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Given a two-parameter filtration (%) satisfying the conditional indepen-
dence assumption (F4), we prove the existence of an optimal stopping point
for adapted processes (X,) indexed by N? or R% which are of class (D), and
have regularity properties which generalize the usual one-parameter ones, and
are expressed in terms of sequences of 1- and 2-stopping points.

Optimal stopping of processes indexed by directed sets was first studied by
Haggstrom [12]. Haggstrom defined control variables, and proved the existence
of optimal stopping points for very special processes. Then Cairoli and Gabriel
[5] introduced the notion of increasing path, and Krengel and Sucheston [13]
refined this notion to that of tactic. Krengel and Sucheston had a new approach:
they used the linear embedding of tactics to reduce two-dimensional stopping
problems to classical one-dimensional ones for sums of independent identically
distributed random variables. Mandelbaum and Vanderbei [16] introduced a
similar notion of strategy for countable directed sets, and Walsh [24] extended
increasing paths and tactics to the continuous two-parameter situation. The
importance of these notions lies mainly in the fact that under the conditional
independence assumption (F4), every stopping point is given by a tactic [13],
[16], [24]. Intuitively speaking, given a stopping point T, there exists an increas-
ing path passing through T such that if the path leads to z < T, then the
information contained in % tells one not to stop and also where to go. Here we
generalize the notions defined by Cairoli and Gabriel for discrete parameter
processes, and Walsh for continuous parameter ones.

In [13] Krengel and Sucheston proved the existence of optimal stopping points
for functionals (e.g., averages) of independent identically distributed random
variables (X, z € N?); given a tactic T, the linear embedding defines i.i.d. random
variables (Y,, n € N), and a stopping time ¢ for the filtration of (Y,) such that
X7 and Y, have the same distribution. Mandelbaum and Vanderbei [16], Cairoli
[4], and Mazziotto and Szpirglas [17] worked on the two-parameter Snell enve-
lope. In [16] Mandelbaum and Vanderbei used Snell’s envelope to study the
optimal stopping problem for independent Markov chains, and its relation with
the theory of multiharmonic functions. In [17] Mazziotto and Szpirglas proved
the existence of an optimal stopping point for a process (X,) indexed by
N2 U {oo} with no independence assumption, but such that X, = lim sup X,.
Using a decomposition of Snell’s envelope, they first proved the existence of an
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OPTIMAL STOPPING IN THE PLANE 947

optimal optional increasing path, and then solved a usual one-parameter stopping
problem. At each step z the successor was chosen to keep Snell’s envelope as
large as possible, conditionally in %. However their method only gave partial
results in the continuous case, because of the lack of a “good” decomposition of
supermartingales.

In this paper our approach to the optimal stopping problem is different, but
well-known for one-parameter processes; see, e.g., Bismut [3], El Karoui [10],
and Edgar, Millet and Sucheston [9]. The method consists in introducing a set
containing the set of stopping points, showing the existence of an optimal element
in the larger set, and then proving that the optimal element can be chosen in the
original set of stopping points. This technique is used for processes indexed by
N? or R%. More precisely, we generalize both the notion of randomized stopping
time, first introduced by Baxter and Chacon [1] in the one-dimensional situation,
and the notions of optimal increasing path and tactic in the formulation of Walsh
[24]. Thus we define the set © of randomized tactics, which is a compact subset
of a product space with convex sections. Note that this method heavily depends
on the fact that every stopping point can be reached by a tactic, since it splits
the problem into two successive one-dimensional steps. Krengel and Sucheston
[13] and Mandelbaum and Vanderbei [16] have given examples of stopping points
in N? which cannot be obtained via tactics. Hence in dimension strictly larger
than two the technique used in this paper, or that in [13], [16], and [17], would
allow us to solve the optimal stopping problem when the supremum is taken
over the set of tactics, and not over the set of stopping points. Randomized
tactics can be seen as special families (v,, a € R;) of probabilities each on
R: X {(s, t): s + t = a} X @, and whose projection on Q is P. As in [1] the
conditions on the », will ensure the proper measurability of the increasing
processes obtained by desintegrating the probabilities », according to P; see also
[18]. Note that a stopping point lying on a given stopping line corresponds to a
probability on R. X Q as in the one-dimensional case, and that it is possible to
have simultaneously the correct measurability properties and a “good” integral
representation. But in the general case we work with families of probabilities (»,)
rather than with the fairly natural notion of probability on R2 X Q as in
Ghoussoub [11]. Indeed, this last notion does not seem to possess the required
measurability properties together with a useful integral representation, while we
prove the representation of a randomized tactic as an integral over the set of
tactics for some probability measure. This representation is not quite as simple
as the one obtained in [9] for one-parameter stopping times, and uses Choquet’s
theorem. Note that Dynkin’s notion of sufficient s-algebra [8], which avoids the
use of topological considerations, cannot be used in our setting since Ghoussoub
[11] proved that the convex sets under study are not Choquet simplexes, even in
the one-parameter situation. Thus we define EX, for § € 0, and show the
existence of an optimal randomized tactic §* under boundedness assumptions,
and regularity conditions on sequences of 1- and 2-stopping points which extend
the usual one-parameter ones, and ensure the continuity of the map § — EX,.
The integral representation of §* implies the existence of an optimal stopping
point T*,
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In the first section we state the definitions, study the main properties of the
set O, and characterize the extreme points of the sections of ©. The second section
establishes the integral representation of randomized tactics, and defines EX,,
6 € 0. Finally the third section studies the continuity of the map § — EX,, and
gives sufficient conditions for the existence of an optimal stopping point. The
discrete and continuous parameter cases are treated simultaneously, and in most
cases the proof is written only for continuous parameter processes; the proofs in
the discrete case are similar and somewhat easier.

1. Definitions and notations. Let D denote the set of dyadic numbers.
Let N = N U {oo}, N2 = N2 U {(e, )} denote the Alexandrov compactifications
of N and N2 for the discrete topology. Set D = D U {o}, D? = D? U {(x, »)}; let
R: =[0, »], and R2 = R% U {(o, )} denote the Alexandrov compactifications of
R, and R2 for the usual topology. Set I to be N? or R2, and J = N or R, and
define on I the usual order z = (s, t) = (s’,t') =2" ifs=s"and t = t';set z x 2’
ifs<s' andt<t' Foreveryz= (s, t) EIset|z| =s+t R(z) =[0,s] X[0, t].
For every a € J, set A, = {z € I: | z| = a}. Denote by #(I) [#(J)] the set of
continuous functions on I [J] with the norm || f | = sup | f(x) |.

