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ON THE CONVERGENCE OF DIFFUSION PROCESSES
CONDITIONED TO REMAIN IN A BOUNDED REGION FOR
LARGE TIME TO LIMITING POSITIVE RECURRENT
DIFFUSION PROCESSES

By Ross G. PINSKY

University of California, Los Angeles

Let X(t) be a diffusion process on R¢ with generator L = (1/2)V - aV +
bV and let {P,}, x € R be the corresponding measures on paths. Pick
0 <t < T < » and consider the process on the time interval [0, ¢] conditioned
to remain in a certain open, connected bounded region G up to time T. We
obtain a new process Y7(s), 0 < s < ¢t. Let 7¢ = inf{s: X(s) & G}. With certain
hypotheses on P.(r¢ > s) (which are always satisfied if a~*b is a gradient
function), we show that Y7(s) is an inhomogeneous diffusion process and that
as T — », Y7(s), 0 < s < t converges to a limiting homogeneous positive
recurrent diffusion Y(s), 0 < s < ¢, with state space G. Since ¢ is arbitrary, we
actually obtain a limiting process Y(s), 0 < s < . The generator of the
limiting process may be written in the form Ls = (1/2)V . aV + bV _+
a(Vgo/8)V — aVhyV where g is the square root of the density of a measure
o which minimizes the I-function for the process, over all v € #(G), the set
of probability measures on G. The function kg, appears in the explicit calcu-
lation of I(u,) and solves a certain variational equation. The invariant measure
for the process is po.

1. Introduction. Let X(s) be a diffusion process on R with generator
L = (1/2)V - aV + bV where a is a positive d X d matrix with coefficients
a;; € C(R?) and b is a continuous d-vector, and let {P,, x € R%} be the collection
of measures on C([0, ®), R%) which define the process. Let G C R? be a bounded
open connected set and put 7¢ = {inf s = 0: X(s) & G}. In this paper, we will
consider the diffusion process conditioned to remain in G for large time. For 0 <
t < T < «, we define a conditioned process up to time ¢, starting from x € G at
time zero by QT¢(Y7(+),0=s<t) = P,(X(*),0 =s < t| 7> T). We will show
that Y7(+) is an inhomogeneous diffusion, and that as T'— o, Y”(+) converges
to a limiting homogeneous, positive recurrent diffusion on G. Since ¢ is arbitrary,
the limiting process is actually defined for all ¢ = 0.

In order to motivate the results and to state them in a completely probabalistic
manner, we describe briefly the I-function theory for large deviations of Markov
processes. Let w = z(*) be a path of a strong Feller process with generator .# on
a domain D of R? and consider for B C D, L,(w, B) = (1/t) [§ x®&(2(s)) ds.
L.(w, B) measures the proportion of time up to ¢ that the process is in B. Hence
L.(w, *) € #(D), the space of probability measures on D; it is the occupation

Received December 1983; revised May 1984.

AMS 1980 subject classification. Primary 60J60 F.

Key words and phrases. Conditioned diffusion processes, I-function, convergence of diffusion
processes, invariant measures.

363

I8
5l |
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é%%
The Annals of Probability. BEN®RY ;

WWW_jstor.org



364 R. PINSKY

measure for the particular path w. For u € (D), define the I-function for
the process by I(n) = —infue o+ [p (Lu/u) du where 9" = {u € Z: u=c> 0}
and & is the domain of the generator .#. It is easy to check that I(x) = 0
(pick u = const.) and lower semicontinuous under the weak topology on (D).
Let P, be the measure on paths induced by the process starting from x € D.
Under a suitable transitivity condition, Donsker and Varadhan [3, 4] have proved
that for open sets U C #(D),

(1.1) lim inf, .. (1/t)log P.(Li(w, *) € U) = —inf,eul(u)
and for compact sets C C #(D),
(1.2) lim sup, .. (1/t)log P,(L:(w, *) € C) < —inf,ecI(n), forall x € D.

Furthermore, the following propositions hold.

PROPOSITION 1. I(u) = 0 if and only if u is invariant for the process. (Use
Lemmas 2.5 and 3.1 in [3].)

Now consider a compact D so that closed sets in #(D) are compact. Let B, (u)
C (D) be the open ¢ neighborhood (with respect to some suitable metric) around
u. Then (1.1), (1.2), Proposition 1 and the lower semicontinuity of I(+) give us

PROPOSITION 2. If u is invariant for the process, then lim inf, ..(1/t)log
P.(L(w, *) € B.(1)) =0 for all e > 0 and all x € D. If u is not invariant for the
process, then for each x € D, lim sup;.»(1/t)log P.(L:(w, *) € B.(r)) < 0 for
sufficiently small ¢ > 0.

In the context of the diffusion processes above, the following proposition also
holds [5, Theorem 2.2].

