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THE SIZE OF AN ANALYTIC FUNCTION AS MEASURED BY
LEVY’S TIME CHANGE!

By TERRY R. MCCONNELL

Syracuse University

For f analytic in the unit disc put »(f) = [ | f'(B(s))|* ds where 7 is the
exit time of Brownian motion B(t) from the disc. We prove that E®(r) <
E®(v(f)) for all f satisfying | f/(0)| = 1 and a wide class of ®. In particular,
we may take #(A\) = [ A [P for0 <p < oo,

Let D denote the unit disc in the complex plane and 7 the first exit time from
D of standard complex Brownian motion, B(t), started from 0. Lévy observed
that for any function f, analytic in D, the process f(B(A(t))), where

At
A7) =J; | £ (B(s))|? ds,

is again a standard Brownian motion up to time A~'(7). This result has many
applications to the probabilistic study of analytic functions (See, e.g., Davis,
1979.)

To conform with the notation of Davis (1979), set »(f) = [ | f'(B,)|?*ds. If f
is univalent, the random variable »(f) has the same distribution as the first exit
time of Brownian motion started at f(0) from the range of f. Classical results
such as Schwarz’s Lemma show that the function f(z) = z is, in a sense, the
smallest analytic function in D satisfying | f’(0)| = 1. Motivated by this, Davis
(1979) asked whether the stochastic inequality

1) Pw(f) = 2)=P(z) =)\), x>0,

holds for such f. We show below that (1) may fail for very small A\. On the other
hand, we do have the following result.

THEOREM. Let ® be a nonnegative, nondecreasing function on R which is
either concave or convex, and for which the function ¢(e**) is convex. Then for
any analytic function f on D satisfying | f’(0)| = 1 we have

(2 E®(v(2)) = E2(v(f)).
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In particular,
3) Ev(2)? = Ev(f)?, 0<p <o,

PrOOF. First consider the case of convex ®. For any real #, the process
e?B(t) is again a standard Brownian motion; moreover the exit times of these
processes from D are independent of §. Therefore by Jensen’s inequality and the
subharmonicity of | f’(z)|? we have

E<I>(u(f))=§1;r-J; E<I>(J; lf’(e“’B(S))|2ds)d0

2E<I>(J; 51;f0 | f"(e?B(s))|? db ds)

= E®(7) = E®(v(2)).

For concave & set ¥(x) = ®(e*®). Again by Jensen’s inequality and the
subharmonicity for all constants b of log| bf ' (z) | we have

27 T
E<I>(v(f))2%fo Ef <1><r|f'<e""B<s)>|2>f‘-’fdo

=E f 2i f ¥ (log(r2| f* (€”B(s))|)) db o
0 ™ 0 T

= EV(log(r'?)) = E®(v(2))

and the proof is complete.

To show that (1) fails, take for f the function tan™!(z) which maps D con-
formally onto the vertical strip —7/4 < Re(z) < w/4. Let T denote the exit time
of Brownian motion from this strip. Then we have the following well-known
estimate in terms of one-dimensional Brownian motion X(¢):

P(T = \) = P(maxos,=<x | X(s)| = 7/4)
= 2P(X(\) = w/4)
= ¢ exp(—n?/32)\)

where ¢ is an absolute constant.
To estimate P(r = \) we replace D with an inscribed regular n-sided polygon
and use the rotational invariance of B(t):

P(r = \) = nP(maxo<,<)X; = cos(w/n))
< c(n)exp{—cos®(w/n)/2\},

where ¢(n) depends only on n. After fixing a large enough n, it is clear that the
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inequality
Pir=N=P(T=))
holds for small A\. Thus (1) fails for such A and the chosen f.
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