Let (Q, % P) be a probability space such that .# is countably generated, let
(FhteJ) and (2 t € J) be two increasing one-parameter filtrations. For
every z = (s, t) € I, set % = 7! N . We assume that %, contains all the null
sets of % and that the filtration (%) satisfies the usual assumption (F4), i.e., that
given any z = (s, t) € I, ! and F7 are conditionally independent given %
(cf., for example, [6], [19]). Observe that our results remain true if the condition
(F4) is weakened to the following one of qualitative conditional independence of
Ftand 72 given &, [13]: for any sets A € 7} and BE 57,

{P(A| Z) >0} N{P(B| %) >0} C{P(ANB| ) >0}.

In the continuous parameter case, i.e., if I = R%, we also assume that (%) is
right-continuous, and hence satisfies the usual conditions [19]. Set ¥} = & and
Fi=g1%

A stopping point is a random variable 7: @ — I such that {r < 2} € &%, Vz € [;
letthen & = {A €EFAN{r <z €, Vz € I}. A process (X, z € I) is of class
(D) if the set of random variables X, is uniformly integrable when 7 belongs to
the set of stopping points. The notion of tactic is due to Krengel and Sucheston
[13] in the discrete parameter case. Using the formulation of Walsh [24] in the
continuous parameter case, we have a slightly weaker definition, similar to that
set by Cairoli and Gabriel [5]. An optional increasing path (0.i.p.) is an increasing
family (7., a € J) of stopping points such that | 7,| = a, Va. A tactic is a pair
T = ((r4, a € J), o), where (7,) is an optional increasing path, and ¢ is a stopping
time for the one-parameter filtration (%, a € J). Given a tactic 7' we denote by
7(T) the stopping point 7,; given a process (X,) we denote by Xr the process
stopped at 7(T'). Since (%) satisfies the condition (F4), given any stopping point
7, there exists a tactic T such that + = 7(T') ([13], [16], [24]).

The following notions extend that of randomized stopping time due to Baxter
and Chacon [1]; see also Meyer [18] and Ghoussoub [11].
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DEFINITION 1.1. A randomized path is a family v = (u,, a € J) of probabilities
on (I X Q, #(I) ® ) whose projections on Q are equal to P, and such that the
support of y, is included in A, X Q for a # =, and in {(, )} X Q for a = .
Given a # « let (A4(s), 0 < s < a, s € J) be the one-parameter, right-continuous,
measurable increasing process such that

(*) ,uva(X) = E|'f Xs,a—s dAa(s)]
[0,a]nJ

for every positive, bounded, measurable process X indexed by A, = {(s, a — s): 0
<s=<a,s €EJ}. Then A,(a) =1 as.

A randomized optional increasing path is a randomized increasing path vy such
that the increasing processes A.(-) satisfy the conditions (i) and (ii):

(i) Va€J,VsE€EJ,0 <s <a< o, Ays) is & ,,-measurable.
(i) V(g, b)) EJAE Vs EJ, s <a<b <o, A,(s) = Au(s) as., and A,(a — s) <
Ay(b—s) as.

Since A,(s) is increasing in s and decreasing in a, we may and do assume that
Aq(s) is right-continuous in s and left-continuous in a; hence the inequalities
stated in (ii) hold except on a null set for every a, b, s in JJ. Note that the right-
continuity of the filtration (&%) allows us to check the measurability condition (i)
when a € J N D,and s € J N D N [0, a]. Let T denote the set of optional
increasing paths. The random variables 1 — A,((a — t)7) = A,(t),0 < t<a < o,
form an increasing process such that A,(t) is adapted to .%,_,, and

ﬂ'a(X) = E[f Xa—t,t dA_a(t)]
[0,a)nJ

for any positive measurable process X indexed by A,.
The following lemma is similar to a result proved in [9].

LEMMA 1.2. There is a bijection between the set of optional increasing paths
and the set of randomized optional increasing paths such that the increasing
processes A,(s) defined in 1.1 take on almost surely the values 0 and 1.

PROOF. Let (74, a € R,) be an optional increasing path. Then the family of
increasing processes

Ay(s) = 1<y, 0=s=<a<o,
satisfies the conditions (i) and (ii) of Definition 1.1. Indeed,
fra<(s,a)}={r.<(@,a—5s), 0<s<a<o,

so that {r, < (s, @)} € F; N F2, = F 0, and A,(s) is F, ._,-measurable. Also
a < b implies 7, < 73, and for every s < q,

fre= (=50} ={rs<(b, 9 D{r.<(aq,s)}°={r. < (a — s, a)}.
Hence Ay(s) < Au(s) and Ay(b — s) = A.(a — s). Hence the measures p, defined
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by u.(X) = E[X. ] define a randomized optional increasing path. Conversely, let
(e, @ € Ry) be a randomized optional increasing path such that for every
a € R, and every s € R,, with 0 < s < a, the random variable A,(s) is a.s. equal
to 0 or 1. Fix a € D; since the increasing process A,(-) is right- -continuous, there
exists a map 7,: @ — R2 such that

{a = (5, @)} = {Au(s) = 1} as. for every s with 0 <s < g,

and
{1a < (a, t)} = {As(@a — t) = 0} a.s. for every t with 0< ¢ < a.