PROPOSITION 3. Let G C R be a bounded open connected set. Then
(13) limt—»w (l/t)IOg Px(TG > t) = —inf{peﬂ (R"):supppCﬁ]I(ﬂ)’

for x € G.

To motivate our main theorem, we apply the above proposition to the condi-
tioned process Y7*(+). Note that since #(G) is compact and since I(*) is lower
semicontinuous, the infimum on the right hand side of (1.3) is actually attained.
Suppose the infimum occurs uniquely at some measure uo. Then, for any other
measure u € Z(RY), supported in G, pick ¢ > 0 small enough so that p, &
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B.(k) C 2(R%). Thus infy,e5, ) suwprca I (v) > I(uo) and we have
lim supr_..(1/T)log Q%" (Lr(w, *) € B.(u) N #(G))
= lim supr_m(l/T)lOg Px(LT(w’ .) € Bc(#) I TG > T)

P.(Ly(w, *) € B(n), 7¢ > T)
Px(TG > T)

P.(Lr(w, *) € B.(x) N #(G))
P.(r¢>T)

(1.4) = lim supr.«(1/7T)log

= lim supr.«(1/T)log

= —inf|~,e§,(,‘>:supp~,cé:1(7) + I(I-"O) <0.
Similarly,
lim infr.(1/T)log QT (Lr(w, *) € B.(u) N 2(G))

Px(LT(w’ .) € Be(”'O)y TG > T)
P.(r¢>T)

= lim infr(1/T)log Pi(Lr(w, *) € B.(ko), 7¢ > T) + (o).

(1.5) = lim infp,.(1/T)log

(1.6) If lim infr .. (1/T)log P:(Lr(w, *) € B.(mo), 7¢ > T) = —I(po),
then (1.5) becomes
1.7) lim infr . (1/T)log QTT(Lr(w, *) € B.(uo) N #(G)) = 0.

Unfortunately, we don’t quite have the technical machinery to prove (1.6),
although, if we take a é-neighborhood G; of G, then, with 7, replacing 7, and
with “=” replacing “=", (1.6) is true [4, Theorem 8.1].

Comparing (1.4) and (1.5) (or 1.7) to Proposition 2, one is led to wonder
whether as T'— o, the conditioned process, @7, converges to a limiting positive
recurrent process on G with uo as the invariant measure. Indeed this will more
or less be the case (“more or less” because we will actually consider Q7 as
T — o0).

Let L=1%V . aV — bV — V . b be the formal adjoint to L. The Krein-Rutman
theory of positive operators provides us with the following theorem [10].

KR. The operators —L and —L with the Dirichlet boundary condition on 8G
have a common simple real eigenvalue o at the bottom of their respective spectra.
The corresponding elgenfuncttons ®, and P,, are positive on G and vanish on dG.
We may assume that ¥, and P, have been normalized so that fe CoPo(x) dx = 1.

We now propose 3 hypotheses which will be assumed only when explicitly
stated. The main theorem will require Hypotheses 1 and 2.

HYPOTHESIS 1. P,(r¢ > t) € C*QG) as a function of x.
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HYPOTHESIS 2. P,(1¢ > t) = CiPoexp(—Aot) + o(exp(—Aot)) as t — » and
VP, (r¢ > t) = C,V¥Poexp(—Not) + o(exp(—Aot)) as t — o with o(exp(—Aot))
uniform on compact subsets of G.

HYPOTHESIS 3; P,(X(t) € dy, 7¢ > t) has a density of the form
Caexp(—Aot)Po(x)Po(y) + o(exp(—Aot)) as t — o uniformly for x in compact
subsets of G.

These hypotheses are discussed in the appendix. At this point in the exposition,
we will content ourselves with mentioning that Hypotheses 1 and 2 hold if
a”'b(= V@) is a gradient function. In particular, this is always the case in one
dimension. If, furthermore, @ € C%(G), or equivalently, b € C'(G), then Hypoth-
esis 3 holds.

Before we can state the main result of this paper, we must give the following
explicit representation of the I-function which we obtained in [7]. For u € #(R?)
with support in G,

_1f Ve _ -1>(v_g_ )
I(p) 2G(g abag a'b Jg* dx

—infrec2re) J; (Vh — a'b)a(Vh — a7 'b)g? dx,
if u has a density ¢ with ¢Y2 = g € W3(G).

(1.8)

I(n) = o, otherwise.

