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DE FINETTI-TYPE THEOREMS: AN ANALYTICAL APPROACH' 

By PAUL RESSEL 

Stanford University and Katholische Universitat Eichstatt 
A famous theorem of De Finetti (1931) shows that an exchangeable 

sequence of 10, 11 -valued random variables is a unique mixture of coin tossing 
processes. Many generalizations of this result have been found; Hewitt and 
Savage (1955) for example extended De Finetti's theorem to arbitrary compact 
state spaces (instead of just IO, 10). 

Another type of question arises naturally in this context. How can mixtures 
of independent and identically distributed random sequences with certain 
specified (say normal, Poisson, or exponential) distributions be characterized 
among all exchangeable sequences? 

We present a general theorem from which the "abstract" theorem of 
Hewitt and Savage as well as many "concrete" results-as just mentioned- 
can be easily deduced. Our main tools are some rather recent results from 
harmonic analysis on abelian semigroups. 

1. Introduction. De Finetti's famous classical theorem (1931) says that an 
exchangeable sequence of {0, 11-valued random variables is a unique mixture of 
i.i.d. Bernoulli sequences. More precisely: let X1, X2, *. be 10, 1}-valued and 
assume that 

P(X1 = X *i , Xn = Xn) = P(X1 = Xv(l), Xn = Xv(n)) 

holds for all n GE A, xl, . , xn E I 0, 1} and all permutations a of {1, n. n, 
then for some unique probability measure it on [0, 1] 

(1) P(X1 = Xi, Xn = xn) = pzxi(1 - p)n-yXi dA (p). 

Many generalizations and similar results have been found; in fact since around 
1970 a renewed strong interest in this area can be observed and many exciting 
new results were found. Several excellent survey articles are available; see for 
example Kingman (1978), Diaconis and Freedman (1984), Aldous (1983) and 
Lauritzen (1984). 

One early aim was of course to extend De Finetti's theorem from {0, 1} to 
more general state spaces and a most satisfactory result was obtained by Hewitt 
and Savage (1955); they found that I0, 1} can indeed be replaced by any compact 
Hausdorff space, from which it can immediately be extended to Borel subsets of 
compact spaces, in particular to all polish or locally compact spaces. Without 
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any topological assumptions the result may fail to hold as was shown by Dubins 
and Freedman (1979). 

Given any fixed state space, another type of question seems natural: what are 
(necessary and sufficient) conditions on a given sequence of exchangeable random 
variables in order that it turns out to be a mixture of i.i.d. sequences of a 
particular type, say of normally or exponentially or Poisson distributed random 
variables. See Freedman (1962) for many interesting examples. 

Our aim in the present article is to prove a general theorem from which both 
the "abstract" representation of Hewitt and Savage and also many "concrete" 
results (as just mentioned) may be easily deduced. The methods involved are of 
analytical nature; they use in an essential way some results from harmonic 
analysis on semigroups, a good introduction to which may be found in Berg, 
Christensen and Ressel (1984). 

2. Some basic results from harmonic analysis on semigroups. Let S 
denote an abelian semigroup, written additively, with a neutral element called 0, 
and provided also with an involution *: S -* S such that (s + t)* = s* + t* and 
(s*) * = s for all s, t E S. In many cases this involution will be the identical one, 
i.e. s* = s for all s 8 S. An example with a nontrivial involution we are going to 
use later on will be S = R x R+ with the usual addition and the involution 
(S1, S2) * = (-S1, S2). 

A function (P: S C C is called positive definite if 

Xjk=l CjCk(P(Sj + Sk*) > 0 

for all n > 1, sl, * , sn E S and cl, * , cn E C. The set 9(S) of all positive 
definite functions on S is a convex cone containing the set S* of semicharacters 
on S which by definition are those functions p: S -* C for which p (0) = 1, 
p(s + t) = p(s)p(t) and p(s*) = p(s). If i is a (nonnegative) Radon measure on 
S* such that SI p(s) I dAu(p) < oo for all s E S (in particular then it(S*) < oo), the 
function (P (s) := f p (s) d~u (p) is positive definite since 

C CjCk P(Sj + Sk*) = f j E cjp(sj) 12 du(p) >. 0 

and one of the main problems of harmonic analysis on semigroups is to establish 
the converse which does not hold i.g. without further conditions on 'P or S, see 
Berg, Christensen and Jensen (1979). One particularly useful condition on 'P is 
to assume that 'P is exponentially bounded; this means that there is a function 
a: S --L R+ fulfilling a(0) = 1, a(s*) = a(s) and a(s + t) c a(s)a(t) (a is then 
called an absolute value) such that I 'P (s) I c Ca (s) for some C 8E R+ and all s E 
S. In Berg and Maserick (1984) the fundamental result is proved that 9a(S), 
the set of a-bounded positive definite functions on S, normalized by 'P (0) = 1, is 
a Bauer simplex whose extreme points is precisely the set Sa of a-bounded 
semicharacters (it is easily seen that a semicharacter p is a-bounded iff I p (s) I c 
a(s) for all s E S). This implies that each function (P 8 _a(S) has a unique 



900 P. RESSEL 

integral representation 

(2) (P(s) = f p(s) dAu(p), s E S 

where it is a Radon probability measure on S*, concentrated on the compact set 
S". In particular if (P is bounded (i.e. a-bounded w.r.t. the absolute value a 1) 
then the representing measure it is concentrated on S p E S I I p (s) I c 1 for 
all s E S I, the set of all bounded semicharacters. 

In most of the examples later on we actually want the measure it to be 
concentrated on the set S* of nonnegative semicharacters. A necessary condition 
for this to hold is that 'P even is completely positive definite, by which we mean 
that not only (P but also each translate (Pa, defined by (Pa (s) = 'P (a + s), is positive 
definite. In fact 

XIk=1 CjCk'Pa(Sj + Sk) = f p(a) I XY=j cjp(sj) 12 dyt(p) 2 0 

if it(S*\S*) = 0. The converse statement holds also, as long as we only consider 
exponentially bounded functions, and is proved now. 

PROPOSITION 1. Let (P be a completely positive definite exponentially bounded 
function on S. Then the unique representing measure it for 'P is concentrated on 
s: . 

PROOF. Let (P be bounded w.r.t. the absolute value a, i.e. 

I (P(s) I < Ca(s) for all s E S and some C E R+. 
Then for a E S we have I Sa(s) I = I ( (a + s) I < Ca (a + s) c Ca (a) a(s) so that 
all translates of 'P are likewise a-bounded. Therefore we find uniquely determined 
Radon measures Aua, a E S, on S* (which are in fact concentrated on Sa) such 
that 

SP(a + s)= p(s) dpa(p), s E S, a E S. 

From SP(a + s) = f p(a + s) dA (p) = f p(s)p(a) dA (p) we may conclude 

dia(p) = p(a) dA(p) and d/a*(p) = p(a) dA(p). 

For the open subset Ua =p E S* I Re p(a) < O} of S* we find 

o C (Ala + laA)(Ua) = f [p(a) + p(a)] dAL(p) = 2 f Re p(a) dAL(p) c 0 

whence AL(Ua) = 0, and since AL is a Radon measure, 

AL(UaeSUa) = 0 

showing that it is concentrated on those p for which Re (p) 2 0. This last 
condition however implies already p(S) C [0, oo[, because if 0 $ p(s) = I p(s) I e ' 
for some 0 C ]0, ir/2] (without restriction, since then p (s*) = I p(s*) e-i), then 
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for the minimal n E N such that nO > 7r/2 we have p(ns) = I p(s) I ne in and 
therefore Re p(ns) < 0. Hence 1t(S*\S*) = 0 as asserted. 0 

REMARK 1. In Ressel (1982, Theorem 2) the above result was shown under 
the two restrictions of 'P being bounded and S carrying the identical involution. 
In this case the representing measure concentrates on S+ = p E S* I 0 c p c 1 
so that by a famous result of Choquet the two classes of bounded completely 
positive definite and completely monotone functions coincide. 

