

t # 1. For example, let F(x) = 1 — (log log x)7%, x = e°. It follows from (2.2) that
F € Ay (Pe(—log g1), m(n)) whenever

m(n) = 2n(log n)"[1 + 3 (log log n — log 2)(log n)™'(1 + o(1))] as n — o,

but F is not in any intermediate domain of attraction for sequences m(n)t,
t # 1. In this case the normalizing sequences are such that

af = B(1 + o(1)) = explexp(n/m)][1 + o(1)] as n — .

The proof of Theorem 2.1 will require the following lemma. This result is a
special case of a general Bahadur representation for order statistics due to Watts
(1977, Theorem 4.3.1).

LEMMA 2.1. Let U™ represent the kth largest uniform (0, 1) order statistic
from a random sample of size n. Define
(2.5) u(t) = (mt)™V2n[URy — 1 —min™h)], t>0
where m = m(n) is any intermediate sequence. Then u{(t) —p t™/?u(t), t > 0
(t fixed with respect to n), where u(t) is standard Brownian motion.
PROOF. Define
Yi=(n—j+ Dllog UY —log UM, 1=j<[mt]

with U$” = 1. It is well-known that the Y; are independent exponential random
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variables with mean 1. See, for example, David (1970, page 19). Then for ¢t >0,
(1 = [mt]n™) Ui,

= IZA = G - Ve HUPIA - jn ) UD)™
= exp(~Z/7[(n —j + D7'Y; + log(1 = (n — j + D7)
= exp(—[Z} (n = j + 1)7(Y; — 1)] + O(mn™?))
=1-n3(Y;, - 1) + 0,(m**n"?)

as n — . Consequently, as n — o

u(t) = —[mt] ™2 T (Y; - 1) + 0,(m™2 + mn™Y), t>0.

Therefore, the process u{?(t), t > 0, converges in probability to a normalized
'sum of independent identically distributed random variables, so that the limiting
process is the standardized Brownian motion ¢~2u(t).

ProoF oF THEOREM 2.1. If the convergence in (2.4) holds for ¢t > 0,
then F € Ay (Poh, m(n)t), t > 0, by Definition 2.1. Now assume F €
Ain(POh, m(n)t), t > 0, for some intermediate sequence m(n) and define
F~'(y) = inf{u: F(u) = y}. Then, using the notation of Lemma 2.1,

Zimy =4 F7'(Uip) = F7'(1 = min™{1 = (mt)™2ul(1)))
= al[A  uP(t) + 0,(1)] + B as n—

by (2.2). The convergence in (2.4) now follows by Lemma 2.1 (h~!(y) is continuous
for all y € R). This completes the proof of the theorem.

(2.6)

Under the conditions of Theorem 2.1, the scale functions a¥ of (2.4) are not
always of the same order as n — o for different values of ¢ > 0. For example, if
F(x) =1 — (log x)7%, then F € A;,.(®, m(n)) only when m(n) is an intermediate
sequence such that (m(n))™ = o(n~%?). In this case, the normalizing functions
are of the following form as n — oo:

al? = n(mt)*2exp(n/mt)[1 + o(1)];
B = exp(n/mt)[1 + o(aid)].

Consequently, locationally adjusted order statistics of the form Z,,; — 8%,
t > 0, are of different stochastic orders as n — o« for different values of t > 0.
But when F € Ay (A.), one can always construct an intermediate sequence m(n)
such that F € Aint(®, m(n)) and for any such intermediate sequence, the statistics
Zimy — B, t > 0, are of the same stochastic order for all ¢ > 0.

THEOREM 2.2. If F € A(A.), there exists an intermediate sequence k(n)
and normalizing functions a{” and B, 0 <y < n, such that if m = m(n) is any
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intermediate sequence for which m(n) = o(k(n)) as n — o, then for t > 0

2.7 (Zimg — B /a® —p w(t) as n— o
where w(t), t > 0, is the Gaussian process characterized by:
(2.8) Ew(t)) =0, t>0;

Cov(w(ty), w(ts)) = t1° t2°! whenever 0 <t < t,.

Also in this case:

(2.9) g = gl — oM m”"’[Jj u™! du] [1+0(1)] as n—o>o
for —o < ¢ < oo,
The proof will require the following lemma.
LEMMA 2.2. Assume F € Aq(A.) and let a, > 0 and by, y > 0, be appropriate

normalizing functions for Z{Y as y — . If as n — o, n* = n(t™ + o(1)), t > 0,
then as n — oo:

for —o < ¢ < o,

PRrROOF. Forallx€ R,asn— »
F™(@nex + bps) = FP WD (q .x + b,e) = Al(x) = A(Ax + B)