Furthermore, there exists a unique h, € W%(D, du) at which the infimum above
is attained. In fact, h = h, is the unique solution to the variational equation

(1.9) f (VhaVq — Vq - b)g2dx =0, forall q € CYG).
G

(W2%(D, du) is the Sobolev space of functions with one generalized Lo(D, dy)
derivative and Wi(D) = W(D, dx) where dx is Lebesgue measure.) We now
state our

THEOREM. Let X(s), 0 = s < « be a homogeneous diffusion process on R®
with generator L = %V . aV + bV where a is a positive d X d matrix with
coefficients a;; € C'(R? and b is a continuous d-vector. Assume that the process
satisfies Hypotheses 1 and 2. Let {P, }, x € R be the associated probability measures
on C([0, ), R%) and put 0 < t < T < . Define a new process Y'(s),0 <s<ton
G by

QT(YT(s),0 = s=<t)=P,(X(s),0=<s<t|rg>T).

Then Y'(s), 0 < s < t is an inhomogeneous diffusion process with generator

anPx(—r(; >T - S)
P.(r¢>T —5s)

and, as T — o, {Y7(s), 0 < s < t} converges to a limiting homogeneous

LZ’=%V-aV+bV+
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diffusion {Y(s), 0 = s < t} on G (that is, for each x € G, there exists a measure
Q% on C([0, t], G) such that QT = Q. as T — ) with generator Lg =
%V . aV + bV + (aVgo/g0)V — aVh,V where g is the square root of the density
of a certain measure po at which infi,c »@gdcuppucgI(r) is attained. Since t is
arbitrary, we actually obtain a limiting process Y(s), 0 = s < o (and measure @,
on C([0, ), G)) with generator Lg. The measure u, with density g& is invariant
for the limiting process. Furthermore, o = goexp(—hy,) and @y = goexp(hg,) where
®, and P, are as in Hypotheses 2 and 3. Thus, in particular, the density of u, may
also be written as PoP,.

I:Iote that the invariant measure for the limiting process, uo, with density
Y0¥, can be obtained from the following double limit:

po(*) = lim;olim7 o P (X () € - |7¢ > T).

Under Hypotheses 2 and 3, the following proposition is immediate.

PROPQSITIQN 1.10. vo(*) = limp_ P, (X(T) € -|7¢ > T) exists and has
denszty ¢o/f(;¢o dy.

Hence v, # uo, and in particular, since ¥, = #, = 0 on dG, we see that uo gives
less measure to small neighborhoods of 3G than does +,. The intuition for this is
easy. Let A be a small neighborhood of dG. Then P, (X(T) € A|7¢> T) is rather
small because paths ending up at time T far away from 4G are relatively more
likely to have remained in G for all time up to T than are paths which end up at
time T in A. However, for t < T, P,(X(t) € A| 7¢ > T) is even smaller, because
paths ending up at time ¢ far away from dG are all the more relatively likely to
have remained in G up to time ¢ and to continue to remain in G up to time T'
than are paths which end up in A at time ¢.

It is interesting to compare our result to a similar result for periodic irreducible
Markov chains {X,,} with a discrete state space. See [2] for the finite case and
[8] for the countably infinite case. For the finite case, let 0 be an absorbing state,
let 1, 2, ..., s be the s other states and let 7, = inf{n = 0: X,, = 0}. Write the
transition matrix in the form

P={P;} = (}1 I({)>

where R is s X s, Ais s X 1 and 0 is the 1 X s vector of zeroes. By the
Perron-Frobenius Theorem, the largest left and right eigenvalues of R are
real, simple and equal to one another, and the corresponding left 1 X s and right
s X 1 eigenvectors, V and W respectively, may be picked with all positive gntries.
Assume V and W are normalized so that V - W = 1 (analogous to [¢ $¢¥o dx =
1). Then for i, j # 0 and n < m,

Pi(Xn=j|T0>m) =Pi(X" =PI)PJ(;0> m — n)
(1.11) ifTo m)
- eiR’"i ’
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where 1 is the s X 1 vector of ones and e; is the standard 1 X s unit vector in the
Jj direction. It can be shown that

(1.12) R™ =AWV + O(m) as m — oo,
Thus,
Q% = limpoPi(X, = j| 70 > m)
W
= A" WJ R%.

One easily checks that {Q[}s-1 are stochastic matrices which satisfy the
Chapman-Kolmogorov equations. Thus, the inhomogeneous process obtained
by conditioning {X;}’.; on not being absorbed by time m, converges as
m — o to a limiting process with state space {1, 2, ... s} with transition matrix
Q;; = N"Y(W;/W;)R;;. Furthermore, letting uo be the 1 X s vector with ith
component V;W;, we have Yi-; (uo)i = Xi-1 ViW; = 1 and (k@) =

LV W,~)\‘1(WL~/ WiR;j= V;W; = (uo); 80 o is invariant for the limiting process,
analogous to ¥,¥, being invariant for the limiting diffusion.

To obtain the finite Markov chain result corresponding to Proposition 1.10,
we use (1.11) and (1.12) to obtain

m
Rijej . —
b
e,~R’" B | f=1 Vi

Y -2
&..<

lim o Pi( X = j |70 > m) = limye

analogous to the limiting probability measure (¥,/ [ ?, dy) in the diffusion
case.