One of the great advantages of the general integral representation for positive 
definite functions is certainly that the determination of the extreme points is 
reduced to a rather simple functional equation (although it is not always obvious 
how the semicharacters of a given semigroup look like). But still the problem 
remains to establish that certain functions are in fact (completely) positive 
definite. It turned out that the following result may be very helpful. 

APPROXIMATION LEMMA. Let (ajk) be a complex p x p-matrix, let M $ 0 be 
a set and let 4b: M x M -- 0 be a bounded positive definite kernel. Suppose that 
for every n EI there exist x G I j =1,* ,p; = 1,*,n5M such that 

(xj,=ff, XkT ) Jak if j - k 4?(JGxk,) aj if j = k b ut a $ 7-. 

Then the matrix (ajk) is positive (semi) definite, too. 

This result appears in Christensen and Ressel (1982, Lemma 5), but it was 
used for special matrices already in Berg and Ressel (1978) and in Ressel (1976). 

3. The main theorem. Let Y be the family of all complex-valued measur- 
able functions on some measurable space (Z, _W) which are bounded by 1. Let S 
denote an abelian semigroup and let Z denote an abstract set with involution, 
i.e. there is a mapping *: Z - Z such that (z*) * = z for all z E Z. Furthermore 
three mappings 0: Z - F t: Z -- S, (: Z -- C\O0 are given such that 
O(z*) = 0(z), 1(z*) = f(z), t(z*) = (t(z))* and such that t(Z) generates S; this 
means that each s E S\{0} is a finite sum of elements in t(Z). 

THEOREM 1. Let under the assumptions just given X1, X2, * be a sequence 
of 2f-valued random variables such that 

(3) E[171 0(zj) o Xj] = fli f l 0(zj) (PQ'= t(z1)) 

for all n - 1 and all z1, *. , zn E Z, where SP: S -- 0 is some function normalized 
by (P(O) = 1. Then 'P is exponentially bounded and positive definite. In case the 
functions in S0 := 0(Z) are nonnegative and ( > 0 'P is even completely positive 
definite. 

REMARK 2. The seemingly more general case that the function 'P in (3) 
depends also explicitly on n can easily be reduced to the case where 'P is the same 
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function for all n E M. We define t: Z -- S x n0 by t(z) := (t(z), 1) and consider 
S X No as a semigroup w.r.t. componentwise addition and the involution 
(s, n)* = (s*, n). Let S be the subsemigroup of S X n0 generated by ti(Z). Then 

(Pn(ZY=i t(zZ)) = (P( 21 t(zj), n) = (P(Zn1 t(zj)) 

and Theorem 1 applies. This idea is due to S. Lauritzen. 

PROOF. Let si, * * *, sp E S be given and let n E H be fixed. If none of the sj 
is zero we have by assumption 

sj =SF/=1 t(zj'Ao j 1 g P 

for suitable zj, 8 Z. We choose np disjoint subsets Nj, C j=1 j , p, o = 1, 
. **, n such that I Nj,, I = nj, define Pyj H:'= 1 d (zj,,) and complex-valued random 

variables Yj,G by 

Yj, f= i := 0(zj,l) o Xkl, where Nj, = 1k1, k2, . knjl 

Then 

E(YjGY,= fYj1Yk(P(Sj + St), if j k 
)llyil2(P(sj+s7), if j=k but U$T, 

so that by the Approximation Lemma the matrix (Yj7kP (Sj + SZ*))j,kcp is positive 
semidefinite. Since yj # 0 for all j this implies ((P (sj + s *)) to be positive 
semidefinite, too. 

In case 0(Z) consists only of nonnegative functions and / > 0 let a C S\IO be 
of the form a = Z/'=, t(z,) and choose Na 5 N disjoint of all the Nj, and of 
cardinality I Na I = m. Put 

Ya H:= 2-i 0 (z) ? XV, where Na = P,, .l * 

and 'Ya :H= i 1=, 3(zA). Then 

E (Ya Yj, Yk,) _ 'YaYjYkP (a + si + Sk), if j $ k 
(YaYj2S (a + 2sj), if I = k but a u X 

(note, that the involution on S is now necessarily the identical one) and since 
Ya > 0 we see as before that ((P (a + sj + Sk))j,ksp is positive semidefinite. 

If 0 E S is not a finite sum of elements in t(Z) we must show that the matrices 
((P(s1 + s*)) resp. ((P(a + sj + s4f)) are also positive semidefinite if one of the sj, 
say s, equals 0. In this case we put Y,? := 1 for a = 1, ... , n and likewise 
,y := 1 and get the result as before. 

We still have to show that (P is exponentially bounded. From (3) we see that 
for s = On=t(zi) 

I (P(s)I 7= |f~~~s)~ Izi CII 
and hence 

I (P(s) I c a{(s) := inf{ l 1 I s = EZ=i t(zj), n E N, zj E Z}. 
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Then a is well-defined on S\101 and we complete the definition by a(0) := 1. 
Now a routine argument shows a(s + s') < a(s)a(s') for all s, s' E S and 
a (s*) = a(s), i.e. a is an absolute value majorizing (P. This finishes the proof of 
Theorem 1. 0 

In all subsequent applications the set Yo = 0(Z) of measurable functions will 
be rich enough to separate probability measures not only on (Z, AW) but also on 
(in, _Vn) for all n > 1. This means that given two probability measures P, Q on 
en, an) such that 

Jfif2 '' **fndP =Jfi f2 X *. *fn dQ 

for all fj E Fo then P = Q (here fiA ? * * fn(X1, * , Xn) = fl7=i fj(xi) denotes 
the usual tensor product of functions). Let us agree to call So fully separating in 
this case. 

COROLLARY 1. Let in the situation of Theorem 1 the family Yo be fully 
separating. Then the sequence X1, X2, * - - is exchangeable. 

By the integral representation theorem mentioned earlier there is a unique 
Radon probability measure on S* (supported even by the compact set of 
a-bounded semicharacters, a being derived from /3 as described in the proof of 
Theorem 1) such that 

(P(s) = f p(s) dAu(p), s E S. 
implying 

(4) E[flL~= O(zj) o Xj] = f l1 /3(zj)p(t(zj)) dAu(p) 

for all n E [ and z1, - * *, Zn E Z. In most of the applications below 0 will be one- 
to-one so that Z might be identified with the subset So of Y, closed under complex 
conjugation. The remaining task will then be to show that it is concentrated on 
the "right" set of semicharacters, i.e. on those p E S* such that the function z = 
f - fl(f )p(t(f)) is given as f f dA for some probability measure K on (Z., W). 
Since in all our applications 16 will be fully separating, the measure is unique if 
existent. Note that for general p E S* the functional #(f)p(t(f)) cannot be 
expected to be linear. 

4. The theorem of Hewitt and Savage. Let 2 denote a compact Haus- 
dorff space and _W the family of Borel subsets of Z'. Furthermore let W(2G) be 
the space of all continuous real-valued functions on A', W+ (f') the nonnegative 
members of Wr() and letZ= = = if EE W() 10 ' f ' 1}, 0 = id. 