where
t
A=t" B= —f uldu, —o<c<oo,
1
Lemma 2.2 now follows since for all x € R, F™*(a,x + b,) = A.(x) as n — oc,
PRrROOF OF THEOREM 2.2. By assumption there exist normalizing functions
a,> 0 and b,, y > 0 such that as n — @
(2.10) F™(a,x + b,) — exp(—g.(x))
uniformly for x € R. For an arbitrary intermediate sequence m = m(n), define

fsff)(x) = nm—lll - F(an/mx + bn/m)] - gc(x)~
Then

1 = F(@wmm ™% + bam) = mn'[g(m™%) + £(m™*)]
(2.11)
= mn—lll — m—1/2x + O(m—l + £$'711)(m—1/2x))]

as n — o. Therefore by (2.2), F € Apn(®, m(n)) whenever £™(m%x) =
o(m~Y?) as n — o, for all x € R. Let x, be any point such that A;(0) < x, < 0.



INTERMEDIATE ORDER STATISTICS 475

Asn — o, | £(x)| — 0 uniformly for x, < x < » by (2.10), since £%(x) is the
difference between two nondecreasing functions and g.(x) is bounded for
X0 < x < o, Consequently,

Bk = SUD1<k=mSUPs=s<w | E£7(2)| > 0 as n — oo,
It suffices to let
kn = min[(E{,).)7% N(n)]

where N(n) is any intermediate sequence as n — o, so that when m = o(k,,) as
n — oo, we have for all x € R (and for sufficiently large n):

(212) [ERP(m™2%)| = E@ < ERl) . < ka2 =0o(m™?) as n — .

(This particular choice of k, depends on x,, N(n) and the normalizing functions
a, >0 and b,, y > 0.) Now define

(2.13) al = (mt) ™ an/m, BE) = bpym for t>0.

We now have that F € A;,.(®, m(n)t) for t > 0 whenever m(n), an intermediate
sequence, is such that m(n) = o(k,) as n — « by (2.11), (2.12) and condition
(2.2), where the normalizing functions can be defined as in (2.13). The conver-
gence in (2.7) now follows by Theorem 2.1 and Lemma 2.2; (2.9) follows by (2.13)
and Lemma 2.2. This completes the proof of the theorem.

We now introduce a large class of distributions for which the convergence in
(2.7) holds for all intermediate sequences. This class includes all continuous
distributions that are typically used in statistical applications.

DEFINITION 2.2. We will say that F is in the first differentiable domain of
attraction of the extremal distribution A., F € Ag(A.), when:

(i) F is differentiable throughout some left neighborhood of
20 = supfu: F(u) <1};

(ii) There exist sequences a, > 0 and b, such that as n — oo,
(d/dx) F™(a,x + b,) — A/(x) uniformly in x for all finite subintervals in
the support of A..

Clearly if F € Agie(A.), then F € Ay (A.), for the same normalizing sequences
a, > 0 and b,, by the uniform convergence assumed in (ii). Furthermore,
if F € Age(A.) and if there exist sequences A, > 0 and B, such that
F*(A,x + B,) > A.(x) as n — =, for all x such that 0 < A.(x) < 1, then the
convergence assumed in condition (ii) still applies for sequences A, > 0 and B,.
This is an immediate consequence of Lemma 2.2 and the uniform convergence
which is assumed to exist in condition (ii) for appropriate sequences. Condition
(ii) can also be written in the form:

(2.14) na.f(a,x + b,) » —gl(x) as n—o o

where f (x) = F’(x) and this convergence is uniform in x for all finite subintervals
in the support of A..
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THEOREM 2.3. If F € Age(A,), then there exist normalizing functions ol
and BV, y > 0, such that the convergence in (2.7) holds for all intermediate
sequences m(n).

ProoF. The location normalizing function for the extremal domain of
attraction, b,, y > 0, must be such that as y — «

(2.15) y(1 = F(by)) = —log A.(0)(1 + 0(1)) = (1 + 0(1))

since F € Ae(A.). It follows from (2.15) and Lemma 2.2 that b, can be
chosen as b, = inf{u: F(u) = 1 — y~'} so that when y is sufficiently large,
F(b,) = 1 — y' since F must be continuous in a left neighborhood of
20 = supju: F(u) < 1}, by assumption. For any x € R, and for any intermediate
sequence m = m(n), there exists a sequence x¢(n) (by the mean value theorem)
such that | x — xo(n)| = | x| and such that for sufficiently large n (it suffices that
n be large enough so that 0 < g.(m™%x) < o):

F(an/mm—l/2x + bn/m) - F(bn/m) = an/mf(an/mm_1/2x0(n) + bn/m)m'l/zx

(2.16)
=mn'm %1 +0(l)) as n—o o

by (2.14). Therefore F € Ai(®, m(n)) for any intermediate sequence m(n) by
(2.16), condition (2.2), and our choice of b,, y > 0. The convergence in (2.7) now
follows for all intermediate sequences m(n), by Theorem 2.1 and Lemma 2.2.
This completes the proof of the theorem.
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