In the countable state space case, let 0 be the absorbing state and let
{1, 2, .- -} be the other states. A couple of additional conditions are required.
The principal one is that there exists a positive constant r such that for any
1# 0, P;(1o = n)r" converges to a finite nonzero limit as n — o, This is analogous
to Hypothesis 2.

In Section 2 we prove our theorem and in Section 3 we give several interesting
examples to illustrate the theory.

2. Proof of Theorem. A noteon notation: We will usually use the generic
E, ;(*) for expectations. It will be clear which process we are referring to because
inside the parentheses will be expressions involving X(¢) or Y7(+), etc. For
homogeneous processes starting from ¢t = 0, we will write E, for E,o. When
considering the stopping time ¢, we will write P,(7¢ > s) or QT¢(r¢ > s), etc.
We will let E(f, A) = E(xaf) for f a measurable real valued function defined on
the sample path space and A a Borel set of the sample path space. We will also
write E(A) = E(x4) for A as above.

We begin with a lemma which identifies the conditioned process as in the
statement of the theorem.

LEMMA 2.1. Assume Hypothesis 1 holds. Then the process Y7(¢),0 <s<tis
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an inhomogeneous strong Feller diffusion process on G with generator

VP (1¢>T — s)
P(r¢>T-5s)

L3T=%V-aV+bV+a

PROOF. It is trivial to check that Y7(+) is Markovian. Since X(*) is a strong
Feller process, so is Y7(+). To show that Y7() is a diffusion with generator L7,
we must verify that the following three conditions are satisfied for s < t and
xEQG.

(i) limpo(1/WE.s(| YT(s+h) —x|>e)=0
(i) limpo(1/W)Es(YT(s + h) —xi, | YT(s + h) — x| <e)

(a(x)VP. (16> T —5s));
P.(7¢>T-5) )

(i) limpoo(1/R)E. (Y (s+ h) —x)(Y](s+h) —x),| Y(s+h) —x|<e)

=%(V - a)i(x) + bi(x) +

= a;j(x)
To obtain (i), we write
lim sup,_o (1/A)E. (| YT(s + h) — x| > ¢)
= lim sup,—o(1/R)E.(| X(h) — x| > ¢|7¢> T — s)

Ex(IX(h)—x|>e)_O
hP(rg>T—-35)

< lim sup;_,o
since X () is a diffusion.
To prove (ii), write
E..(YI(s+h)—x;, |YI(s+h)—x]| <e)

(2.2) _E.Xi(h) — %, | X(h) —x| <&, 76> T — )
B P.(1¢>T - s)

and
E.(Xi(h) = %, | X(h) — x| <e,76> T —s)

= E.(E(Xi(h) — x;, | X(h) = X| <e,7¢> T — 5| X(h)))
= E.(Xi(h) = x:)Pxw(16>T — s — h), | X(h) — x| <e,7¢>h)
=E.((Xi(h) — x:)Pxp(1¢>T—s—h),| X(h) —x| <e¢)

(2.3) — E.((Xi(h) — %:)Pxg(16>T —s—h), | X(h) — x| <e,7¢<h)
= E.((Xi(h) — x:)Pxp(1¢>T —5), | X(h) — x| <)

+ E. ((Xi(h) — x:)(Pxp(7¢>T—s—h)
= Pxp(1¢>T—35)), | X(h) — x| <e)
—E.(Xi(h) = x)Pxn)(r¢>T —s—h), | X(h) — x| <e, 76 < h).
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Let f(y) = (y: — x)P,(r¢ > T — s). By Hypothesis 1, f (y) € C*G). From the
first term on the right hand side of (2.3), we get
limy0(1/R)E.((Xi(h) — x:)Px@m (16 > T — 8), | X(h) — x| <e)
= limy_o(1/R)E.(f (X(h)) — f(x), | X(h) — x| <)
= (%V . aVf + bVf)(x)
= (a(x)VP(7¢>T — 8))i + % (V - a)i(x)
- Py(r¢>T —s) + bj(x)P.(16 > T — s).

Considering (2.2) and (2.3), we can complete the proof of (ii) if we show that
the last two terms on the right hand side of (2.3) are o(h). We have by the
Schwarz inequality,

lim supyo(1/h)E.((Xi(h) — x:)(Pxaw(r¢ > T — s — h)
= Pxpy(1¢ > T — 5)), | X(h) — x| <)
=< lim sups_o(1/R)E.((Xi(h) — %)% | X(h) — x| <¢)
« E.((Pxpy(r¢ > T — s — h) — Pxp(r¢ > T — 5))?)
=0,

since (1/h)E.((X;(h) — x:)2, | X(h) — x| < ¢) remains bounded as h — 0 and
g(y, u) = Py(r¢ > T — u) = P,,(r¢ > T) is jointly continuous in y and u by
the strong Feller property. The other term on the right hand side of (2.3),
Ex((X,(h) - xi)Px(h)(m >T—s— h), |X(h) - x| <eTe < h), may be treated
analogously.