The properties (i) and (ii) on A,(s) ensure that 7, is a stopping point taking on
values in A,. Indeed,

{ra= (s, )} ={ra = (5, 0)} N {ra = (g, 1)} = {Au(s) = 1} N {Au((a — t)7) = 0},

and this intersection is empty if s + ¢t < a, and belongs to %, V F_,, if
s + t = a. In both cases the set {r, < (s, t)} € %, for a € D. Furthermore for
any a < b, (a, b) € D? and any z = (s, t) < (a, a), one has that {4,(s) = 1} D
{Ay(s) = 1}, and {Au((a — t)7) = 1} C {Ax((b — ¢)7) = 1}. Hence {7, =< (s, t)} D
{rs = (s, t)} a.s., which implies that 7, < 7, a.s. We redefine the countably many
stopping points (74, a € D) so that the relations | 7,| = a and 7, < 7, hold for
every a and b in D. Then given any w € Q we extend the map D 3 a — 7,(w) ) by
continuity to R,. The right-continuity of (%) implies that the maps (7., a € R,)
are stopping points. Let a € R,\D and s € [0, a] N J; then the property (ii) and
the right-continuity of A,(-) imply that we have almost surely

{Aa(s) = 1} C na,,eDﬂ[O,a[ {Aa,,(s) = 1} = r“'a,,EDr‘v[O,a[ {Ta,, = (S, a)} = {Ta = (3’ a)}y
and
{Ta = (3, a)} = r“'a,,EDﬁ[O,a[ {Ta,, = (S, a)} = r-]a,,EDﬁ[O,a[ {Aa,,(an - (an -3)) = 1}
C na .EDN[0,a {Aa(a - (an - S)) = 1} Cc {Aa(s) = 1}

Hence for every a € R, the increasing processes A,(-) and 1i;,=(., )y are almost
surely equal, and one has that u,(X) = E(X, ) for any positive, bounded measur-
able process X indexed by I.

The proof in the discrete case, being similar and easier, is omitted. 0

We define a set © containing the set of tactics.

DEFINITION 1.3. Let 6 = (v,, a € J) be a family of probabilities on (J X I X
Q, B(J) ® #(I) ® ¥) such that the family of projections u, of », on I X Q form
a randomized optional increasing path, and such that the projection » of », on
J X Q is independent of a. Let then (By,, b € J) be the right-continuous
increasing process such that for any positive, bounded, measurable process X
onJ X Q, one has that v(X) = E([; X, dBy).

A family § = (v, @ € J) as above is a randomized tactic if for every
(a,b) €EJ? z=(s,t) EIwithb=a,s<aand|z| = a, the random variable
By[A.(s) — Au(a — t)] is F-measurable.
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REMARK. If § = (v,) is a randomized tactic, then for every a € J, z = (s, t)
with s + t = a, and every F € % one has that

Va([Oy b] X Rz X F) = E[lFBb{Aa(s) - Aa((a - t)_)}]

Note that the continuity properties of the filtration (%), and of the maps
Au(-), A(s) and B, allow us to check the .#-measurability of the products
By[A(s) — Au(a — t)] only whena € J N D, (s, t, b) € (J N D N[0, a])>.

Let @ denote the set of randomized tactics. As in the case of randomized
optional increasing paths, we obtain a characterization of tactics in 0.

LEMMA 1.4. There is a bijection between the set F of tactics, and the set of
randomized tactics © such that the random variables A.(s) and B, defined for
a€dJ,a=s€J,and b € J, take on almost surely the values 0 and 1.

PrROOF. We briefly indicate the correspondence between both sets; the ar-
gument, similar to that in Lemma 1.2, is omitted. Given a tactic T' = ((r,), o),
define a randomized tactic 6 by Au(s) = 1j; <q), and By = 1;,<. Hence the
probabilities », defined on J X I X Q are given by

va([0, 8] X Ry X F) = P[F N {1, = (s, 1)} N {o < b}],
foreveryb€ J,z2=(s,t) El,and F € % and fora € J.0

Note that Ghoussoub [11] proved that already in the one-parameter case the
set of randomized stopping times is not a Choquet simplex. Hence to obtain an
integral representation of randomized tactics we will use a topological argument;
see also [3], [9], [10], and LeCam [14] for a general compactness argument.
Following Baxter and Chacon [1], we identify the set I' of randomized optional
increasing paths with the subset of [J.es [Isesno,q L™(P) such that the elements
v = (Au(s), a €J, s € J N[0, a]) satisfy the conditions (i) and (ii) of Definition
1.1,0 = A.(s) = 1, and for every a € J the map s — A,(s) is increasing such that
Ag(a) = 1. Similarly, we identify the set © of randomized tactics with the subset
of elements 6 of the product ([T.es [Tsesno.a) L™(P)) X [Ises L*(P) such that the
projection of 6 on [].es [Tsesno,qg L*(P) belongs to T, and such that the projection
of 6 on [[ses L*(P), namely (Bs, b € J) satisfies the conditions 0 < B, < 1, the
map b — B, is increasing, B.. = 1, and B,[A(s) — A.(a — t)] is F ,-measurable for
everya€EJ,beEJN[0,al], (s,t) Elwiths<aands+t=a.

The Baxter-Chacon topology on T is the coarsest topology such that for every
a€J,s€JNI0,a],and Y € L(Q, & P), the map

>R, vy E(YAds))

is continuous. The Baxter-Chacon topology on © is the coarsest topology such
that foreverya €J,s €J N [0,a],b €J, Y € L (Q, & P) the maps

0->R, 60— E(YA,s)) and 06 >R, 60— E(YB,)

are continuous.
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As in the one-parameter situation ([1], [3], [10], [18]), we have the following:

THEOREM 1.5. The sets T of randomized optional increasing paths, and 0 of
randomized tactics are compact in the Baxter-Chacon topology.

PrOOF. Recall that (2, & P) is separable, and hence L'(P) is separable, and
that the filtrations are right-continuous. Hence the Baxter-Chacon topologies on
I and O are metrizable. The argument is similar to that of Theorem 1.5 in [1].
The only difference lies in the introduction of the map

y: L*(P) X L*(P) - R, (A, B)— E(YAB)

for fixed Y € L*(P). This map is clearly bilinear and separately continuous in
both arguments from (L*(P), ¢(L*(P), L'(P))) to R. Since the weak-star topology
on L is locally compact, this map is continuous from the product space L* X L*
with the product of the weak-star topologies (see, e.g., Schaefer [23], page 88).
Hence the conditions

E(YB,[Au(s) — Adla — t)]) = E(E(Y | Z.)Bs[Aa(s) — Adla - 8))

fora €d, (s, t,b) € (J N[0, a])® with s + t = @, and Y € L'(P) define a closed
subset of the product space containing 0.0

Given 6 = (v, B) € © where v belongs to I' identified with a subset of
HaEJ HsEJﬂ[O, al Lw? and B € HbEJ Lw’ set

r@)={y' €T (y’,8) €0} and B(#) = {8’ € [Ises L™ (v, B’) € 6}.

The sets ', I'(9) and B(6) are clearly convex for any 6 € 0. The following theorem
characterizes their extreme points. It is similar to results of [7], [9], and [11].

