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NONCENTRAL LIMIT THEOREMS FOR QUADRATIC FORMS IN
RANDOM VARIABLES HAVING LONG-RANGE DEPENDENCE

BY ROBERT FOX AND MURAD S. TAQQU!

Cornell University

We study the weak convergence in D[0, 1] of the quadratic form
> SV g kHm(X;) Hn(X4), adequately normalized. Here a,, —» < s < ®
is a symmetric sequence satisfying ¥ |a,| < ®, H, is the mth Hermite
polynomial and {X;}, j = 1, is a normalized Gaussian sequence with covari-
ances r, ~ k"°L(k) as k — o, where 0 < D < 1 and L is slowly varying. We
prove that, for all m = 1, the limit is Brownian motion when %2 < D <1 and
it is the non-Gaussian Rosenblatt process when 0 < D < %.

1. Introduction. Dobrushin and Major (1979), Taqqu (1979a) and Breuer
and Major (1983) have studied the weak convergence of the stochastic process
Y™ H,(X;), 0 = t < 1. Here, H, is the mth Hermite polynomial and the
sequence X;, j = 1,is Gaussian with mean 0 and covariances r, = EX; X/, that
behave like k2L (k) as k — o, where 0 < D < 1 and L is slowly varying. The
sequence {X;} exhibits a long-range dependence because Y i . r, = . It was
shown that when D > 1/m, 3! H,.(X;), adequately normalized, converges to
Brownian motion. But when 0 < D < 1/m, the limit depends on m. It is non-
Gaussian when m = 2. When m = 2, the limit is the Rosenblatt process defined
in Section 2.

We study here the weak convergence in D[0, 1] of the quadratic form

>N SN 6k Hn(X;) Hn(Xe),

where a,, —% < s < ® is a sequence satisfying a_, = a, and Y;=" | a,| < oo.

We prove that when 0 < D < %, this quadratic form, adequately normalized,
converges weakly, for all m = 1, to CR(t) where R(t) is the Rosenblatt process
and C = m!m (Y« a,r™™") is a constant. On the other hand, when . < D <1
the quadratic form converges weakly, for all m = 1, to Brownian motion. Thus
the limiting process is either the Rosenblatt process or Brownian motion, de-
pending on whether 0 < D < % or %2 < D < 1. The fact that we deal with
quadratic forms causes the case of general m to behave like the case m = 2.

When 0 < D < %, m = 1 and Y 2. a, = 0, convergence to
m!m(XiZ . a;r?')R(t) means convergence to 0. Using a result of Fox and
Taqqu (1983) we show that when further conditions are imposed on the sequences
r, and a,, the quadratic form ¥¥; ¥ ¥, a;_; X; X; can be renormalized so that the
limiting distribution is Gaussian.
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The main results are stated in Section 2. The proofs utilize the Wiener-Ito-
Dobrushin representation of H,(X;) and the corresponding diagram formula.
Preliminary lemmas are established in Sections 3 and 4. The results stated in
Section 2 are proven in Sections 5, 6 and 7.

2. Limit theorems. Let X;, j = 1, be a stationary Gaussian sequence
satisfying EX; = 0 and EX? = 1 and suppose that there is a constant 0 <D < 1
and a slowly varying function L such that

(21) ry = EXij+k ~ k_DL(k) as k — oo,

(We write aj, ~ by if ar/br — 1.) Recall that L is slowly varying at o (at 0) if it is
nonnegative and if L(xt)/L(x) — 1 as x — o (x — 0), for all t > 0.

Let m be a positive integer and consider the random variables H,,(X;),j = 1,
where H,, is the mth Hermite polynomial with leading coefficient 1. In particular,
H,(X) = X, H(X) = X? -1 and H3(X) = X® — 3X. We indicated in the
introduction that when 0 < D < 1/m, the weak limit in D[0, 1] of the stochastic
process Y M1 H,.(X;), 0 < ¢ < 1, adequately normalized, is different for different
values of m. In the case m = 2,

1
NTPLY) T Hy(X;) = R(t)

where R(¢) is the Rosenblatt process (Taqqu, 1975). The process R(t) admits the
following representation in terms of Wiener-It6-Dobrushin integrals:

) 1 | f// eila+xdt _ 1 (D-1)/2 (D-1)/2
R(t) = 2I'(D)cos(D7/2) Jrt i(x; + x2) | %1 ] [EZY dW(x1) dW(xz)

where W is a complex-valued Gaussian white noise measure on R! and where
J” means that no integration is performed on the diagonals x; = +x,. (See
Dobrushin, 1979; Taqqu, 1979b; or Major, 1981.) The finite-dimensional distri-
butions of R(t) are determined by

E exp(i Y21 u;jR(t))

1. (@i)*
= exp'lé 2k-2 k Zs.,sg,~~,n€|1,2,~»-,p] Us Usy = -+ usp
t,l t,g t‘k
f dxlf dx2-~~f dx;,
0 0 0
2 B B P e R e xll“’l-
J

(This is the corrected form of formula (6.1) of Taqqu (1975).)
Let a,, —%0 < s < o, be a sequence of constants satisfying a_, = a, and

e |as| < oo
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THEOREM 1. Suppose 0 < D < Ya. Then the stochastic process

1

NTOL(N) (TN 3N 6, hHn(X;)Hm(Xe)

Zn(t) =

— E XN ¥ o, Hp(X;) Hn(X5))
converges weakly in D[0, 1] to

m!m(Ti< e a;ry ) R(t)
as N — oo,

The next theorem shows that when Y2 < D < 1, the quadratic form, adequately
normalized, converges to Brownian motion.