Finally, we must show that (iii) holds. We have

E.,(YI(s +h) —x)(Y[(s + h) — %), | YT(s + h) — x| <)

_ EA(Xi(h) — x)(Xj(h) — %), | X(h) —x| <&, 76>T — )
P (r¢>T-—5s)

and, using the same manipulations as in (2.3),
E((Xi(h) — x)(X;(h) — x)), | X(h) — x| <e, 76> T — )
= E.((Xi(h) — xi)(Xj(h) - xj)PX(h)(TG >T—39), | X(h)— x| <e)

(2.4) + E((Xi(h) — x)(X;(h) — x)(Pxw(tc>T — s — h)
= Pxp(1¢>T — 8)), | X(h) — x| <e¢)

— E((Xi(h) — x)(X;(h) — 2)P.w(r¢ > T — s — h),
| X(h) — x| <e 76 < h).
Let f(y) = (y: — x:)(y; — )P, (¢ > T — s). From the first term on the right
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hand side of (2.4), we obtain
limy o (1/R)E.((Xi(h) — x)(X;(h) — %)Pxe (76 > T — 5), | X(h) — x| <)
= limy,o(1/R)E.(f (X (h)) — f(x), | X(h) — x| <)
= (.V . aVf + bVf)(x) = a;j(x)P.(r¢ > T — s).

To complete the proof, we must show that the last two terms on the right hand
side of (2.4) are o(h). We have by the Schwartz inequality,

lim supy_o(1/h)E, ((X;(h) — x:)(X;(h) — x;)
. (PX(h)(TG> T—s— h) - PX(h)(TG> T- S)), lX(h) - xl <8) =0

by the same argument as in the proof of (ii). The other term on the right hand
side of (2.4),

E((Xi(h) — x)(X;(h) — 2))Pxgy(r¢ > T — s — h), | X(h) — x| <¢, 7¢ <h),

is treated analogously. This completes the proof of Lemma 2.1.

For the rest of this section, we assume that Hypotheses 1 and 2 hold. By
Hypothesis 2,

VP.(r¢>T—3s) V¥(x)
P.(r¢g>T—-3s) Pox)°’

uniformly for x in compact subsets of G. Hence, formally,

aVS%

79
We want to utilize a theorem of Stroock and Varadhan to show that, in fact, the
diffusion Y7(+) with generator LT converges to a homogeneous diffusion Y(*)
which remains in G for all time up to ¢ and has generator .Z;. Then we will
identify .#¢ with Lg to complete the proof of the theorem.

We need to introduce the martingale framework for diffusion processes. Let
L, = (1/2)V - d(u, x)V + b(u, x)V with a(u, x) a d X d matrix function and
b a d-vector function on [0, ©) X R% The martingale problem for ¢ and b is
the problem of finding for each x € R¢ and s € [0, »), a probability measure
P., € #(C([s, ), R%) which satisfies

(@) P (Z(ks)=x)=1

(2.5) limz,e

limT_,stT=,<ZG=%V-aV+bV+

(b) f(Z(t))—J: Luf(Z(w)) du

is a P,, martingale for t=s and f€ Cy (RY).

Consider the following two conditions on a.

CONDITION 1. 4 is strictly positive on compact sets.
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'CONDITION 2. lim,_.8upo<.=:|| d(s, y) — 4(s, x) || = 0, for all t > 0 and x € R*.

We will now present three theorems of Stroock and Varadhan which can be
found in [9]. We will use the generic Z(*) to denote a sample path of any of the
processes considered in connection with these theorems.

SV-1. If Conditions 1 and 2 hold and & and b are bounded and measurable,
then there exists a unique solution to the martmgale problem for each s = 0 and
x € R4 Furthermore, for any stopping time 7, PZ(,, . Is a version of the conditional
probability of sz given & ., the o-field up to the stopping time 7.

Now consider the case in which Conditions 1 and 2 still hold, but the
coefficients are only locally bounded and measurable. That is, for each
R > 0, there exists a constant Mg with |G| < Mg, |b| < My for |x| < R,
0 <t < R. Let {G,};m=1 be an increasing sequence of bounded open sets with
[0, ©) X R? = Uj; G,,. Pick a bounded a,, satisfying Conditions 1 and 2 and a
bounded b,, with a, = & and b, = b on G,. Let L™ = %V . a,V + b,V.
By SV-I, the martingale problem for Ly has a unique solution, P?,, for each
(s,x) €0, ©) X R% Let 7, = 1nf{t =s: Z(t) & G,}. Stroock and Varadhan prove

SV-II. Ifé and b are locally bounded and measurable and & satisfies Conditions
1 and 2, then there exists at most one solution to the martingale problem starting
from any (s, x) € [0, ®) X R% Moreover, if P, is the unique solution for a, and
bn, then for each (s, x) € [0, ©) X R% a solution exists for G and b if and onlx if
lim, . P% (7, < t) = 0 for each (s, x) € [0, ©) X R? and t > s. If a solution P,
exists, then P, = P2, on 7, .