THEOREM 1.6. (i) There is a bijection between the set of optional increasing
paths and the set of extreme points of the convex set T' of randomized optional
increasing paths.

(ii) Fix 0 = (v, B) € 0 and suppose that 8 = (Bs, b € J) is such that each B,
takes on almost surely the values 0 and 1. Then there is a bijection between the set
of optional increasing paths of T'(0) and the set of extreme points of I'(9), and
hence between the set of tactics of T'(8) X {8} and the set of extreme points of
r'(6) x {B}.

(iii) Fix € ©; there is a bijection between the set of extreme points of B(8) and
the set of elements 8 = (By, b € J) of B(8) such that each B, takes almost surely
the values 0 and 1.

PROOF. We suppose that I = R2 and J = R, ; the proof in the discrete case
is similar and somewhat easier, and will be omitted. Using Lemmas 1.2 and 1.4,
we identify the set of o.i.p. [tactics] and the corresponding subset of T' [@]. Then
every o.i.p. [0.i.p. of T'(8)] is clearly an extreme point of T' [T'(d)], and any
(Bs, b € J) in B(#) such that the B, take almost surely the values 0 and 1 is
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clearly an extreme point of B(f). We prove the converse set inclusions by
contradiction.

(i) Let v be a randomized optional increasing path such that A,(s) takes on
values in ]0, 1[ on a nonnull set for some a € J and s € [0, a]. Using the right-
continuity of the map A,(-) and the equalities A(s) = 0 if s < 0 and A,(®) =1,
we can choose ao € D and sy € D N [0, ao] such that Agy(so) takes on values
in ]0, 1[ on a nonnull set F. Fix A € ]0, 1|, and for every a € I and s € [0, a] set

Aa(s) = (Aa(s)/A) A1 and Ag(s) = (Au(s) — N)/(1 = \) V0.

Then Au(s) = MAi(s) + (1 — NAZ(s), and A;(-) and AZ(.) are increasing,
right-continuous processes; for every s < a < o the random variables A.(s)
and A;(s) are %, ,-measurable. Since the functions x — (x/A\) A 1 and x —
(x = N)(1 = M)V 0 are increasing, the condition (ii) of 1.1 is clearly satisfied by
the processes A;(s) and A7 (s). Furthermore, if w € F, then A; (so)(w) > Agy(80)(w).
Hence v is a strictly convex combination of the randomized o.i.p. v’ and v”
defined by the families of increasing processes A ,(-) and A7(-), which completes
the proof of (i). .

(ii) Let 6 = (v, B) € 0 be such that every B, takes almost surely the values 0
and 1, and that A,(s) takes on values in ]0, 1[ on a nonnull set for some a € J
and s € [0, a]. We proceed as in the proof of (i), and given X\ € ]0, 1[ we set

Aq(s) = (Aa(s)/A) A1 and AZ(s) = (Au(s) = N)/(1 =N V0.

It suffices to prove that the elements v’ and v” defined by the families A (s) and
A7 (s) belong to I'(f). Fixa€J, b€ J N[0, a), z= (s, t) € I such that s < a and
s+t =a. Then

By[A(s) — Aala — )] = (1/M)1ia,0=nBslAa(s) — Aula — t)]
+ (1/ M1 e-n=r<a 0 Lip>0 [N — Aala — t)]
= (1/M 14,60 Bs[Aa(s) — Aaa — t)]

+ ([N = Au(@ = 1)]/M) 114 a-=3<A ) INByA L(5)—A,(a—0)]>0} -

This proves the %-measurability of this product, and a similar computation gives
the #-measurability of the product By[A7(s) — AZ(a — t)].

(iii) Let 8 = (v, B) € © be such that B, takes on values in ]0, 1[ on a nonnull
set. The right-continuity of the increasing process B, allows us to choose b, € D
and \ € ]0, 27'[ such that if F = {B,, € ]\, 1 — \[}, we have that P(F) > 0. For
every b € Ry, set

Bi{ = (By/A\) A1 and Bi = (B, —\)/(1 -\ VO.

Clearly B. = \B! + (1 — M)B” and B}, # B,, on the set F. It suffices to check
that the families 3’ = (B}) and 8” = (By) belong to B(f). Fixa € J, b€ J N
[0,a],z=(s,t) EIsuchthat s <aands + t = a. Then

Bi[Aa(s) — Adla = t)] = (1/N)(By[Au(s) — Aula — 1)]) A MAu(s) — Aula — 1)];



954 A. MILLET

this proves the %-measurability of this product, and a similar computation gives
the #-measurability of the product B;[A.(s) — A.(a — t)]. The other conditions
on B! and B? are trivially satisfied. 0

2. Stopping by a randomized tactic, and the Choquet theorem. In
this section we define EX, for a randomized tactic 6, and a properly bounded,
measurable process (X, z € I). We also show how the Choquet theorem reduces
the original problem of the existence of an optimal stopping point to an optimal
stopping problem with randomized tactics. Given a randomized tactic 6, a € oJ,
beEdJ,andz= (s, t) €I set

C(b, a, 2) = [Au(s) — Ag(l@a—t))] - By if |z]| =s+t=aq,
Cb,a,2)=0 if |z| <a.

Let T be a tactic identified with the corresponding randomized tactic still
denoted by T = ((7,(T'), a € J), o(T)); then

Cr(b, a, 2) = 1y 1)<ziniocr)<b}-

Let 6 = (v, B) be a randomized tactic, let eB(f) denote the set of extreme
points of {y} X B(6), and let eI'(9) denote the set of extreme points of I'(8) X {3}.
Since {y} X B(0) is convex, compact, and metrizable, the Choquet theorem asserts
the existence of a Borel probability u, on {y} X B(f), supported by eB(8), such
that 6 = [epe) (v, B’) dus(vy, B’) (cf., e.g., [15] or [22]). Since the set I N
(T'(6) x {B}) is identified with the set of extreme points of the convex, compact,
metrizable set T'(9) X {8’} for (y, 8’) € eB(f) by Theorem 1.6, the Choquet
theorem yields the existence of a Borel probability =, s, on I'(§) X {8’} supported
by eT'(y, 8’) = N (T'(0) X {B’}) such that

(v, B) = f (', B) dren(y’s B7).
eI'(y,8’)

Hence given a bilinear map f: ([Joes [Tses L) X ([Joes L*) — R, continuous for
the product of the weak topologies o(L*, L?), one has that

f6) = f <f AT) d1r<7,m(T)>duo(7, B8’).
eB(6) \Y.INel'(y,5")

To lighten the notation, we will write the above integral representation

fl6) = Lf(T) d(um)e(T),

and will say that us and =, are the corresponding probabilities (on eB(f) and
I Nel(y, B')).
For any § €0, n €N, and z € N? with | z| = n, set

D(n, z) =C(n,n,2) — C(n — 1, n, 2).
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For z € N? set D(, z) = 0, and set
D(o, (0, 0)) =1 —lim,B, = 1 — Y,ewdz1=n D(n, 2).