THEOREM 2. Suppose Y% < D < 1. Then the stochastic process
Zn(t) = \/— (T T 0k Hn(X;) Hn(X)

- E let] ELZ‘II aj_ka(Xj)Hm(Xk)}

Jj=1

converges weakly in DI[0, 1] to ¢,,B(t) where B(t) is standard Brownian motion
and where

2
m —
"= (m!)Z 2$=1 <n> sl——oo 232——00 031032(r317’32)m "

2
2q—0< > Yi o rir [P N
REMARK 1. In fact,
omB(t) = m! Yo — 1 ( ) [ asre™Z(n, s, t)]
where {Z(n, s, t),1 < n <m, —© <s < »} is a collection of dependent Brownian
motions satisfying EZ(n, s, t) = 0 and

EZ(ny, s1, t1)Z(ng, s3, ta)

— [AO if ny# ny
|min(ty, £2)(n!)? Bieo (5)® ThSw Piris, o rhrerics, if ni=n,=n.

REMARK 2. Whenm =1, 6,B(t) = ¥ . a,Z(1, s, t) and
(2.2) (71 = 2 sz—oo 231_—00 .:x;:—oo aslaszrkrk+sl—32

It is possible to obtain convergence to a normal distribution even when
0 < D < %. Indeed, set t = 1, m = 1 and suppose that the conditions of Theorem
1 are satisfied and that, in addition,

2.3) 23-—«. as =
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Then, according to Theorem 1,

1
N'PL(N)

in probability as N — . Thus the possibility exists that if further conditions are
placed on the sequence a,, a normalization smaller than N'"°L(N) might lead
to a nondegenerate limit distribution.

In particular, we could assume

{2;111 Eg-l aj—kaXk - E 2,111 Ei\;l aj—kaXk} -0

(2.4) a; ~s"Li(s) as s — oo,

where v > 1 and L,(s) is a slowly varying function. If further restrictions are
imposed, Relations (2.1), (2.3) and (2.4) become equivalent to

f(x) ~ |x|PLy(x) as x—0
and
lg(x)| ~ |x|"'Ls(x) as x— 0,

where L, and L3 are slowly varying at 0 and f and g are defined by

re =J: e™f(x) dx

and
a, =f e**g(x) dx.

Now say that a sequence {ux, k = 1} has bounded variation if Y-y | ur — Ups1 | <
o and that it is quasi-monotonically convergent to zero if up — 0 and if for some
constants ¢ = 0 and kq(c) > 0,

Ups1 < up(l + (c/k)) for all k = ky(c).

(This last definition assumes that the u; are positive for large k. An analogous
definition applies if the u, are negative for large k.)

THEOREM 3. Suppose that

(1) ro ~k"PL(E) with 0 < D < Y%, the sequence {r} has bounded variation and
it is quasi-monotonically convergent to 0.
(2) |ax| ~ k7"Li(k) with 1 < vy < 3, satisfying
(i) ar=a_,

(ii) as is positive for large k (or negative for large k)

(iii) YF-—w ar=0.
B) D+v>%.
Then

1
Zn= N (SN, SN 0 X;Xe — E TN, SN aj-x X X0

tends in distribution as N — o to a normal random variable with mean 0 and
variance 1673 [*, [f(x)g(x)]? dx.
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ExXAMPLE. Fractional Brownian motion B,(t) with index 0 < a < 1 is a
Gaussian process with stationary increments, mean zero and satisfying EB2(t)
= | t| 2. Its increments B,(k) — B,(k — 1), — < k < o, have covariances

up = Yol(k + 1) — 282 + |k — 1|2}, k=0

which satisfy u, ~ a(2a — 1)k2* 2 as k — © when « # % and also $3& o up =0
when o < %. Examples for the sequences {r;} and {a.} of Theorem 3 can be
obtained by setting r, = u, with D = 2 — 2« and % < a < 1, and by setting
ar=u,withy=2—-2aand 0 < a < %.

3. Applications of the diagram formula. Let X, j = 1, be a stationary
Gaussian sequence as defined in Section 2. In order to prove Theorems 1 and 2,
we will make use of the spectral representation of the sequence X;. Let G be the
Borel measure on [—m, 7] satisfying

ry = f e® dG(x), —o < k < o,
We have the representation
X;= f e dZg(x),

where Z; is the random spectral measure determined by the sequence X;. (See
Major, 1981, for example.) According to Theorem 4.2 of Major (1981)

(31) Hm(X]) = f eij(xl+~~+xm) dZG(xl) e dZG(xm)a

[-m,x]™

where the integral is a multiple Wiener-Ito-Dobrushin integral in the sense of
Dobrushin (1979).