Finally, with {G,.} -1 as above we have the following key theorem of Stroock
and Varadhan.

SV-III. Let a(¢, x) and b(t, x) be locally bounded measurable functions which
are continuous in x for each t = 0. Assume that for (s x) € [0, ®) X R the
martingale problem for é and b has a unique solution P.,. Suppose that for each
n =1, a,(t, x) and b,(t, x) are measurable functions on [0, ©) X R% and assume
that for each T > 0 and m,

SUPp>18UPo<s<TS8UPxea,, (Il an(s, X) | + | ba(s, x) |) <
and
T
lim,_, J; sup.eq, ([ 4(s, x) — an(s, x) | + | b(s, x) — bu(s, x)[) ds =0

If P is a solution to the martingale problem starting from (s, x) € [0, ®) X R¢
for a, and b,, then P}, = P,s asn— o,

(We should mention that the topology on C([0, «), R?) is the topology of uniform
convergence on bounded ¢-intervals.)
We will use the above theorem to show that QT¢ = Q¢ € »(C([0, t], RY))
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where Q¢ solves the martingale problem for .Zg, but first we must rephrase the
above theory for R to meet our needs on G. We replace R¢ by G and now let
{Gnlm=1 be an increasing sequence of open sets with Uy G = G. Let
L,=%V . a(u, x) V + b(u, x)V with a and b locally bounded on G, that is
bounded on compact subsets of G. We will define the martingale problem on G
up to time ¢ to be the problem of finding for each 0 < s < ¢t and x € G, a probability
measure P, € C([s, ©), R°) satisfying,

(a) P.(Z(s)=x)=1

(b) f(Z()) — [i Lf(Z(u)) du is a Px,s martingale for all f € Cg(G),

S=UV=t

(¢) P.s(Zw)EG, s<u=<t)=1
If one looks at the proof of SV-III [9, Theorem 11.1.4] and of the key lemma
[9, Lemma 11.1.1] upon which it is based, it will be clear that SV-III holds in our
context. In fact, we have stated SV-III in such a manner that one need only
replace R? by G to obtain the appropriate theorem for our context. Thus, since
(2.5) holds, in order to prove that QT¢ = Q:, and that @ has generator ¢, we
need only verify the following three statements.

(1) {QT!}, x € G, solves the martingale problem on G up to t for LT.

(2) There exists a unique solution to the martingale problem on G up to ¢ for
Za.

(3) The generator for the process corresponding to Q% is Zg.

(1) and (3) simply express the equivalence of the martingale problem for a given
operator to the problem of finding a process with the given operator as the
generator. We prove these first and then prove (2). For f € C5(G), we have,

(d/dWE..(f(YT())) = limpo(1/R)Eer (Eyreu(f (YT(u+ b)) — f(YT())))

=E.,(LTf (YT(w))).
Thus,

(2.6) E..(f(YT() =f(x) + j: E.,(L{f (Y"(s))) ds,

forO<r<u<tandx€G. Hencefor0<r=<v=<u=<t,
Ex,r(f(YT(u)) - J:u L{f (Y™(s)) dSIaa"u>
=f(YT()) - IU LIf (Y™(s)) ds
+ Eyrp,(f(YT(W)) = f(YT(v))) — fuu Eyr,o(LTf (Y"(s))) ds

= f(Y(v)) - f L{f(Y"(s)) ds, by (2.6).
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This proves (1). We now prove (3). Since f(Y(u)) — [§ Lcf (Y(s)) ds is a QL
martingale for 0 < u <t, x € Gand all f € C3(G), we have,

u+h
E.u(f(Y(u+h)) —f(x) = j; E..(Z6f (Y(s))) ds

and hence,
limy_o(1/R)E o (f(Y(u + h)) — f(x)) = Z6f (x)

forO=u<t,x€ Gandall f€ CF(G).

Finally, we must show that (2) holds. Let {G,}y-; be an increasing
sequence of open sets with G = Uj-;G,. Let b,(x) be bounded on R? with
b, = b + (aV¥,)/¥, on G, and consider the martingale problem (on R¢) for a and
b,.Let L"=%V . aV + b,V. Note that L" = Z; on G,. From SV-I, there exists
a unique solution to the martingale problem for L” starting from time 0. Call the
solution {P"}, x € R, and denote the sample paths by X, (+). In order to show
that there exists a unique solution to the martingale problem on G up to time ¢
for Z¢, we use SV-II, which carries over to our framework. Let 7, = inf{t = 0:
X, (t) & G,}. We need to show that

2.7 lim, P, <s)=0 forall 0<s=<t and x € G.