LEMMA 1. If r: A -- [0, 1] fulfills r(f) + r(g) = 1 whenever f, g E A, 

f + g = 1, and r(f) + r(g) + r(h) = 1 whenever f, g, h E S/, f + g + h = 1, 
then T (f) = f f dK for some uniquely determined Radon probability measure 
K on 2'. 
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PROOF. From 0 + 1 = 1 and 0 + 0 + 1 = 1 we infer r(O) +(1)=1= 
2r(O) + r(1), hence r(O) = 0 and r(1) = 1. Suppose now f C g for f, g 8 go; then 
f + (g - f) + (1 - g) = 1 implying r (f) + r(g - f) + r(1 - g) = 1 = r(g) + 

- (1-g) and therefore r(f) + r(g - f) = r(g) so that r(f) C r(g), i.e. r is 
monotone. Obviously r(af ) = a(f ) for all f 8 J and all a 8C Q n [0, 1], and 
using the monotonicity of r this holds even for all a 8 [0, 1]. Extending r to 
F+ Gr ) by r(f) :=lfl r(fl f /f ) forf 0 0 and then in the usual way to F(2G ) by 
r(f ) -: (f I shows r to be a positive linear functional on F (2 ) which 
by Riesz's representation theorem is induced by some uniquely determined Radon 
probability measure on r. D 

REMARK 3. If r: Jo - [0, 1] only fulfills r(f) + r(1 -f) = 1 for all f c Y 
and r (1) = 1, it need not be induced by a measure. For example fix some x0 C r 
and define r by r(f) = 0 if f(xo) < 1/2, r(f) = 1/2 if f(xo) = 1/2 and r(f) = 1 if 
f(xo) > 1/2. 

THEOREM 2. Let P denote an exchangeable Radon probability measure on the 
countable infinite product r of some compact Hausdorff space r . Then for some 
uniquely determined Radon probability measure ,i on Ml (f), the space of all 
Radon probabilities on r, we have 

(5) P (A) - sK '(A) dA (K) 

for each Borel set A C r. (Here K' denotes the unique extension to a Radon 
measure on r' of the usual Kolmogoroff product measure K 0 K 0 * - - .) 

PROOF. Let P be the distribution of X = (X1, X2, * * *) and let as before Y 
be the set of all continuous functions f: 2' -- [0, 1]. Since P is exchangeable, the 
expectation 

E(f13'=1 fj ? Xj), fig ... 9 fn E E 

depends only on the number of times each f E Y6 appears among fA **, fn; but 
this means that it can be factorized over the free abelian semigroup over Y, 
denoted S = `0'? = Is: A0 -- no I I Is 0 0}1 I< oo}1. i.e. 

E(H[Ijn1 fi ? Xi) = ( (Z 3, bf) 

for some function (P on S, where 3f 8 S is one at f and zero at Yo\{f }. With 
t( f) := 3f and ,B 1 we may apply Theorem 1 to conclude that (P is a (bounded) 
completely positive definite function. A moment's reflection shows that the dual 
semigroup S* can be identified with RLo, similarly SA [-1, 1] and S+ 
[0, 1] o. Equation (4) now takes the form 

E(HyIh= o fj ? Xj) =fj=l p(fj) d,(p), n GE I, fi, ... fn E 0 

with ,u E Ml ([0, 1]Y-0), where-slightly abusing notation-we have identified bf 
with f. 
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Let f, g GE o be given, f + g = 1. Then 1 = E[(f + g) o X1] = E(f o X) + 

E(g o Xj) = f [p(f) + p(g)] dA(p), and for n 8 IN 

1 = E[H7j=l (f + g) ?X] = X 2~o a .,nj;Ial=k E[fljia f(Xi) JjjEaC g(X1)] 

= En n(n) f (f(f))k(p(g))fn-k d (p) = f [p(f) + P(g)]n dA(p) 

so that ,i Q p I p(f ) + p (g) = 1}) = 1 and therefore, ,u being a Radon measure, 

A (nf--0Ip I p(f) + p(l - f) = 1}) = 1. 

Similarly, if f + g + h = 1 for f, g, h G Yo we find 

1 = E[Hfjn=l (f + g + h) o Xj] 

= Xkj,k2,k3-O;kj+k2+k3=n (p(f )) kl(p (g)) k2(p (h)) k3 du (p) 

[p(f) + p(g) + p(h)]n dA(p) 

so that p(f) + p(g) + p(h) = 1 ,u-a.s.; we see that ,u is in fact concentrated on 
those p: o -* [0, 1] for which the conditions of Lemma 1 are fulfilled, i.e. on the 
set Ml (r) of Radon probabilities on 2. Since the pointwise topology on 
[0, 1]VO induces the usual weak (or vague) topology on Ml(Gr), A is a Radon 
measure on Ml W). Now 

E(Hj=l fj o Xj) fi fndP=S'( )=fLn p(bfj) dA(p) 

'M 
n 

fj AfdK A (K) 

fl (9 ... X fn dK' dAu(K) 

for all n 8 [ and fi, * * n fE Yo, so that routine arguments show 

P(A) = f K(A) dA (K) 

at least for all A C _W 0 _W 0 * * *, a a-field being contained and not always equal 
to G'), the Borel field of 2. Since for any open subset G C 2X the function 
v -4 v (G) is lower semicontinuous on Ml (r) and since furthermore K - K' is a 
continuous transformation from Ml (2) to Ml (2') (even a much more general 
result of this type holds, see for example Ressel (1977, Theorem 2)), we get that 
K - K='(A) is Borel measurable on Ml (,) for each Borel set A 5 r. If G C 
is open then G = UXEAGX for an increasingly filtered family of open sets 
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Ga E8 w' X _v X * , so that standard results about Radon measures show 

P(G) = sup P(GJ) = sup f K (Gx) dc4(K) 

- f Sup K (Gx) dc (K) = f K(G) dc (K) 

and this equality then extends immediately to all Borel sets in 2X, thus finishing 
the proof. D 

REMARK 4. Hewitt and Savage (1955) showed the validity of (5) for all Baire 
sets in 2X, i.e. for all A E _V0 X _V0 X ... , where A7' is the a-field generated by 
W(1). The extension to the Borel subsets of 2' was shown in Diaconis and 
Freedman (1980). 

In analogy with a terminology introduced by Hewitt and Savage one might 
call a Hausdorff space 2' Radon-presentable if the result of Theorem 2 holds for 
Z'. It might be true that all Hausdorff spaces have this property. 

THEOREM 3. Completely regular Hausdorff spaces are Radon-presentable. 

PROOF. Let 7 be completely regular, and let 2' denote its Stone-Czech 
compactification. If P E Ml (,') then P: &7(G) - [0, 1], defined by P(B) 
P(B n 7d) defines a Radon measure P on r' which is exchangeable if P was. 
In this case P = f K dj(K) by Theorem 2, where E E M+(M+(,r)). Since P is 
Radon, so is its projection onto the first coordinate, hence for suitable compact 
setsKffCK25K3 **...* 

1 = limj ooP(Kj x $/ x $/ x ... limj, cP (Kj x :, x :, x ... 