The proofs of Theorems 1 and 2 involve the “diagram formula” for multiple
Wiener-It6-Dobrushin integrals, which can be found, for example, as Theorem
5.3 of Major (1981). We state the diagram formula below as Proposition 3.1. First
we need to introduce some notation. Let h% be the space of functions h: [—=, 7]"
— C satisfying

h(_xly Tty _xn) = h(xla Tty xn)
and

J; " [h(xy, -+, %a) |* dG(x1) --- dG(x5) < o

For h € h%, we define

I(h) = J;_ ; h(xy, - -+, 2n) dZg(x1) - -+ dZg(xn).

If ¢ is a constant put Iy(c) = c.
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Let n,, ---, n, be given positive integers. The diagram _t_'ormula is useful in
evaluating products of the form [[%_; I,,(h:), where h, € h. Put Ny = 0 and
Ny=n1+ --- +ng, k=1, ..., p. Introduce the set of “vertices”:

V = {(17 1)1 (11 2)’ Tty (17 nl)’ (2, 1)7 M) (2’ nZ)a Sty (p, 1)’ Ct 0y (py np)}-

To each vertex v € V we associate an integer denoting the position at which v
appears in the above list. Thus the position of (1, 1) is 1, the position of (1, 2) is
2, and so on. The position of the last vertex (p, n,) is N,. A diagram « of order
(ny, -+, ny) is an undirected graph on the vertices V such that each vertex is
met by at most one edge and such that if vertices (ji, k1) and (j2, k2) are joined
by an edge it follows that j, # j.. The diagram v then has N, vertices and may
have 0, 1, 2, - - - edges. Let I'(ny, - - -, n,) denote the set of all diagrams of order
(ny, -+, np). For each diagram v € I'(ny, - - -, n,), let | v | denote the number of
edges in .

For a fixed vy € I'(ny, - - -, n,), there are n, = N, — 2| v | vertices which are
met by no edges in v. Denote by 71 < 75 < ... < 7, the positions of these
vertices. Let ¢, < 02 < ... < ¢}, be the positions of the vertices which are
connected by edges in vy to vertices with larger positions. Let 4,, - - -, §;,, be the
positions of the vertices which are connected to the vertices with positions
01, * + +, 04|, Tespectively. Then we have

{19 Tty Np} = {le Tty 7n.,a 01y *°*y O|y|y Bla ) 6I",/I}'
Now suppose that functions h, € h%, hy € h%, - -, h, € h are given and
define
(i, -, %) = Ba(x, oy o) RalEnprn, - %ng) <+ Bp(Xn, o1y -+ o5 2N,
Then, for each diagram y € I'(n,, - - -, n,), perform the two following operations:
(1) introduce new variables y,, - -, y, and z,, - -, 2|, and let them appear
as arguments of h by setting y; = x,,, 2; = Xo;, and —z; = x;,. The new
function is denoted h(yy, - -+, ¥n, 21, -+, 213).

(2) using G as integrator, integrate out the variables z; so as to obtain
hy, vy yn,) = LI | h(y1, -+, Yn,s 21, -+, 21y)) dG(21) -+ dG(2)y)).
hd

PRrROPOSITION 3.1. The Diagram Formula.
H‘I;=l In,,(hk) = Z'yel‘(nl, -v',np) Iu.,(h‘y)-

A diagram vy € T'(ny, -- -, n,) is called complete if each vertex is met by an
edge. If v is complete then |y | = %N, and n, = 0. Let T'¢(n4, - - -, n,) be the set
of complete diagrams of order (ny, - - -, n,). Since I n,(h,) is the constant h., when
n, = 0 and is an integral with mean 0 when n, = 1, the following corollary to
Proposition 3.1 holds.
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PROPOSITION 3.2.
E[HP=1 Ink(hk)] = Z‘yel‘o(nl,-~~,n‘,) h-y~

A complete diagram y € T'o(ny, - - -, n,) is called regular if, whenever (j, i,) is
joined to (ki, 4) and (j, i») is joined to (ke, %), it follows that k, = k..
Let I'y(ny, - - -, n,) be the set of regular diagrams of order (n,, - - -, n,). That set
is empty if p is odd or if ny, - - -, n, are not pairwise equal.

The following proposition is about moments of Gaussian random variables
whose covariances are identical to those of Wiener-Ito-Dobrushin integrals.

PROPOSITION 3.3. Let Z,, ---, Z, be a jointly Gaussian collection of random
variables having mean 0 and satisfying

EZjZk = EI,,j(hj)Ink(hk), 1 Sj, k< D.
Then
E(Zl e Zp) = Eyerl(nl,...,np) h,y.