Using L¥y = —Ao¥Po, one can check that Z¢(1/%,) = N\o(1/¥0). Thus we have
forO<s<t,x€EGandn=1,

sAT,

E. 5" (Xn(s A 7)) = 5% (x) + E, J; L5 (Xn(u)) du

sA1,

=¢5'(x) + E, Z6P' (X, (u)) du
0
sA7,
= @5 (x) + ME, f Y1 X, (w)) du
0
sAT,
= @51 (x) + NE; f Y (X, (u A 7)) du
0
< @;1(x) + ME, f ¢ (X, (u A 7,)) du
0

= @5 (x) + o L E.95 (X, (u A 1,)) du

By Gronwall’s inequality, this gives us

E.#5'(Xa(s A 72)) < 95" (x)exp(Aos)
and
(2.8) lim, o E,25 (X, (s A 7,)) < @5 (x)exp(Nos).
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Since ¥, > 0 on G and ¥, = 0 on 4G, (2.8) implies that lim, .. P% (7, < s) = 0.
This completes the proof of (2).

To complete the proof of our theorem, we must identify .#¢. That is, we must
show that (V¥,)/%o = (Vgo)/go — Vhy,, or equivalently, ¥ = goexp(—hy,), where
8o is the square root of the density of uy and o is a certain probability measure
at which infj.co®):suppuca] (1) is attained (h,, was defined in (1.9)). By Proposi-
tion 3,

limt—»«:(l/t)log Px(TG > t) = _influe.?(R"): supppCCT}Il-‘)

and by Hypothesis 2, lim, .(1/t)log P.(r¢ > t) = —XN. Hence A =
infi,comiysuppuca I(1). Define go = ($oPo)"/?, and let uo be the probability
measure with density g3. Define W = % log(%o/%o). One can check that W
satisfies (1.9) for g = go; hence in fact, hy, = W =% log(Po/%,). Plugging go =
(PoPo) V2, hg, = Y2 log(‘ﬁo/%) into (1.8), one can check that I(uy) = X\o. Hence
inf|,e2ré).euppucc (1) is attained at uo. This completes the proof of the theorem.

3. Examples.

ExXAMPLE 1. Consider Brownian motion with a constant drift, b, in one
dimension. The generator is L = Y% (d%*/dx% + b(d/dx). Let G = (—c, c).
The operator —L with Dirichlet conditions at (—c, ¢) has as its smallest eigen-
value Ao = (7%/8¢?) + (b2/2). The corresponding nonnegative eigenfunction is
®, = e~**cos(m/2c)x. The adjoint operator —L = —((d?/dx?) — b(d/dx)) also has
o = (72%/8¢c?) + (b2/2) as its smallest eigenvalue. The corresponding eigenfunction
(normalized so that

c . . . ebx T

PoPo(X) dx =1) is ¥y =— cos — x.
- c 2c
Thus, one-dimensional Brownian motion with a constant drift, conditioned to
remain in (—c, ¢) up to time T, converges as T'— o to the diffusion which never
leaves (—c, ¢) with generator

¢ d 1 d* d ™ s d
e=L+——=-—+b—+|——tan—x—b)—
L=l+ o= 2ar b ( 9¢ AN 90 ¥ b)dx

1 d? T T d

“2dr 2 ™ acax’
The invariant measure for the process has density ¥o%,(X) = (1/¢)cos?(w/2¢)x,
— ¢ < x < c¢. In particular, note that the limiting process does not depend on the
original constant drift b.

ExXAMPLE 2. Consider three-dimensional Brownian motion conditioned
to remain in the disc, G = {x € R* | x| < c}. The generator, L = % A, with
the Dirichlet condition on |x| = ¢ is self adjoint. Hence we may pick
®, = @y with [¢ 3(X) dx = 1. The smallest eigenvalue is Ao = (r%/2¢2) and
®, =(v2mc r)sin(xr/c), r = (x% + ¥% + 2z2) V2 Thus the process conditioned to
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remain in G up to time T converges as T — = to a limiting diffusion which never

leaves | x | < ¢, with generator

ve, 1d2 1d* = d

—V==—+= +Zct I r 2

o 2drr T r2ar T ¢ ar

The invariant measure has density ¥3 = (1/2 7rcr2)sin2(7rr/c). Note that the radial

process, r(t) = (X(¢t) + Y(t) + Z(t))"/? corresponding to the limiting process,

has the same behavior near r = 0 as near r = ¢. More precisely, its behavior is

symmetric about r = c¢/2. The original radial process has generator
= Y% (d*/dr?) + (1/r)(d/dr). Thus the repulsion from the origin for the original

process is given by (1/r)(d/dr). For the conditioned process, the repulsion from

the origin is given by
1 L o) d
r(l 302" + O(r )>d

which is slightly smaller. This is because the conditioned process must “think
twice” before repelling from r = 0 since the process is not allowed to reach r = c.