We at first define EX, in the discrete parameter case.

DEFINITION 2.1. Let 6 be a randomized tactic, and let (X,, z € N?) be a
process such that either (X,) is positive, or Y,ex Xjz1=n El[| X.| D(n, 2)] < oo.
Then set EXy = Ynei 221=n E[D(n, 2)X.].

In the following proposition, we express EX, in terms of EXr, for (ordinary)
tactics T (cf. [9]).

PROPOSITION 2.2. Let 6 = (v, B) be a randomized tactic, and let py and w(, g
be the corresponding probabilities on eB(0) and 7 N el'(y, B’). Let (X,, z € N?)
be an integrable process which is positive, or satisfies Y nei 2z1=n E[| X | D(n, 2)]
< ., Then

Exo = [ [ [ b d‘ll’(y,ﬁ')(T)] duol, B).
eB(0) I Nel'(v,B’)

PrROOF. The map (v, 8) — E(X{, ) is bilinear and is the pointwise limit of
the sequence of continuous bilinear maps
(v, B) = Yosn=n 2iz1=n E(X7D(n, 2)) + E(X{ (1 — Bn)).

Fix n € N, and 2z € N? with | 2| = n, and a random variable X,; then the map
(v, B) = E(X,D(n, 2)) is bilinear continuous, and has the following integral
representation:

EIX!Dn, 21 = |

eB

[ f E(XZ 1ior)=n,n1),=2)) dW(y,ﬁ')(T)} due(y, B).
) J Nel'(v,B’)

Hence

Ynei Djz1=n E(X7 D(n, 2)) = f

eB(0)

[f E(XT) dW(v,ﬂ’)(T)] dus(y, B')
T (,6')

=f E(X7) d(pm)e(T),
g

and if Ypei Xjz1=n E(X7 D(n, 2)) < o, then [sner(y,s) E(XT) dm(y,6(T) is finite
for u, almost every (v, 8’) and E(X7) is finite for m, ) almost every T. Hence
under either assumption on (X),

EX, = L E(X7) d(um)e(T). O

REMARK. The proposition above holds if the integrability condition on (X,)
is replaced by the following semi-integrability property:

inf{¥nei Tizi=n E[XZD(n, 2)], Tne Lizi=n E[XzD(n, 2)]} < c.
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The definition of EX, in the continuous parameter case is slightly more
complicated because the stopped process X, cannot be written directly in terms
of the C(b, a, z). We proceed by discrete approximation. For any integers n = 1,
k, i, such that 2 < i < k < n - 2", and any randomized tactic 6, set

o(n, k, i) = [Br.o» — Bg—1).21] + [Ap.2n(i - 27") — Ap.o((i — 1) - 277)]
and set
o(n, k, 1) = [Bi.g» — B-1).2-7]Ar.2(27").

Also set 6(n, 1, 1) = By—+, and 6(n, ©) =1 — B,.
Given a tactic T = ((r,), ), setfor2<i<k<n - 2"

A(n, k, i)
={k—-1) -2"<o=<k-2"N{rre-h €EJG—-1) - 27" i. 27",
and
A(n, k, 1)
={(k—1)-2"<o=<k- 27N {(1pe)r =27

alsoset A(n, 1,1) = {o = 27"} and A(n, ®) = {¢ > n}.

For any fixed n, the sets {A(n, k,i): 1<i<k=n . 2", and A(n, ») give a
partition of @ such that ér(n, k, i) = 1smer and dr(n, ©) = 14, «). Define the
random variables T'[n]: @ — D as follows:

T(n] = G-2"(k+1-1)-2™ on A, ki) for l<i<k=<n.2"
= (oo, @) on A(n, ®) = {od > n}.

Then T[n] is a stopping point. Furthermore, if w € A(n, k, i) with 2 <= i <
k = n2" then 7,(w) belongs to the domain bounded by the lines of equations
x=1-2"x+y=k-2"y=(k+1-1) -2"andx+y=(k—-1) .2™"
including the first two ones and excluding the last two ones. Similarly, if
w € A(n, k, 1), then 7,(w) belongs to the domain bounded by the lines x = 0,
x=2"x+y=k-2" andx+ y = (k — 1) - 27" including the first three
lines and excluding the last one. It is easy to see that T[n] > r,, and that
lim, T[n] = 7,.

We now adapt the definition of T[r] to the situation of a randomized tactic 6.
Let (X,, z € R%) be an adapted, right-continuous process of class (D). Given a
randomized tactic 6, and n = 1, set

Xo[n] = 215ksn~2" Elsisk X(i'2"',(k+1—i)-2"')6(n’ k’ l) + X(w,w)a(n,oo)~

An argument similar to that of the proof of Proposition 2.2 establishes that if
us and m, g denote the probabilities on eB(f) and 9~ N el'(y, B’) corresponding
to 8 = (v, 8) by Choquet’s theorem, then for n = 1 one has that

E(Xon) = Yi=k=n-2» Di=i=k L E[X.2mn (k+1-i).27m07(n, K, ©)] d(pm)e(T)

+ L ElXic.eyb2(n, )] d(um)u(T),
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where 7 is the function associated with T considered as a randomized tactic.
Fubini’s theorem, and the definition of T[n] imply the following:

LEMMA 2.3. Under the assumptions above on (X,) and 6, we have that
E(Xon) = [5 E(Xnn) d(um)e(T), where Xy, denotes the process (X,) stopped at
T[n] in the usual meaning.