PrROOF. We may suppose that p is even and n,, ---, n, are pairwise
equal (otherwise EZ, - -- Z, = 0 and the proposition trivially holds). Let I'" =
To(4, -+, 4,), where 4 =4, = --- = £, = 1. We consider a diagram g €T’ as a
graph on the vertices {1, ---, p} in which each vertex has degree 1. Choose
g € T’ such that one has n; = n, for each edge (j, k) € g.

A graph g of this type can be used to construct a diagram v € I'y(ny, - - -, n,)
as follows. For each edge (j, k) € g, construct a complete diagram v;, on the
vertices

G, D, -+, Gyny), (1), -+, (B ny).
In this way we obtain a diagram vy € I'y(n,, - - -, n,) such that
hy = Il G.wes h{;’;h,
where
h*(xy, -« oy Xan) = Bj(x1, -y X)) ha(Xnja1, - -y X2ny)

and
h{Y’:k = f . hj(zly Tty znj)hk(_zla Tty _znj) dG(zl) e dG(an).
R™
Therefore

Yoerson -y by = Tger [lGmes Zoperonng i
‘ = Yger' [l imeg ElLn(hj)In,(ha)]
by Proposition 3.2. This last expression equals
Yeer: Gmwes EZiZy = E(Zy -+ Z))

since Z,, - - -, Z, are jointly Gaussian. This establishes Proposition 3.3. 0
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LEMMA 3.4.
2
H(X;) Hn(Xs) = mlrfy + Timy [(m - n)! (’:) I Ka, k)]

where

n

(3-2) Kn(j, k) — f eij(x1+...+x,,)+ik(x,,+1+...+x2,.) dZo(xl) .. dZG(x2n)-

[~ =)

PROOF. In order to apply Proposition 3.1, define
hl(xl, ceey, xm) = eij(x1+...+xm)

and

ho(x1, - -+, %) = ert*m),

For each diagram vy € T'(m, m), define h, as above and let n = Yn,. It is clear
that

I2n(h'y) = f eij(x1+ <o) ik 1t FXpan)
R0

L dZo(®) -+ AZo(%n) AZ(Eme) -+ AZG(imen)
' f Ut ) 4G (z1) -+ dG(zm-n)
mm-n

_ [ if n=0

" Ku(j, k) if n=1, ..., m.

Since the number of diagrams y € I'(m, m) satisfying |y| = m — n is
(m — n)!()? the statement of Lemma 3.4 follows from (3.1). 0

Let
MNm = E 2}11 2£V=1 aj—ka(Xj)Hm(Xk)-
LEMMA 3.5.
ijil 2&1 aj—ka(Xj)Hm(Xk) — MN,m
2
= Y1 (m = n)! <’:) Zisi<n asry "W(n, s, N),
where

(3.3) W(n, s, N) = Z)5" K.(j, j + |s]).
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PrROOF. The result follows from Lemma 3.4 because
Z}L Zfev=1 aj—ka(Xj)Hm(Xk)

2
2
= unm + e (m = n)! <r,':> [N S a2 K, k)]

2
= unm + Sn=1 (m — n)! <'Z> Yisi<n asrs "W(n,s, N). 0O

LEMMA 3.6.

2
E[K.(, j + $)Ka(k, k + )] = 200 (n!)? <Z> I s o0 20

PROOF. In order to use Proposition 3.2, define
hi(xy, -+ -5 X2n) = exP(§ (X1 + -+ + %) + i + 8) (Xne1 + - -+ + %2n))
and
ho(x1, « - -, Xon) = exp(ik(xy + -+ - + ;) + i(R + ) (X1 + -+ - + x24)).
For each v € I'(2n, 2n), define h,, as above. Then we have
EK,.(j, ] + s)Kn(k, k + 1) = Tyergenzm Ry

Fix a diagram y € T'o(2n, 2n). Let g be the number of edges in y which connect
a vertex of the form (1, j) to a vertex of the form (2, k), where 1 < j, k < n. The
number of edges connecting other pairs of vertices are then determined as follows.
There are n — g edges from (1, j) to (2, k), where 1 <j<nandn+1=<k=<2n
There are also n — g edges from (1, j) to (2, k), wheren + 1 <j<2nand1=<k
< n. Thus there are g edges from (1, j) to (2, k), where n + 1 < j, k < 2n.
Therefore we conclude

= pd pd n—q n.n—g
hy = Fi o T pes—e T s ikt

Since the number of diagrams of the above form is
n 4 n 2
! — 112 = 1)2
<q) [g!(n — )] <q> (n!)%
the result of Lemma 3.6 follows. 0

4. Preliminary lemmas. Define K,(j, k) as in (3.2) and W(n, s, N) as in
(3.3).
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LEMMA 4.1.
(a) If0<D<Y%thenforn=1,.---,m
E[Y v Ka(j, J + 5)F
SUPos<NSUPs=0 [y =/ AA;;;'WL?( N <
(b) If0<D<Yathenforn=2,---,m

. E[W(n, s, N)I’
limpy_eSUp |5j<n NzTL"’(N) = 0.