= lim1' 'MC ) K (Kj) dA-(K-) = ' ) K(Uj-1 Kj) dA-(K-) 
M 1 (I ) M 1 (I ) 

so that A QK? I K (K) = 1}) = 1 for K= U 1 Kj 5 $7. The set M:= {KEE M+(Z") | K (K) 
- 1} is a Borel set in Ml (Z'), on which-,u is concentrated, therefore A- is a Radon 
measure on M (w.r.t. the trace topology from Ml (Z')). 

Since any bounded real-valued continuous function on 7 has a unique contin- 
uous extension to A, the natural injection 

K 1 K 

is continuous, ensuring that it, defined as the image of -i under this injection, is 
again a Radon measure (on the Hausdorff space Ml (p') w.r.t. the usual weak 
topology). 
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If now A GE ( ) then A = B n IV for some B E ("'G) and 

P(A) = P(B) = K (B) dc(G) = (B n Ko) d (K) 

K (A n K ) dA(K) = K(A) dA(K) 

since A(IK I K(K) = 1}) = 1. D 

The above result implies that all polish and all locally compact spaces are 
Radon-presentable. It is also possible to show that all analytic spaces (i.e. 
Hausdorff images of polish spaces under continuous mappings) are Radon- 
presentable: If f: 7 - 2 is a continuous surjection of a polish space 7 onto an 
analytic space A', then f admits a universally measurable right inverse and using 
this fact the proof is rather straightforward. 

5. Countable state space. Let r be a nonempty finite or countable set 
(and SW equal the power set of f). In this case it is possible to specify probabilities 
on 2' or 2"n by the complete list of point probabilities. We obtain the framework 
of Theorem 1 by putting Z = g% := Il I, I x E8 2, 0 = id, and then identifying 
l1x, with x. Hence the mappings /3 and t are now defined on A, i.e. t: 2 -- S such 
that t(2) generates S; in particular S is countable, too. 

THEOREM 4. Let P E Ml (am) have the property 

(6) P(x1, * , xn) = [11 (xj)f ( =1 t(xi)) 

for all n > 1 and all xi, Xn GE A, where A - ]O, oo[ and t: 2 - S. a 
semigroup generated by t(r), and where SP: S - R is normalized by 5P(0) = 1. 
Then 5P is an exponentially bounded completely positive definite function on S 
whose uniquely determined representing measure is concentrated on the relatively 
compact Borel set 

W = W $ p E Sfl Xe-r ,8(x) p(t(x)) = lj 

W is compact in case r is finite. Conversely for each ,u E Ml (W) the function 
'P(s) f p(s) d~u(p) defines via (6) a probability measure on r', i.e. the set of all 
P satisfying (6) is affinely isomorphic to the face Ju E Ml (S*) I 1(W) = l. 

PROOF. From Theorem 1 we know that SP(s) = f p(s) d~u(p) where 
,u E Ml (S*) has compact support. Equation (6) then becomes 

P(X1 *--, Xn) = f fJl=l f3(xj)p(t(xj)) d~u(p) 
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implying 

1 = x1, x:nE2 P(X1i , * 9 Xn) = f [XxE2' #3(X)p(t(X))]n d.t(p) 

for all n E A , hence A ( W) = 1. It is easy to see that W in fact is contained in the 
compact set of all a-bounded semicharacters. See the proof of Theorem 1. 

The converse statement is nearly immediate. 0 

REMARK 5. The set W may be empty in which case no probability P on OX 
fulfills (6). If for example S is an idempotent semigroup (i.e. s + s = s for all 
s E S) then all semicharacters are 10, 1}-valued, so that W would be empty as 
soon as Z A(x) < 1. 

REMARK 6. In case 0 = T1 t(yi) for IYi, *. I, }C we have P(y1,* , 
yi) = f 1 fl(yi)p(0) = Xxer P(y1, ... *, y. x) = >2 Tfl #3(y,)fl(x) (t(x)) = 
fl I (3(yi), so that necessarily (P0() = 1. 

REMARK 7. In Lauritzen (1975) a good deal of Theorem 4 was already proved. 
What was not shown was that ( is an exponentially bounded and completely 
positive definite function. There was also a slight restriction concerning the 
semigroup S which was assumed to be a subsemigroup of T X (no, +) for some 
semigroup T, and being generated by some subset of T x I1j. This restriction is 
fulfilled in the following 4 Examples, two of which (Examples 3 and 4) are also 
contained in Lauritzen's paper, but it is not assumed in Theorem 5 below. More 
detailed information may be found in Lauritzen (1982, 1984). For given (3, t and 
S the family 

2 
= {K E M+(Z) I K(X) = /3(X)p(t(X)), p E WI 

is a general exponential model in the sense of Lauritzen (1975, Definition 3.1). 

EXAMPLE 1. Let X = 10, 1, 2, * *, k. where k E H. We wish to determine 
all P E Ml (if') such that 

(7) P(X1, ... , xn)= (Pn (= Xi) = i(P 1 (xi, 1)) 
for all x1, * *,xn E , and all n E M. Here-1, t(x) = (x, 1) and Sk C o X 
nfo is the semigroup generated by t(X) = {(0, 1), (1, 1), ... , (k, 1)}, i.e. Sk - 

$(m, n) EK No X N0I mS knj. 
We want to determine the set W from Theorem 4; so we first have to know 

how the nonnegative semicharacters of Sk look like. See Figure 1. 
Let p E S * + and define u, v E IM+ by uk p(k, 1) and k := p(O, 1). We assert 

that 

p(m, n)= umvkn-m for all (m, n) E Sk. 

If 1 c f < k then (pW(, 1))k = p (fk, k) = p (fk, I)p (O. k-f) = ulvk(k-), hence 

p(/, 1) = UlVk-1. 
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I . . . . . . . . . . 

3 1.. .. . .. ...... 

3 ! . 

0 1 2 3 k=4 8 12 

FIG. 1. The semigroup S4 

Let now (m, n) E Sk be given. If m = pk for some p E: N then (m, n) - 

(pkp) + (O, n-p) and pi(m, n) = UkpVk(nP) - UmVknm. If k does not divide m then 
kp < m < (p + 1)k, so n 2r m/k > p and (m, n) = (pk, p) + (m - pk, 1) + 
(0, n-p-1), implying 

p(m, n) = (p(k, 1)) p(nm - pk, l)(p(O, 1)) n-p-l 

= ukpUm-pkVk-(m-pk)Vk(n-p-1) 

=m kn-m 

Therefore p E Wiff p(0, 1) + p(1, 1) + * + p(k, 1) = 1 iff 

Vk + UVk1 + U2Vk-2 + .. + Uk-lv + uk= 1 

which describes a compact curve-piece Wk inside the unit square. The correspond- 
ing generalized exponential model is given by 

X = {K E Ml+(10, 1, * * , kj) I K($jj) - UiV J, (U, V) e Ik, 

which for k = 1 reduces to all of Ml (109 1)j; this is de Finetti's original theorem. 

EXAMPLE 2. Let now 2 = 10, 1, 2, ... I be all natural numbers, including 0. 
Again we want to know all solutions to (7). We have to consider the semigroup 
S generated by {(0, 1), (1, 1), (2, 1), ... I inside no X No , i.e. S = x H) U 
{ (O. 0)1. 

To determine S* let p be a nonnegative semicharacter. Put v p(0, 1) and 
w := p(1, 1). If v = 0 then w2 = p(2, 2) = p(2, 1) v = 0 and then p = 1f(oo)j. For 
v $ 0 put u = w/v; then p(m, l)(p(O, 1))m-1 = p(m, m) = wm so that 
p(m, 1) = umv and p(m, n) = UmV Vn-l umvnforall (i, n) e S. We see that 
p E W if and only if E=O p(m, 1) = EX=o umv = 1 iff u e [0, 1[ and v = 1 - u, 
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i.e. the extreme solutions of (7) are now given by the geometrical distributions 
on No. Note that W is no longer compact in this case. 