Recall that given a tactic T = ((7.), o), we set EXr for EX, . We have the
following:

PROPOSITION 2.4. Let (X, z € R%) be a process of class (D) with almost surely
right-continuous trajectories. Let 0 be a randomized tactic, and let py and =, g be
probabilities on eB(6) and 7 N el'(y, 8’) corresponding to 6 = (v, 8) by Choquet’s
theorem. Then the sequence EXq, converges to [ EXr d(uw)e(T), which will be
denoted by EX,.

PRrROOF. Since (X;) is a.s. right continuous, one has that Xr = lim, Xy,
for any tactic T. Since (X;) is of class (D), EXqy, converges to EXr, and
sup{E | Xr|: T € 7} is finite. Hence EXg, converges to [& EXr d(um),(T).0

REMARK. Proposition 2.4 is valid under the following weaker assumptions:
sup{| EXr|: T € 9} < 0, and EX,») — EX, for every sequence 7(n) of stopping
points such that 7(n) — 7 with 7(n) > 7.

The following theorem shows how to reduce the usual problem of optimal
stopping to that of stopping with randomized tactics. It allows one to “derandom-
ize” optimal randomized tactics (cf [9]).

THEOREM 2.5. Under either assumptions (i) or (ii):

(i) (X., z € N?) is such that sup{E | Xr|: T € 5} < o,
(ii) (X., z € R2) is a.s. right-continuous, and of class (D),

one has
V =sup{EXr: T € 7} = sup{EX,: 6 € 6}.

If one of the suprema is achieved, so is the other. Furthermore, if there exists a
randomized tactic 0, such that EX, = V, and lim B, = 1 almost surely as b — +oo,
then there exists a stopping point 7, finite a.s., with EX, = V.

ProoF. Clearly sup{EXr: T € 9} =< sup{EX,: 0 € 0}. Conversely, the
assumption (ii) implies that EXy = [ EXr d(uw)s(T') for any randomized tactic
0 by Proposition 2.4. Indeed, under the assumption (i), fix a randomized tactic 0
with corresponding probabilities uy on eB(0) and =, 4 on .9 N el'(y, B’), and fix
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an integer K. Then

ZnsK 2|z|=n E[I X, | D(n, 2)] = EnsK 2]2|=n L E[I X, | 1|a(T)=n,-r,,(T)=zl] d(ﬂﬂ')o(T)

=LE[|XTI]-{a(T)SKi]d(l”r)o(T)

<sup{E| Xr|: TE T}

Since X« € L', the assumptions of Proposition 2.2 are satisfied, and EX, =
Jo EXr d(um)e(T'). Hence under either assumption (i) or (ii), one has that for
any randomized tactic § = (y, ) with corresponding probabilities us on eB(#)
and 7, ¢y on I N el'(y, 8’),

EX, = [+ EXr d(um)s(T) < sup{EXy: T € 7.

Suppose that there exists an optimal randomized tactic § = (y, 8), and let
u and 7 be the corresponding probabilities on eB(f) and .9 N el'(y, 8’). Then
Jorery.gy EX7 dm(,,57(T) is equal to V for u almost every (v, ') € eB(#). Hence
there exists 8’ € eB(#) such that [snery,s) EX7r dm(y,6)(T) = V. Then EXr =V
for m(, s almost every T in 9 N el'(y, 8’). Hence there exists a tactic T in
el'(y, 8’) such that EX; = V. Furthermore, if lim B, = 1 a.s. when b — +o,
then a similar argument shows that 8’ and then T can be chosen such that
EX7y=V,and P(o(T) < ®) =1, i.e., 7(T)sm € R? a.s.0

3. On the existence of optimal stopping points. In this section we give
sufficient conditions for the existence of an optimal randomized tactic. In the
discrete and continuous cases, our conditions generalize the classical one-param-
eter ones (cf., for example, [3], [10], [18], [25]); they ensure the continuity of the
map 6§ — EX, in the Baxter-Chacon topology.

We at first prove the existence of an optimal stopping point for “general”
discrete parameter processes, i.e., with no independence or distribution require-
ment. The trivial case of constant processes shows that an assumption has to be
made on the terminal payoff X... The following theorem is also proved in [17]
via a decomposition of Snell’s envelope. Krengel and Sucheston [13] and Man-
delbaum and Vanderbei [16] have proved some more precise results, with no
condition on the terminal payoff, for functionals of i.i.d. random variables and
independent Markov chains. The argument below is similar to those in [3], [9],
[10].

THEOREM 3.1. Let (X,, z € N?) be an adapted integrable process of class (D)
such that X «) = lim sup{X,: z € N?}. Then there exists an optimal stopping point
7*, i.e., a stopping point such that

EX..» =V = sup{EX,: 7 stopping point}
= sup{EXm: T € 7.
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PROOF. Since X{ «) = (lim sup X;)*, and (lim sup X;)” = [lim inf(—X,)]* <
[s lim inf(—X,)]*, where s lim inf stands for the stochastic lower limit, Fatou’s
lemma shows that (lim sup X,)~ € L?, and L = lim sup X, is integrable. Fix
¢> 0, and choose a > 0 such that P(A) < « implies that

SUp{E[14 | Xr| lp<w)l: T = ((70), 0) € T} < ¢,

and E [1,| X(oo,w) |1=e
For any w let k(w) < o be an integer such that

sup{X,(w): k(w) = | 2| < ®} = L(w) + &
Choose an integer k; < « such that
Plsup{X,(w): ki = |z| <o} =L(w) +e]=1—a.

Let (6., n = 1) be a sequence of randomized tactics such that EX, converges
to V. Since © is compact, there exists a subsequence (0,,, i = 0) which converges
to some randomized tactic 6 in the Baxter-Chacon topology. Denote again this
subsequence by (,); we prove that EX, = V. Let D,(a, z) and D(a, 2) denote
the random variables associated to 6, and § at the beginning of Section 2, and
let wn, mn, p and 7 denote the probabilities corresponding to 6, and 6. Since
Ynen 2iz1=n D(a, 2) < 1, and since E[Ypen Xjz1=n D(a, 2) | X, |] < o, there exists
an integer k; < ® such that

E[| Xo | Tkma<w Dizi=a Dl(a, 2)] <,
and
E[Yh<a<w Dizi=a D(a, 2) | X, |] <e.
Set k =k, V ko; then
EX, = E[Za<k Zizi=a D(a, 2)X.] + E[Zhzac<w Tjzi=a Da, 2)X.]
+ E[D(e, (0, ©))X(ex)]
= E[¥a<r Ziz1=a D(a, 2)X,] + E[D(, (%, ©))Xww)] — ¢
= E[Yo<k Ziz1=a D(a, 2)X.] + E[Ti<ozw Dizi=a D(@, 2)X(wm)] — 2e.