(c) Ifs<D<1thenforn=1,.--,m

E[Y X p Ko, J + 9)1*
SUPo<=M<NSUPs=0 N2 <@

PrROOF. We can choose a constant C; and a nonincreasing sequence b, so
that | r,| < brand b, ~ C,k~PL(k). (See Seneta, 1976, page 20.) Note that for all
0=<M<Nands=0 :

(4.1) S Nrer Zhensr Djoks bjk—s = (N = M) T nj<n-u b3,
because foreachj=M+1, ..., N
T hoser Ojmrrsbjmr-s = {X0prr OF-krs Thprin bf-rms}'?
< Yiri<n-u bE.

(a) Because of Lemma 3.6, Part a will follow from the relation

N N 29 nn—q nn—q
=M1 Zk=pmr1 TionT sl h—s

SUPo<M<NSUP;s=0 (N — M)2_2DL2(M - N)

First suppose that ¢ = 0. Then the above sum is majorized by

< oo, q=0,...,m.

Y aer Zieper Djnrsbir—ss
which by (4.1) is majorized by
(N — M) X rj<n-m bk <= Co(N — M)*?PL¥(N — M)

for some constant C,. On the other hand, if ¢ = 1 the sum is majorized by
N1 Shem+1 bj—x and (4.1) is again applicable.
(b) Because of Lemma 3.6, Part b will follow from the relation

. P Yl i A N
(4.2) llmN_msup|s|<N N2_2DL2(N) =0, ¢g=0,---,n.

To prove (4.2), we consider three cases. When ¢ = 2, the sum in (4.2) is
majorized by

L ZhL i, < N Iy rid = o(N*?PL¥(N)).

j=1
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When n — g = 2, the sum in (4.2) is majorized by
2}11 Zﬁ=1 b]"‘—_lgi-s ?—_Ig—s = N 22;—1\] b’2a(n—q) = 0(N2_2DL2(N)),

where we have used (4.1).

Recall that in Part b we suppose n = 2. Therefore, if neither g = 2 norn — ¢
= 2 we are in the case n = 2 and ¢ = 1. In this case, the inner sum in (4.2) is
majorized by

SRS | rjmkljokTjokrsTiokos | < [ZAST Ik SRt Tk SAST Fiokes 2ot Fiow—s]/.

Each of these sums in brackets is at most Y& _n ri. Therefore the double sum in
(4.2) is majorized by N YN._n rt = o(NZ2PL%(N)).

(c) Part ¢ can be established by adapting the proof of the proposition in
Section II of Breuer and Major (1983). That proof was applicable to

E[TY, K.(j, DI* = E[TY, Ham(X)]"
There is no difficulty in applying the same method to E[Zﬁi w1 Kn(Gy J +8)]8.0

LEMMA 4.2. Given a collection of random variables Y(s, N), N=1, |s| <N,
define

S(k, N) = Y51« Y(s, N)
and
T(k, N) = S(N, N) — S(k, N) = Y<isi<n Y(s, N).
Suppose that there exist random variables Sy, k = 1, and S such that

(1) For each k, S(k, N) tends to Sy, in distribution as N — .
(2) Sy tends to S in distribution as k — .
(3) T(k, N) tends to 0 in probability as N and k tend to infinity.

Then S(N, N) tends to S in distribution as N — .

PROOF. Let x be a continuity point of the distribution of S. According
to Condition 3 of Lemma 4.2, we can choose a sequence {k,} such that
P{| T(k,, N) | = Yen} < Yan for each n = 1, N = k,. We can also find J, satisfy-
ing %an < 6, < 1/n, such that x + 4, is a continuity point of Sy . Thus é, — 0 and
P{| T(k,, N)| = 6,} < 6,. For each n = 1 and N = k,, we have P{S(N, N) < x}
= P{S(kn, N) + T(kn, N) < x} < P{S(kn, N) < x + 6,} + P{| T(kn, N) | = 6,} <
P{S(k,, N) = x + §,} + §,. Hence, by Conditions 1 and 2,

lim supn_.«P{S(N, N) < x} < P{Sy, < x + 6.} + 6»
< lim sup,—«P{Sk, — 6, < x} + lim sup, 0,
= P{S = x}.
A similar argument shows that lim supy_..P{S(N, N) > x} < P{S > x}. This

implies that lim infy_.P{S(N, N) < x} = P{S = x}, which completes the proof
of the lemma. [0



NONCENTRAL LIMIT THEOREMS 439

5. Proof of Theorem 1.

5.1 Convergence of the finite-dimensional distributions. We show that the
finite-dimensional distributions of Zx(t) converge to those of

m!m(X, a,ri R(¢).
According to Lemma 3.5,
2
1 Thet GokHn(X)Hn(Xe) — pym = Xy (m — n)! (’,’:) V(n, N),
where
V(n’ N) = 2|s|<N asr;n—nw(n’ S, N)-