EXAMPLE 3. Let again X = Mo, but this time we choose a nontrivial function 
fi, namely fl(x) = (x!) -, hence we are going to determine all P E M+ () such 
that 

P(xi, X.,) = (fi ' i xj!) -1'P.(Z x0)= (GIfl' xj!) -1P(X(Z (xj, 1)), 

where (P: S R with the same semigroup S as in Example 2. Let p E S* be 
given by p(m, n) = UVn U, v E R+. Then p E We iff 

1 = mo (1/m!)umv o v = e-u 

and the corresponding exponential model is just the set of Poisson distributions. 
See Freedman (1962, Theorem 4) where also the two examples A(m) = (') and 
j3(m) = (NM-Tl) are considered, leading to mixtures of Binomial and Inverse 
Binomial distributions, respectively. 

It may be of some interest to see what it means in this case that all semichar- 
acters in W# are a-bounded where 

a (m, n) = inflJ l xj! I n = 

Since 

umeu-n a a(m, n) for all u - 0 

we may maximize the left-hand side to obtain the lower bound 

(m/n)me-m c a(m, n) 

(begin nontrivial of course only for m > n). 
The reader might wonder at this point if it really holds in general that W, is 

relatively compact, since in the present example the subset I(u, e-") I u E C+ 
I+ describing We is obviously unbounded. The explanation lies in the fact 
that the identification of I24 with S* is not a topological one (in this case; 
had we considered H' instead of S, the topologies would coincide, too). In fact 
limu,.(u, e-u) = (0, 0) in the topology of S+. 

EXAMPLE 4. We let X = H and want to determine all P E Ml (ad) such 
that 

(8) P(xl, ..., xn) = (Pn(maxl<jcnxj) = (P(L= (xj, 1)) 

where the notation jni=l (xj, yj) := (maxlscnxj, D' 1 yj) is used in order to avoid 
misunderstandings. Let S be the subsemigroup of (N, V) x (N0, +) generated by 
t(N), t(x) := (x, 1). As a set S looks similar to the semigroup considered in the 
two previous examples, we have S = (N x N) U {(1, 0)j. 

Let p E S+, then p(m, n) = (p(m, 1)) and form' c m 

p(m', 1)p(m, 1) = p(m, 2) = (p(m, 1))2; 

hence p(m', 1) = 0 implies p(m, 1) = 0 for all m 2i m', and if p(m, 1) $ 0 then 
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p(m', 1) = p(m, 1) for all m' ' m, so that 

p(m, n) = 111,2,..- .,kl (m)Vn 

for some k E R and v EI R+. We see that p E W iff 

ZXE-P(X, 1) = ZX~= lll,. .,kl(X)V = 1 

iff k E N and v = 1/k. The extreme solutions of (8) are therefore given as uniform 
distributions on one of the discrete intervals $1, ... , kj, k E M. 

REMARK 8. In the situation given by Theorem 4 the statistic tn: in S 

defined by tn(X1, ... , Xn) = E3'=i t(xj) is obviously sufficient for the set of all 
P E M~'+ ) fulfilling (6). In fact if s E tnG') and P(s) > Owe have 

<Y(s) := 2lt(y)=1 [I1 M A ((yj) < ?? 
and 
P(X1 = X19 ... , Xn = Xn I =i t(X1) = s) = (11- l x1 X)1tn=81(X1, .*a Xn), 

whereas (P(s) = 0 implies P(XY=l t(Xj) = s) = 0. 
As another interesting application of Theorem 4 we will derive the general 

solution of the so-called Integrated Cauchy Functional Equation (ICFE) on 
countable abelian semigroups. This equation was first considered by Deny (1960) 
and has recently found a lot of interest mainly in connection with probabilistic 
characterization problems, see for example, Davies (1980), Lau and Rao (1982) 
and Richards (1982). With the exception of the last mentioned paper the ICFE 
is only considered on (locally compact) abelian groups; Richards (1982) charac- 
terizes the bounded solutions of the ICFE on abelian semigroups. 

THEOREM 5. Let S be a countable abelian semigroup and let fi: S R+ be a 
given function such that is E S I ,8(s) > 0O generates S. Then (P: S -I+ is a 
solution of the ICFE 

(9) 'P(s) = Xs'ES 0f(s')'P(s + s') for all s E S 

if and only if (P is a completely positive definite and exponentially bounded function 
whose representing measure is concentrated on I p E S* I 2ses fi(s)p(s) = 1j. 

PROOF. One direction is, of course, obvious. Assume now that (P satisfies (9). 
If P (0) = 0, a moment's reflection shows that (P is identically zero. Without 
restriction we may therefore assume (P(0) = 1. Let r := I, > 0j and define 
P E M1 (k0) by 

P(Xi ... , Xn) : 1=i ( (Xj)'P(X=i X0) 

Then EX P(x) = Xx (3(x) P(x) = 1 and for n - 2 

XXnE2 P(x1, (Xi * . 
x. = [IJ EE((x) Exe #(Xn)(P (Xj1 xi + xn) 

= 1il #((xj)(P(j=l x0) = P(X1, ... Xn-1) 

showing that P indeed is a probability measure on Am. The proof is finished by 
an application of Theorem 4. [1 
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6. De Finetti's Theorem for convolution semigroups. Already long ago 
Schoenberg (1938) proved the theorem that a continuous function (P on M+ such 
that (p11 X 11 2) is positive definite on ]' for all n E H (11 * 11 denoting Euclidean 
norm) is necessarily completely monotone. His result can easily be translated 
into a de Finetti-type theorem: let X1, X2, ... be a sequence of real-valued 
random variables such that the characteristic function of X(n) := (X1, i , Xn) 
is spherically symmetric for all n, i.e. 

E(ei(yX(n))) = JPn(J1 y JJ 2), y E 2n n E X, 

then we see immediately that P = (P2 = *.; let us denote this function (P. By 
Schoenberg's theorem 

'P(s) = f e- dcu(s) 

for a uniquely determineduy E Ml (R+) so that 
00 

E(ei(YX(n))) = f Hl e"YJ d~u(X), 

implying by the unicity of characteristic functions 
00 

P(X(n) E B) = f N(O, 2X)?n(B) du(X) 

for n-dimensional Borel sets B, and this holding for all n we have in fact 
00 

P(X E B) = f N(O, 2W)X(B) d~u(X) 

for all Borel sets B C RI', i.e. X is a variance mixture of centered i.i.d. normal 
sequences. 

Now the family of centered normal distributions on R with varying variance 
is in fact a one-parameter convolution semigroup, i.e. X A-+ N(O, X) is a continuous 
semigroup homomorphism from (m+, +) into Ml (DR) (being considered as a 
semigroup w.r. to convolution) such that 0 '-4 to. Replacing in this definition 
(R+, +) by other topological abelian semigroups we obtain more general convo- 
lution semigroups. Using our main theorem we will be able to generalize the 
argument given above and characterize mixtures of many one-parameter convo- 
lution semigroups and some more general convolution semigroups, too. Our 
starting point will be the following "abstract" result. 