Set Ay = {w: {sup X (w): | 2| = @ = k} < X(w,x)(w) + ¢}; then P(A;) =1 — a. The
definition of the Baxter-Chacon topology yields the existence of ny such that
n = no implies

IE[Za<k 2|z|=a (D(a» Z) - Dn(a, z))Xz] I <e
and
IE[Eazk Elzl=a (D(a, Z) - Dn(a, z))X(OO,W)] I <e
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Hence for every n = ny,
EX; = E[Yo<k Xiz1=a Dnla, 2)X.] + E[Yazk Xjz1=a Dnla, 2)X(w,w)] — 4¢
= E[Yo<k Dizi=a Dnla, 2)X.] — E[lag Yk=a<o Diz1=a Dn(@, 2) | Xiwo,e |]
+ E[14, Ykso<w Zizi=a Dnla, 2)(X; — )]
+ E[Dy(c, (%0, ©))X(w,0)] — 4¢
= E[uck Sietma D@, DX + E[D(e, (0, ) Xa] = 6¢

+ L E[14, Yr<o<w Dizi=a Xzlia(T)=a,ry(m)=2i] A(puw)e (T').

The last term in the preceding inequality can be written

L E[Laniesint), <) X1] d(p7)g,(T);

hence
EX, = E[Y o<k Djz1=0 Dnla, 2)X;] + E[D,(o, (0, ©))X o )]

+ L E[Liksio(1) 1<} X1] A7)0, (T) — Te

= EXO,, - 78.

Since the inequality EX, = EX, — 7e holds for every n = no, we have
EX, = V — Te. Hence 6 is optimal, and Theorem 2.5 completes the proof. 0

The separability assumption of & (to ensure the sequential compactness of ©)
is satisfied when % is generated by the process (X, z € N?).

We now study the existence of an optimal randomized tactic for some classes
of real-valued continuous-parameter processes. We at first prove the existence
of an optimal randomized tactic if EXry, converges to EXr uniformly in T€ 7.
This uniformity is obviously satisfied if (X,) has almost surely continuous
trajectories.

THEOREM 3.2. Let (X,, z € R?) be a process of class (D) with almost surely
right-continuaqus trajectories, and such that
lim,sup{| E(X7 ~ Xr) |: TE T} =0.
Then there exists an optimal stopping point 7* such that
EX.. =V = sup{EX,: 7 stopping point}.

PROOF. Let (6;) be a sequence of randomized tactics such that (EXoj) con-
verges to V. Since O is compact, there exists a subsequence of (§;) that converges
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to some randomized tactic 6 in the Baxter-Chacon topology; let (6;) denote again
this subsequence. Fix n = 1, and let (4Y)(-)), (BY), and 6§’ denote the processes
and the function associated with 6; as in Sections 1 and 2. Then

E[XOj[n]] = Yizk=n-2" Di=i<h E[X(i.Z"‘,(k+l—i)-2'”)60) (n, k, 0)] + E[X(m,m)é(j)(n, ©)].

For fixed n the definition of the Baxter-Chacon topology on © implies that
E[X(ww09(n, ®)] = E[X@w=(l — BY)] converges to E[Xww( — B,)] =
E[X(w,x)6(n, ©)] as j — 4. Fix n, k, and i with 2 < i < k = n - 2". Then since
8Y(n, k, i) is equal to

[Be = BRLyollAL - 27) = ADpali = 1) - 27))

and since the definition of the Baxter-Chacon topology yields the convergence of
E[XB} - AQ(s)] to E[XB,Au(s)] as j — + for X = X(.on ges1-9.2m, b=k - 27"
or(k—1)-2"a=k-2"ands=1i-2"or (i —1) .- 27" the sequence
-E[X(,:z—n,(k.;.l_,‘).g—n)50)(1‘!, k, l)] converges to E[X(i.z-",(k+l—i).2'")5(71, k, L)] as
J — +oo. A similar argument proves the convergence of the analogous expression
when i =1 or k = 1. This concludes the proof of the convergence of E[Xjx] to
E[ Xy for fixed n as j — +oo. Let 6’ = (y’, 8’) be a fixed randomized tactic with
corresponding probabilities us and m(,- 5. Then

| EXy — EXoim| = L | EX? = EXmim | d(pm)e(T)

= sup{lEXT—EXT[,,]I: TE.7}

by Proposition 2.4. Hence EX,, converges to EX, = V, and Theorem 2.5 yields
the existence of an optimal stopping point. [

We now give sufficient conditions on the process (X,) for the uniform conver-
gence of EXyy, to EXr. Again we suppose that (X.) has a.s. right-continuous
trajectories, and is of class (D). Our approach is similar to that of Theorem 1.10
[1], and of Theorem 4.7 [9]. It depends on several lemmas. Since (X, z € R2) is
of class (D), it suffices to prove that given any ¢ > 0,

lim,sup{P(| X1 — Xqin| >e): TE T} =0.

Using the continuous time-change 2’ = (arc tan s, arc tan t), we may and
do assume that (X,) is indexed by [0, 1]°. Since (X,) has right-continuous
trajectories, we can replace T by a stopping point y[n] in the computation
of P(|Xr — Xmm| > ¢), where y[n] takes on values in D? and satisfies
7(T) < v[n] < T[n], and sup{E(| X1 — X,n|): TE T} —>0asn— .

Let f: R X IR — [0, 1] be defined by f(x, y) = |x — ¥|/(1 + | x — y]). Given
(a, b) € D?* with a < b, set

Y(a, b) = sup.epsup{f(X;;, Xo:): a <s=<b,s € D}.
For fixed m=1,t € D and ¢ > 0, set
H(t, m) = {E[Y(t, t + 27™) | 7 1] > ¢},
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and for fixed m = 0 and n = 0 set
R(n, m)(w) = inf{k2™": w € H(k27", m)},

with the usual convention inf @ = 4. These definitions are similar to that set
by Baxter-Chacon [1]. For fixed m, the sequence (R(n, m), n = 0) of (¥ }) stopping
times decreases to a (¥ }) stopping time, say R(m). The sequence R(m) increases.
The two lemmas below are similar to the results proved in [1].