Since ¥ |a,| < ®, Lemma 4.1b implies that sups-,...~nE[V(n, M)]? =
o(N**PL*(N)) as N — o, for n = 2, - -., m. Therefore it suffices to show that
the finite-dimensional distributions of V(1, [N¢])/N*PL(N) converge to those of
m!m(Y a,r? Y)R(t). This will follow from Lemma 4.2 if we prove that the
conditions of that lemma are satisfied when
P diasry T W(L, s, [Nt])

N¥PL(N) ’

Sk = (ZTjsi<k a,r™) Yo, diR(1),

Y(s, N) =

and
S = (T a,r?™Y) Y2, d;R(t),

where d;, ---,d,and 0 < ¢t;, - -, t, < 1 are fixed. It is clear that Condition 2 of
Lemma 4.2 is satisfied. We shall now verify Condition 3 of that lemma.

We can choose a constant C; so that M °L(M) < C;N'"PL(N) forall 1 =< M
=< N. To see this, note that there is a slowly varying function L, such that
N'PLy(N) is nondecreasing and Lo(N) ~ L(N ) as N — « (Seneta, 1976, page
20). Thus there are constants C3 and C4 so that N*"L(N) < C;N*2Ly(N) <
CiN'"PL(N) for all N = 1. Hence M*°L(M) < C;M*PLy(M) < C4N 1=DLo(N)
< C5C4NPL(N).

According to Lemma 4.1a there is a constant C, so that

E[W(, s, [Nt])]? < C4Nt)*?PL*%([Nt])
N2—2D LZ( N) - N2—2D LZ( N)

for N=1,0<s<N,0=<t=<1. Thusif T(k, N) = Ye=isi<n Y(s, N), then
E[T(k, N)?

= C4C§

m— m— E[W(]-’ S, [Nt,])W(l, t9 [Nt])]
= li)=l 25‘;1 2k5|s|<N 2k5|t|<N didjasrs latrt ! N2_21)L2(N) L
< CoC3(ZPy 1 1) (Shsior<n | as1)2

which tends to 0 as N and & tend to infinity because ¥ | as| < c. Condition 3 of
Lemma 4.2 is thus satisfied.
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It remains to show that Condition 1 of Lemma 4.2 holds. We note that if x;,
—0 < k < o, satisfies x_, = x; and x, ~ k~"Ly(k), where 0 < y <1 and L,(k) is
slowly varying at oo, then for any s, so, u;, Uy we have

251:‘141]—31 251'{2]—32 Xj-k f u f“z
limpy_e = — y|™ dx dy.
1MN. N2_.y L1 ( N) o o l X y l X y

Since rirrss—: ~ E7PL%(k) and rpssre— ~ k2PL2%(k), Lemma 3.6 implies that for
each i, j, s1, s,

t ty
EW(, 51, ING)W(L, 52, [Nt;]) _ J’ f % — y|2 dx dy.
0 0

lim N—>oo

N2—2DL2(N)
Hence
limy_. E[(1/N'"PL(N)) ¥, d{(W(1, s;, [Nt;]) — W(1, 0, [Nt]))]* = 0

for any choice of d;, - - -, d, and sy, - - -, s,. Therefore the limiting distribution of
(1/N'"PLIN)Y(W(, 81, [Nt]), ---, W(1, sp, [N&]) -
is the same as that of
(1/N'"PL(N))(W(L, 0, [Nt]), ---, W(1, 0, [Nt,])).
According to Lemma 3.4,
W@, o, INt]) = 2527 Ku(j, J) = 55 (XF - ).

As observed in Section 2, the finite-dimensional distributions of ¥1¥] (X} — 1)
converge to those of R(t). Therefore for any s;, - - -, sp

(1/N'ZPLIN)(W(L, sy, [Nt]), - -+, W(L, sp, [Nt]))

tends in distribution to (R(ty), ---, R(t,)), establishing Condition 1 of Lemma
4.2.0

5.2 Tightness. We now show that the sequence Zy(t) is tight in D[0, 1].
Choose 0 < t; < t; < t3 = 1. According to Lemma 4.1a, there is a constant Cs
such that

E[ZR8, 111 Kn(J, J + 8)I = Cs(INtz] — [Nts])*"*PL([Ntz] — [Nt])
for s = 0 and
E[T9 K.(j, j + 9)]* < Cs([Nta] — 5)*2PL%([Ntz] — s)

= C5C3([Nts] — [Nt *PL*([Nt;] — [Nt1])

for [Nt,] = s < [Nt,], where as before, Cs is a constant satisfying M'"°L(M) =<
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C3N*PL(N) for 1 <= M < N. Since
N"PLIN)[Ziney — Zin]

2
n — . ..
=X (m = n)!<m> @™ Tisi<iveg Ziniieg-se1 Kalls J + 9)

2
n _ _ ..
+ Y (m — n”(m) asrs " YiNel=|s|<iNt) Zﬂ’i‘f’ * Kau(j, J + ),

it follows that
Ce([Nty] — [Nt,])**PL*([Nts] — [Nt])
N2—2D L2( N)

[Nta] — [Nt:] )2—2D—e
N

E[Ziney) — Zin))* <

= Ce C7<

where ¢ is chosen so that 2 — 2D — ¢ > 1 and C; is a constant satisfying M°L(M)
=< C;N°L(N) for 1 = M < N. Therefore

E| (Zing — Zine) Zineg — Zingy) |
C ( [Nt;] — [Ntﬂ)“”“‘”’( [Nts] — [Ntz]>l'D'“/2’

s\ xr - .