THEOREM 6. Let R and S be abelian semigroups with involution, let t: R -- S 
be a mapping fulfilling t(0) = 0, t(r*) = (t(r))* and such that t(R) generates S. 
Let further fi: R E C \ IOj fulfill ,8(0) = 1, f3(r*) = ,8(r) and suppose (P: S -. C has 
the property that 

(10) 4b(rl, .. , rn) f= l3=1 i3(rj)'P(X=l t(rj)) 
is bounded and positive definite on Rn for all n E M. Then (P is an exponentially 
bounded positive definite function on S whose representing measure is concentrated 
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on the compact set W = Wt,# consisting of those semicharacters a E S* such that 
r -f(r)of(t(r)) is bounded and positive definite on R. 

In case the functions 4n are even completely positive definite for all n and fi is 
positive, 'P is completely positive definite, too. 

PROOF. Without loss of generality let (P(0) = 1. Then 4'1, 4'2, . have the 
representations 

(11) (n (r1, *-- , rn) = I pj(rj) dvn(Pl, PO , p) 

for uniquely determined vn E Ml(Rn). Since [n (rl, ** , rn,1, 0) = 4nl(ri ., 
rn-1) the vn's are compatible so that for some v E Ml (R") the measures vn are 
the projections of v onto the first n coordinates. 

In the terminology of Theorem 1 we put Z = R (with the involution given in 
R) and define 0(r) as the continuous function p '-4 p(r) on 2 = R. (Note that 
here 6 is one-to-one iff the bounded semicharacters on R separate points.) Instead 
of (10) we can now write, denoting X1, X2, * the coordinate projections on Roo 

E[17 1 0(rj) o Xj] = fijn=l 3(rj)(P(Z2=, t(rj)) 
and Theorem 1 tells us that 'P is positive definite and exponentially bounded. 
Hence 'P has the unique integral representation 

'P(s) = f o(s) dtu(u), s E S 

where ,u E MlS*) is concentrated on Sa, the a-bounded semicharacters of S, 
with a given by 

a (s) = inff I f=lH~= i3(rj)VI I J=, t(rj) = s, n E X, ri, *., rn E RI. 

From (10) and (11) follows that v is exchangeable, hence, invoking Theorem 2, 
there is a Radon probability measure n on Ml (R^) such that 

V = f K di(K) 

in the sense of (5), which of course extends from indicator functions of Borel 
subsets of R' to (at least) bounded measureable functions on Ra. In particular 
we get 

T H7=i 13(rj)or(t(rj)) du(u) = fiq=l ,3(rj)'P(ZJn= t(rj)) 

()= (r1, * rn) = f ll7=t pj(rj) dv(pl, P2 . 

(12) r rR 
iil(R) [IX ~fI=l pj(rj) dK'(Pl. P2 ...)] dn(K) 

= H7nj=L K(rj) dq(K) 

denoting by K the (abstract Laplace) transform of K, i.e. K(r) =i? p(r) dK(p), 
r E R. 
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Let now be given N E- M, Ic1, , CNj 5Cand {al, --- ,aNC OR. We want to 
show that M-almost surely the (continuous) function 

f(a) := EN =1 -fc(aj + a*)u(t(aj + a0)), a E Sa 

is nonnegative. In order to prove this we consider the complex-valued Radon 
measure : f *t on Sa and use the fact that 4 0 is equivalent with positive 
definiteness of t on S. 

Given M E X, Is,, ,sMl S and id,, ,dMj C we have to show that 

p%,q=l dpdq4(Sp + Sq*) ' 0. 

By assumption sp = Xm-i t(rp,m) for suitable rpm E R, p = 1, *--, M. Put 
-yp:= flmmgi l3(rpm), then {yi, YMI 5 C\$0 and 

X dqdp4(Sp + sq*) 

= X X 
dpdqCjCk 

f 
f(aj 

+ a*)u(t(aj + a*)) 
*j lMmP- 1(t(rp,M)) CFoml(t(rq*la)) djAu~f) 

= a, adpdq -Cjck fA(aj + 
a*)u(t(aj 

+ a*)) 

*fl/amo #B(rp,m)uf(t(rp,m)) fl/q,~ #B(rq*1a)u(t(rq*1a)) d~u(uf) 

= z z cjck f K(aj + a*) mp= 1 K(rpm) fl/ K(rr*l) dn(K) 
'Yp 'yq MU(R) 

=1~~~~~~~~~~~~~~~~~- a= ,)1 = 4(R) Xk=1 jcjkK(aj + a*) I XM - K(r,,) 2 d?1(K) > 0 
Ma(R) Up 

where we used (12). Knowing that 4 0 we find M(f1(C\I+)) = 0, and since q 
is a Radon measure we may indeed conclude thatj concentrates on those a E Sa 
for which i3(a o t) is positive definite on R. Recalling that a E Sa means a E S* 
and I a(s) I c a (s) for all s we get I a(t(r)) I c a (t(r)) c 1/I p3(r) I and this shows 
that ,u is concentrated on the set Wt,, defined in the statement of this theorem. 

The last assertion concerning complete positive definiteness follows immedi- 
ately from Theorem 1 and Proposition 1. [1 

Notice that the set Wt,, on which ,u concentrates in the above Theorem is 
minimal in the sense that the (Laplace) transform (P of any measure u E M+(Wt,,) 
leads to functions On, defined by (10), and being bounded and positive definite 
on Rn for all n. In fact to see this it is enough to consider a one-point measure 

= e. with a E Wt., and then 

[1I i3(rj)o(Xj=j t(rj)) = 1j17=j f(rj)oF(t(rj)) 

is positive definite as a finite product of such functions. In particular we can 
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state the following 

COROLLARY 2. Under the conditions of Theorem 6 the set of functions 
(P: S -( C such that 4n as defined in (10) is bounded and positive definite for each 
n, normalized by P (0) = 1, is a Bauer simplex whose extreme points are given by 
the subset Wt, of S*. 

In case fi 1 the set Wt, = Wt is a *-subsemigroup of S, i.e. a subsemigroup 
of the bounded semicharacters being closed under complex conjugation. Partic- 
ularly important is the case that Wt equals S in which case the triple (R, S, t) 
has been called a Schoenberg triple, see Berg, Christensen and Ressel (1984, 
Definition 5.1.4). Another way to state Schoenberg's classical result mentioned 
earlier is to say that (IR, IM+, t) with t(x) = x2 is a Schoenberg triple. Here R is 
considered as a *-semigroup w.r.t. the involution r* = -r. 

Let us examine a little closer Schoenberg triples (R, S, t) where S = R+ (with 
usual addition). Since [0, o0] via the identification of X E [0, 00] with the 
semicharacter s |-- e- ( = oo corresponding to lo}) we see that the condition 
Wt = S means that exp(-Xt) is positive definite on R for all X 2 0, but this is 
equivalent with t being a so-called negative definite function (with the additional 
properties t 2 0 and t(O) = 0) on the semigroup R which uniquely determines a 
one-parameter convolution semigroup (KX),\O of Radon probability measures on 
R, the connection being given by 

KA (r) = e-t(r) X > 0, r E R, 
see Berg, Christensen and Ressel (1984, Theorem 4.3.7). If now a sequence 
X = (X1, X2, *..) of R-valued random variables (with Radon measures as 
distributions, to be precise) has the property that the (generalized) Laplace 
transform of X(n) = (X1, ** *, Xn) only depends on the sum 'iq=l t(rj), i.e. 