1
Lc—2A+

EXAMPLE 3. Consider standard Brownian motion, X(t), with generator

= Y(d?*/dx?). Let G = (0, ). This case is not covered by our theorem since G
is not compact, and indeed, the spectrum comes all the way down to zero and
there exists no minimum eigenvalue and corresponding eigenfunction. However,
this example shows that a limiting process can exist nonetheless, although it will
not be positive recurrent. Lemma 2.1 is still valid in the noncompact case and
we have

* 2
P, (76 > t) = Po(suposs=:X(s) < x) = 2 »L ﬂ—_ \/21-7)rt/2t) dv.

Thus the conditioned process, Y7(s), 0 < s < ¢, has generator

=it (e"p(z(T—s>>/ ¥ e"p(za" >> >_x'

Formally,
=Y as T — o,

The Stroock-Varadhan theory goes thru here. For the theory did not require
compactness, and the only place we used the fact that

limr (VP (7¢ > T — s)/P,(r¢ > T — s))

has the specific form (V¥,/¥,), where — L¥, = A%, was in verifying statement
2 (page 373)—that a (necessarily unique) solution to the martingale problem
existed for the limiting generator .#;. That causes no problem in the present
case. The generator, Z; = Y% (d?/dx?) + (1/x)(d/dx), is a familiar Bessel process—
the radial process of a standard three-dimensional Brownian motion. Thus, one-
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dimensional Brownian motion starting from x > 0, conditioned to remain positive
up to time T, converges as T — o to the radial process of three-dimensional
Brownian motion. In particular, this limiting process is transient—one-dimen-
sional Brownian motion conditioned to remain positive for all time runs off to
infinity.

Appendix. A sufficient condition for Hypothesis 1 to hold is that there
exists a C%(G) solution to the parabolic equation with discontinuous boundary
data,

(*) w=Lu, u(x,00=1 forx€G, u(y,t)=0 fory€adGandt>D0.

For then an application of Ito’s formula gives us P,(r¢ > t) = u(x, t).

Hypotheses 2 and 3 are similar and, in fact, may be equivalent under sufficient
smoothness assumptions. Our operator, —L, with the Dirichlet boundary condi-
tion on 4G, is positive and has a compact resolvent. Since the resolvent is
compact, the spectrum will consist only of complex eigenvalues clustermg at
infinity, [1].

In the case that a™'b(= VQ) is a gradient function, then L and I are self
adjoint with respect to the densities e?? and e =2 respectively. Hence, there exists
complete orthonormal sequences (with respect to the densities e’ and e ) of
eigenfunctions, {¥,} and {#,}, for —L and —L, with corresponding eigenvalues
{\.} and [X,}. A C*(G) solution to (x) is given by w(x, t) = ¥ %o c,Pu(x)e™™", with
cn = [ ¥e?? dx. Since ¥, > 0, we have ¢, > 0. Thus P,(r¢ > t) = u(x, t) =
S0 CnPr(x)e " satisfies Hypotheses 1 and 2. '

Now assume Q € C%(G). Then one can check that ¢, = ¥,e ?, ¢,= ¢ ¥,e?
and A\, = X, = v, where ¢ is a normalizing constant and ¥, with [¢ W2 dx = 1
satisfies

=14V . aVV¥, + %(VQaVQ + V - (aVQ))V, =~,¥,, ¥, =0 on 4G.
The solution to
(**) w,=Lu, ul(x,0)=f(x) forx€GqG, u(y,t)=0 fory€dGandt>0

is u(x, t) = Ym0 dnexp(—Ant)¥,(x), with d, = [¢ f¥,e*? dx. Since E,(f(X(t)),
76> t) = us(x, t), we see that P,(X(t) € dy, ¢ > t) has density

S2 0 eXD(=Ant) ()P0 ( 7)exp(2Q(¥)) = o exp(—At)Pn(x) 22Y) ‘y ).

Thus Hypothesis 3 is satisfied.

If a7 is not a gradient, the operator —L with the Dirichlet boundary condition
on 4G is not self adjoint and a complete set of eigenvalues may not exist. Even if
a complete set does exist, it may not be possible to expand functions in convergent
eigenfunction expansions since the eigenfunctions are not orthogonal. Such a
convergent eigenfunction expansion is a sufficient condition for the 3 hypotheses
to hold. In [7, page 543], it is claimed that such an expansion does exist in d = 2
dimensions.
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