<

N N
If t; — t, = 1/N, it follows that
(5.1) E| (Zing = Zineg) Zineg — Ziney) | < 2272PCy(ts — )20

Relation (5.1) also holds when t; — t; < 1/N because, in that case, the left-hand
side of (5.1) equals 0. Tightness follows from Theorem 15.6 of Billingsley (1968).
The proof of Theorem 1 is now complete. [

6. Proof of Theorem 2. To show that the finite-dimensional distributions
of Zn(t) converge to those of ¢,,B(t), it is sufficient to prove that the conditions
of Lemma 4.2 are satisfied when

1
VN
T(k’ N) = 2k5|s|<N Y(S, N) =2 Zii_kl Y(S, N)»

2
Y(s, N) = 28 di Xia (m — nﬂ('::) a;rs"W(n, s, [Nt)),

2
Sk =38, di Tisi<k Zn=1 (m — nﬂ(':) a;rg"Z(n, s, ty),
and
2
S=3F,d ¥Tiw X (m — nﬂ('::) a;ry"Z(n, s, t),

where dy, ---,d,and 0 < ¢, ---, ¢, < 1 are fixed. The processes W are defined
in (3.3) and the processes Z are defined in Remark 1 of Section 2.
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Condition 2 of Lemma 4.2 is trivially satisfied. To verify Condition 3, note
that by Lemma 4.1c, there is a constant Co such that

B[S Knll,j + 9P _
N
forn=1 ..., m 0 <M< N, s = 0. Also, note that by Proposition 3.2,
EW(n,, s;, N))W(nz, sz, N2) = 0 for n, # n, (the set of complete diagrams
I'4(2n,, 2n,) is empty when n; # n,). Therefore
E[T(k, N)}

= 4 N3 E[Y(s1, N)Y(ss, N)]

81—

272
= N—-1 gp p - m—n.m-nd. .
4 Zsl=k Sg=k Ldji=1 Ldjo=1 [(m n)'( n) :| B5,85,7s; Ts, dhdlz

. N'lE[W(n, 81, [thI])W(ny S2, [Nth])]

= 4C[2%., d* [(m - n)'( ) ] [Z5 a1

Since this tends to 0 as k and N tend to o, it follows that Condition 3 of Lemma
4.2 is satisfied.

In order to verify that Condition 1 of Lemma 4.2 is satisfied, it is enough to
show that for any 0 < ¢, .-+, £, < 1 and integers s;, -+, 85, =20,1 < ny, -,
np, < m, the random vector

A/VN)Y(W(na, 81, [N&]), - -+, Wing, s,INt]))
converges in distribution to
(Z(ny, s1, t1), -+ -, Z(ny, Sp, tp)).
This will follow if we show
(6.1) limy_ vy = E[Z(ny, s1, t1) -+ Z(n,, sp, t,)]
where
vy = (1/NPAE[W(n, s1, [Nt]) -+ W(n,, sp, [Nt,])]
= (U/N?) S L SN BK, G,y + ) - Koo Jo + sp))
We use Proposition 3.2 to evaluate this last expectation. Let
Ty = Ty(2ny, ---, 2n,), Ty =T12ny, ---,2n,), and Ty = Ty/T;.
If indices ji, - - -, jp are fixed, introduce
hi(21, - vy Xgn) = exP(fr(x + -+ + 2n) + 10k + ) (Xnrr + -+ + 221)),
k=1, -.--,p,
so that K, (jk; j& + Sx) = I2n,(hs). Define the function h and the constants h,,
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v €T, as indicated prior to Proposition 3.1. According to Proposition 3.2,

1 Nt
— 1= Ntpl—
N = 1 Tyt e BT Saer, by

°N p/2 Zliv—ti]_h ) Z[th]_s’ Yyer, hy

[Nt;]-s, [Nt,)-s,

+W2j1=1 21—1 Zverzh

We can express h, in terms of the covariances ri. To do so, let E(y) be the
edge set of the diagram v € T. If e € E(v) joins (k, i;) to (¢, iz), where k > /,
define

d(e) =k, f(e) =

and
0 if 1<i,<n 1=<i,<n,
s(e) = Sk lf nk+.15i152nk, ls.izsn/
—s, if 1l=sii<ng, n+1<i,<2n,

sk—8, if np+1=<i;=2n; n+1=<i,<2n,.