E[11i7=l Xj(rj)] = 'Pn(X=1 t(r1)) 

then 1=P = (P2 =*: R+ 2, P (0) = 1 , and by Theorem 6 

(P(s) = f e-Xs du(X), s E m+ 
[osm] 

where ,u E Ml ([O, oo]). In most of our examples (P will be continuous, i.e. 
,g({ool) = 0, implying 

E[1171 Xj(rj)] = f fi=, e tJ)-du(X) 

and showing in this way that X is a mixture of i.i.d. sequences distributed 
according to some K\, X 2 0, i.e. 00 

P(X E B) = f (Kx)'(B) d~u(X) for all B E V(R'). 

EXAMPLE 5. For 0 < p c 2 the triple (R. I+, J r IP) is a Schoenberg triple 
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(since t(r) = J r IP is negative definite in the group sense on the real line). The 
corresponding one-parameter convolution semigroup (KX)XO0 consists of symmet- 
ric stable measures of index p; for p = 1 this is the Cauchy-semigroup. A sequence 
X = (X1, X2, * * *) of real-valued random variables is a mixture of K,\-distributed 
i.i.d. sequences iff 

(13) E(e'ir;jx) = 'P (E I rj I P), 

a result originally due to Bretagnolle, Dacunha-Castelle and Krivine (1966). If 
p > 2 then for no X > 0 the function exp(-X J r IP) is positive definite (in the 
usual group sense) on I, hence by Theorem 6 equation (13) can only hold for 
the trivial sequence X 0. 

EXAMPLE 6. (Mixtures of normal distributions with varying mean and vary- 
ing variance). If X1, - - *, Xn are i.i.d. normal random variables with mean a and 
variance cr2 then the characteristic function of (X1, - * *, X") 

E[exp(i E.L5 rjXj)] = exp(ia rj - (a2/2) n rj) 

is a function of (I rj, E rj2), and this would still hold for any mixture of such 
i.i.d. sequences. We shall see that this property is characteristic for mixtures of 
normal i.i.d. sequences. We need the following 

LEMMA 2. Let R be an abelian semigroup with involution and define S 
(R x ]0, oo[) U 1(0, 0)1 with coordinatewise addition and the involution 
(r, y)* := (r*, y). Let a- E 9 be given. Then either a- = 11(o,o)1 or the limit 

p(r) := lim, O.a(r, y/2 n) 

exists for all r E R, is independent of y E 10, oo[, p E R and 

a(r, y) = p(r)e-\Y 
for some unique X E '+. 

PROOF. Put 7(y) := a(0, y), y E R+; then q E R+ and two cases will be 
considered separately. 

CASE 1. 7 = 1101; then a(r, y) = a(r, y/2)a-(O, y/2) and this is zero if y > 0, 
and one if y (and hence r, too) is zero, i.e. a- = 11(0,0)1. 

CASE 2. q (y) = e "Y for some X E I+. In this case 

a(r, y) = a(r, y/2)a-(0, y/2) = a(r, y/2)e-,(y2) 

= a(r, y/4)o-(0, y/4)e-X(yl2) = a-(r, yl4)eX(yl2+y 

= -(r, y2 n)exp[-Xy(1/2 + 1/4 + ... + 2-)] 

therefore the limit limnn,,a(r, y2fn) exists and equals a(r, y)eXY. This limit does 
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not depend on y E JO, oo[; for let 0 < y' < y, then, putting h := y -y', 

o-(r, y)eXY - (r, y' + h)eX(Y'+h) = (r, y')o-(O, h)eX(Y'+h) 

- (r, y')e-he(Y'+h) o-(r, y')eXY'. 

Hence p(r) := (r, y)eXY is well-defined and 

p (rl)p (r2) = o(rl, y)eXYo(r2, y)eXY = o(r_ + r2, 2y)e2XY 

= p(ri + r2) 

as well as p(r*) = y(r*, y)eXY = a((r, y)*)eXY = o-(r, y)eXY = p(r), i.e. p E 1 and 
o-(r, y) = p(r)e-Y as asserted. El 

Consider now the semigroup S = (in x JO, oo[) U {(O. 0)I and define t: R -> S 
by t(r) := (r, r2); then (R, S, t) is a Schoenberg triple. In fact the semigroup 
generated by t(n) contains 10 x R+ and is then easily seen to be just S; and if 
a- E- S.a # 1101, then by the Lemma above o-(r, y) = p(r)eVy for some X 2 0 
implying o-(t(r)) = p(r)e-r2 to be positive definite on R (and so is of course the 
limit, as X -- oo, given by 110o o t). 

Suppose X = (X1, X2, ... ) is a sequence of real-valued random variables such 
that 

E[exp(i ZJ'=1 rjXj)] = (P(ZY=i rj, . r) 

where (P: S -- C and OP (O) = 1. Then by Theorem 6 (P E Jb(S) and using Lemma 
2 (P has the representation 

(P(r, y) = i p(r)e-Y du(p, X) R x [O,oo] 
defining a natural extension of (P from S to R X L+. Let l, 2 denote the two 
marginals of u on R and [0, oo] respectively. The continuity of 

(P(0 y) = e-Y d12(X) = E[exp i V5y72 (X1 - X2)] 

on R+ leads to 0 = s2Uooj) = I x {ooj). For fixed y > 0 the function 
r s- (P(r, y) is continuous at r = 0 since for r2 c y 

(P(r, y) = (Pr + c(y -r2)/2 - (yT- r2)/2, r2 + (y - r2)/2 + (y - r2)/2) 

- E[exp i{rX1 + r(y - r2)/2 (X2-X3 - 

hence-being positive definite-this function is continuous everywhere. Now 

P 'P(r, 0) - (P(r, 1/n) I = f p(r)(1 - e-/n) dA | f (1 -e-e/n) dA2(X) 

which converges to 0 as n --> oo, uniformly in r E R, so that (P (r, 0) is a continuous 
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positive definite function on I, hence by Bochner's theorem 0 = (R\R) 
,((iS\R) x [0, oo]) showing that ,u is indeed concentrated on R x R+, i.e. 

(P(r, y)=f e dare -2 d(a, X) 

and 

E[exp(i E5=1 rjXj)] = f i[J e"irje-xrj dg(a, X); 

we see that X is in fact a mixture of normal i.i.d. sequences. Note that we were 
dealing again with a convolution semigroup, namely with 

R x R+ M-+ml(J) (a, A) -4N(a, A) 
which is some kind of a two-parameter convolution semigroup. 

EXAMPLE 7. (Mixtures of normal distributions with varying mean and fixed 
variance). The natural guess in this case is that 

E[exp(i rjXj)] = exp(-(-/2) E rj2)P( r) 

should be the necessary and sufficient condition. Putting in Theorem 6 
R = S = L?, t = id, A3(r) = exp(-(o/2)r2) we get (P(r) = eiar dg (a) where ,u may 
be any probability distribution on R (since 13(r)eiar is positive definite for all 
a E R), showing the above guess to be correct. Note that (N(a, S))aEI is not a 
convolution semigroup. 

EXAMPLE 8. (Mixtures of gamma-distributions). The exponential distribu- 
tion e-xdx on L2+ is infinitely divisible and determines the one-parameter con- 
volution semigroup (Kj);2O where K\ has the density (r(X))1lx-le-x on R+. A 
sequence of nonnegative random variables X1, X2, ... is a mixture of 
K,-distributed i.i.d. sequences iff 

E[exp(- E5i=1 rjXj)] = (P(fly'=1 (1 + rj)) 

for all n. This follows since ((i2+, +), ([1, oo[, .), 1 + r) is a Schoenberg triple, 
noting that K\ has Laplace transform (1 + t) '. 