LEMMA 3.3. Let (X, z € [0, 1]?) be a process such that for any (F}) stopping
time o
limg—,o(w),een8UPseD | Xap(®) — Xowp(w) | =0 a.s.
Then lim P[R(m) = 1] = 0.
ProOF. For any integer m = 1, the right-continuity of X. ;) being “uniform
in t” by assumption, one has that
a(m, n) = sup{f(Xes, Xrm+z-m:): R(m) + 27" <s < R(m,n) + 27™, (s, t) € D%

converges to zero as n converges to infinity. Hence the triangle inequality applied
to f shows that

Y[R(m, n), R(m, n) + 27™]
< Y[R(m), R(m) + 27™] V a(m, n) + sup{f(X&wm,n,0, X@&m),p): t € D}.
Hence
lim sup, Y[R(m, n), R(m, n) + 27™] < Y[R(m), R(m) + 27™].
Conversely,
Y[R(m), R(m) + 27™]
=< Y[R(m), R(m, n)] V (Y[R(m, n), R(m, n) + 27™] + Y[R(m), R(m, n)]),
so that
Y[R(m), R(m) + 27™] < lim inf, Y[R(m, n), R(m, n) + 27™].
Hence
lim,Y[R(m, n), R(m, n) + 27™] = Y[R(m), R(m) + 27™].
The definition of R(m, n) and R(m) implies that
E[1irim<w) Y[R(m), R(m) + 277]] = eP[R(m) < =].
Since R(m) increases to an (#}) stopping time R, the assumption made on the
left limits at (% 1) stopping points yields that P[R(m) < 1] — 0.0
Exchanging the roles of the coordinates in the plane, we obtain the following
similar results: For any (a, b) € D* let
Z(a, b) = sup{f(Xes, Xso):a <t =<b, (s, t) € D?.
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Foranys€ D,m=0,and n = 0, set
K(s, m) = {E[Z(s, s + 27™) | 73] > ¢},
S(n, m)(w) = inf{k - 27" w € K(k - 27", m)}.

The sequence (S(n, m), n = 0) of (#2) stopping times decreases to S(m). Under
the assumptions on (X;) obtained by exchanging the first and the second planar
coordinates in Lemma 3.3, one has that lim P[S(m) < 1] = 0. The following
lemma relates tactics to the one-parameter stopping points R(m) and S(m).

LEMMA 3.4. Let (X;, z € [0, 1]%) be a right-continuous process such that for
any (1) stopping time o, and any (¥ ?) stopping time 7,

limg ., en(sUpPsen | Xop = Xopl) =0 a.s.
and
limy ., sep(supPsen | Xop — Xar|) =0 as.
then
sup{E[f( X7, Xrpm)]: T € T} < 4e + 2P[R(m — 1) = 1] + 2P[S(m — 1) = 1].

PROOF. Fix @ > 0, m = 1, and a tactic T € 7. Let v be a stopping point
taking on values in D X D, such that E[f(Xr, X,)] < a, and 7(T) < v < T[m].
Set o[m] = (T[m]:, v2) and 7[m] = (y1, T[m}y); remark that 7(T), < T[m], <
7(T); + 2'™ and 7(T); < T[m], < 7(T); + 2™ Then E[f(X,, X.m)] =
E[Y(y1, v1 + 2™)]. Let ¢ be a one-dimensional () stopping time taking
on dyadic values; we prove that for every k = 0 one has that E[Y(s, ¢ + 27%)] =<
¢ + P[R(k) < ¢]. Fix k; for any j = 0, let o; be the (#;) dyadic stopping time
defined by oj = n27 on {c € [(n — 1) - 27, n - 277[} and set 1; = Y(aj, 0; + 27%).
On the set {o; = t}, one has E[n;| 1] = E[Y(¢, t + 27%) | #1]. Hence, R(k, j) < t
on {g; =t} N {E[n;| 3] > ¢}, and

E[n)] = ¢ + P[R(k, j) < 0j] < ¢ + P[R(R) < gj],

since the sequence (R(k, j), j = 0) decreases to R(k). Let j — oo; since the
horizontal processes are continuous uniformly in the second coordinate, E[n;]
converges to E[Y(s, o + 27%)], which proves the inequality announced above.
Hence

E[f(Xy, Xom)] = ¢ + P[R(m — 1) = 1],
and similarly
E[f(X,, Xqm)] < ¢ + P[S(m — 1) = 1].
A similar argument shows that
E[f(Xom, X1tm)] < ¢ + P[S(m — 1) = 1],
and
E[f(X;m), XTim)] < ¢ + P[R(m — 1) < 1].
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Hence for any tactic T and m = 1, one has
E[f(Xr, Xmm)] < a + 2[2¢ + P(S(m — 1) = 1) + P(R(m — 1) < 1)],
which yields the desired inequality when o — 0.0

Finally, the following theorem gives the existence of optimal stopping points
for right-continuous processes of class (D) which are quasi-continuous along
sequences of stopping points for the filtrations () and (% 2). Hence this theorem
extends known results of existence of optimal stopping times for one-parameter
processes (see, e.g., [10]). However we do not obtain a constructive way to find
an optimal stopping point. The conditions (i) and (ii) below can be interpreted
as 1- and 2-quasicontinuity of the process (X;).

THEOREM 3.5. Let (X, 2 € R%) be a process of class (D) with almost surely
right-continuous trajectories. Suppose that the conditions (i) and (ii) are satisfied:

(i) [(ii)] Let (a(n), n = 1) [(r(n), n = 1)] be a sequence of stopping points for
the filtration (7}) [(F2)], taking on finitely many values and converging to ¢ [7].
The sequence EX ) [EX, )] converges when o(n); > o, and o(n); < oy [7(n)y >
72 and 7(n), < 71], and this sequence converges to EX, [EX.] when o¢(n); < o,
[7(n): < 72].

Then there exists an optimal stopping point 7*, i.e., such that EX « = sup{EX,:
T stopping point}.

ProoOF. It suffices to notice that Propositions 2.2 and 2.3 in [21] show that
the assumptions of Lemma 3.3 are satisfied by (X,). Lemma 3.3—its analog
obtained by exchanging the first and the second planar coordinate—Lemma 3.4
and Theorem 3.2 yield the existence of an optimal stopping point. [
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