With these definitions

By = [ecke r(ae — jre + s(e)),

with r(k) denoting r,.
The conditions of Theorem 2 allow us to fix ¢ > 0 satisfying —D + ¢ < —. If
C > 0 is given, define

'_, {1 k=0
r'B) = clk)P ko,

We can choose C so that | res,| < r for all —© < k < ® and |s| < max(|s,|,
I's2], -+, | $p|). Therefore

1
Nt [Nt ]~
( o Shet ™ B Sher, b

. 1 - .
= ’ NP2 z]ulit:ll] R 2[ t’] *® Tver, [lecem r(ja@ — jre + s(e))

1
= N Ih-1 - I Toer, eerw M Gaw = Jre)-

Since —D + ¢ < —%, the proposition on page 433 of Breuer and Major (1983)
implies that this last expression tends to 0 as N — o, Hence

. . 1 _ Nt,J-
th—onN = hrnN_)m NP/2 ijl—ti] 1, . z[ o)l —8p Z‘YGI‘1 h‘y.

By Proposition 3.3, the quantities ¥ ,er, h, are moments of jointly Gaussian
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random variables KS(j, k) having the same covariances as K,(j, k). Therefore
the limiting random variables Z(n, s, t) are Gaussian with covariance

EZ(ny, s1, t)) Z(ny, s2, t2)
= limyu(1/N)EW (ny, s1, [Nt,]) W(ng, sq, [Nt,])
= llmN—»oo(l/N) 2}11\21]_81 E[Ntzl—az EKn(jb jl + SI)K/(J.% j2 + 32)

Jo=1
= [ 0 if n; # Na
|min(ty, t2) =0 (M)*(5)? Thamew riris, o Thedrisd if ni=ny=n,
where we have used Lemma 3.6 and the elementary fact that if {x.} is a sequence
satisfying Y 5-—w | Xz | < oo then
BN SR 2y
N

The sequence Zx(t), N = 1, is tight in D[0, 1] because there is a constant C
such that forany 0 < t; <t <tz =1,

E(Zn(t:) — Zn(t))(Zn(ts) — Zn(t))? = Clts — 1]

lim e = min(ty, t2) Yke—w Xk

The existence of such a constant is established by using Lemma 4.1c and
proceeding as in the proof of tightness for Theorem 1.0

7. Proof of Theorem 3. Set

0

Cla) = 2T (a)cos(am/2)"

We will use the following three propositions.

ProposITION 7.1 (Yong, 1974, Theorem III-12). Let {ux, k = 1} be of
bounded variation and quasi-monotonically convergent to zero. Let 0 < a < 1.
Then

ur ~ k™*L(k)
as k — o, if and only if
Sy up cos(kx) ~ C(a)x*1L(1/x)

as x — +0.

PROPOSITION 7.2 (Yong, 1974, Theorem III-27). Forl < a <3,
(7.1) Yi=1 R™L(k)cos kx — Y i_1 k™*L(k) ~ C(a)x**L(1/x)

as x — +0.

For any sequence a; and for any integer K, Y X, axcos kx — $K, a, = O(x?)
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as x — 0. One can therefore replace (7.1) by
(7.2) Y1 arcos kx — Yy ax ~ C(a)(limp_.sgn a;)x**L(1/x)

as x — +0, where 1 < a < 3, | a| ~ k™*L(k) as k — o and where a; is positive
for all large k or negative for all large k. If, moreover, a, = a_; and Y12 ar = 0,
then

(7.3) | ZTisw ane™| = 2 | Tio1 axcos kx — Yioy ax| ~ 2C(a)x*'L(1/x)

as x — 0.

In the next proposition, { X} is a mean 0, stationary Gaussian sequence with
spectral density f(x) ~ x™*L,(x) as x — 0; also, {a,} is a symmetric sequence with
ar= ["_e*g(x) dx and | g(x)| ~ x~PLs(x) as x — 0. The functions L, and L; are
slowly varying at 0. Furthermore, we suppose that f and g are bounded in the
interval [6, 7] for all 6 > 0 and that their discontinuities have Lebesgue measure
zero. (The function g need not be nonnegative.)

ProposITION 7.3. (Fox and Taqqu, 1983, Theorem 3). Ifa<1,8<1and
o+ B <, then

A/VN) {ZX, I 0 X; X — E BN, TN, 00X, X, )

tends in distribution as N — o to a normal random variable with mean 0 and
variance 1673 [*_(f(x)g(x))? dx.

To prove Theorem 3, one needs only to verify that the conditions of Proposition
7.3 are satisfied. First apply Proposition 7.1 to {r.} with « = D € (0, %) and
Relation (7.3) to {ax} with « = v € (1, 3). Note that « € (%4, 1), 8 € (-2, 0) and
that o + 3 =2 — D — v < % by Assumption 3 of Theorem 3. It remains to verify
that f and g are continuous on [§, w]. The continuity of f follows from the
assumption that the r, have bounded variation and the continuity of g from
¥ | ax| < . This completes the proof of Theorem 3. O

REMARK. The conditions of Theorem 3 were used to verify the assumptions
of Proposition 7.3. It may be possible to find weaker conditions that achieve the
same purpose.
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