EXAMPLE 9. (Mixtures of Poisson distributions, a second characterization). 
Besides the necessary and sufficient condition of Example 3 above, using the 
point probabilities, there is another one using generating functions. Since it is 
easily established that (([-1, 1], .), (i2+, +), 1 - r) is a Schoenberg triple, a 
sequence X1, X2, ... of nonnegative integer-valued random variables is a mixture 
of Poisson distributed i.i.d. sequences if and only if the generating function of 
X19 ... , Xn has the form 

E(ffl7jn rjxj) = IP(5'S=1 (1 - rj)) 

for all n E H, ri, ... * rn E [-1, 1], and some function (P on L2+. 
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EXAMPLE 10. (Mixtures of normal distributions on the torus). Let T := 
1z E C I I z I = 1} be the torus group. A probability measure K on T is normal iff 
its Fourier coefficients are given as K (k) = akexp(-Xk2) for k E Z, where a E T 
and X > 0; see for example Berg (1975). Hence K is symmetric iff a = ?1. Since 
(79 Hog t(k) = k2) is a Schoenberg triple (see Berg and Ressel, 1978) a sequence 
X1, X2, ... of T-valued random variables is a mixture of symmetric normal i.i.d. 
sequences iff its Fourier coefficients have the form 

E(Jfi=1 Xjk) = P(P Ji=, kj2) 

for all n E N, ki, ... , kn E Z. It seems likely that mixtures of the whole normal 
family on the torus are characterized by writing instead P (EXkj, k2), but we have 
not carried out the details. 

EXAMPLE 11. (Mixtures of exponential distributions). If X is a nonnegative 
i.i.d. sequence of exponentially distributed random variables (say with parameter 
X 2 0) then the common survival function of X1, * ... Xn 

P(X1 2 a1, *., Xn 2 an) = exp(-X En1 aj) 

depends only on the sum Z aj. We shall see that this is a characteristic property. 
Suppose Xj 2 0 and 

P(X1 2 a1, ... , Xn an) = fPn (2= aj) 

for all n, then again (Pi = (P2 = ... = P and in order to see that f then necessarily 
is the (ordinary) Laplace transform of some measure on the half-line, we have to 
look at the semigroup (R1, V) w.r.t. the composition r V r' = maxtr, r'} (the 
involution being the identical). It is easy to see that positive definiteness for a 
function f: (I+, V) -- IR is equivalent with f being nonnegative and decreasing 
(see Berg, Christensen and Ressel, 1984, Proposition 4.4.18). From this a mo- 
ment's thought makes it clear that ((R+, V), (R+, +), id) defines a Schoenberg 
triple, and in order to apply Theorem 6 we have to make sure that (a1, * * *, an) 

(p (Z a;) is positive definite on (R+, V) n. Let vn be the distribution of 
(X1, i , Xj). Then 

'P(Zj~1 aj) = vn([a,, oo[ X ... x [an , 00[) 

= fs Ifjn=l l[ajoo[(xj) dvn(X1, ... , xn) 

= [Js Iin l[Oxj]((aj) dvn(xi, ... , xn) 

and the assertion follows since all the indicator functions JJ 1[o x] are semichar- 
acters of (R+, V)n. Therefore (P E 'b(i-+, +) implying (P(s) = f e-S du(s) for 
some ,u E M+([O, oo]). Note that ,u(fool) > 0 might well occur here, corresponding 
to the possibility that the Xj are 0 with positive probability. Note also that X 
"exponential distribution with parameter A" is a one-parameter convolution 
semigroup in Ml ([O, oo], A), X = 0 corresponding to e. 
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EXAMPLE 12. (Mixtures of Marshall-Olkin distributions). Similar to the 
one-dimensional case the multivariate survival-function of an n-dimensional 
random vector X or its distribution v is defined by 

P (x) = P (X1 2 x*' , Xn x' n) = v (f ' ,1 [xi, ??[, x E D. 

It is immediately clear that v E Ml (Rn) is uniquely determined by its survival 
function. The bivariate Marshall-Olkin distribution can be defined therefore by 
its survival function which has the form 

(14) (P(x, y) = expl-[ax + fly + 'y(x V y)]j, x, y 2 0, 

where a, 3, -y are nonnegative parameters; this distribution was introduced by 
Marshall and Olkin (1967). We shall need the following 

LEMMA 3. If (P as defined in (14) is a survival function then necessarily 
la, fl, Y) S m+. 

PROOF. Choose y, r, x EI R+ such that y + r c x, then, denoting X, Y random 
variables with (P(x, y) = P(X 2 x, Y 2 y), we see from 

P(X 2 x, Y 2 y + r) = e-x-fl(y+r)-yx < P(X 2 x, Y 2 y) = e-x-6Y@-Yx 

that e-r _ 1, hence j3 2 0; similarly a 2 0. For x > 0 we have 

o c P((X, Y) E [x, 2x] X [x, 2x]) = (P(x, x) + (P(2x, 2x) - P(x, 2x) - P(2x, x) 

or 

e(a+ce+iY)x + e-2(a+#+y)x 2 e-(a+2#+2y)x + e-(2a+fl+2i)x 

or 

e(a+#+Y)x + 1 2 eax + emx 

with equality for x = 0. Taking on both sides the derivative at 0 gives a + A + y 
>2 a + A, hence -y ? 0. 0 

Let now Z = (Z1, Z2, as) be a sequence of 2+-valued random vectors 
Zj = (Xj, Yj) and suppose that the common survival function of Z1, ... Zn 

depends only on Z x;, Z yj and Z x; V yj, i.e. 

(15) P(Xi 2 xi, Yi 2 yi, 1 c i c n) = (P 1 (xi yi, xi V yi)). 
We claim that Z must then be a mixture of i.i.d. sequences with Marshall-Olkin 
distributions. Of course we shall again apply Theorem 6. Let R (R 2, V), i.e. 
we use the "addition" (x1, Yi) V (x2, Y2) = (x1 V x2, Yl V Y2), let A-1, define t: 

-2+ +14 by t(x, y) := (x, y, x V y) and let S be the semigroup generated by 
+); on + we use the usual addition and in both cases the identical involution. 

It is easily seen that 

S = f(x, y, z) E R3I x V y _z x +yj. 
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Similar to the preceding example we derive from (15) 

O? (El, (xi, yi, xi V yA)) = l 
l[ouj(xi)1oj(yj) dvn (Ul, V1, . , un, Vn), 

vn being the distribution of (Z1, ... , Zn), and this shows that ( Z1 t(rj)) is 
positive definite on Rn for all n. Since (P is bounded we get (P(s) = I p(s) dy (s) 
with ,u concentrated on those a- E S+ for which a- o t E 30b(R). (Since S is 
2-divisible, we have in fact S+ = S; and since R is idempotent, 3~(R) = 3J(R).) 
It is not difficult to find that S is parametrized by the "cone" 

F = {(u, v, w) E (R U lool)3l u + w 2 0, v + w 2 0, u + v + w 2 0O 

via the usual identification of (u, v, w) with the semicharacter a-(x, y, z) = 
exp[-(ux + vy + wz)]. Note that F contains vectors with negative components, 
for example (-1, -2, 3) E W. Note also that the parametrization is not one-to- 
one on the "boundary", i.e. on those (u, v, w) E F where at least one coordinate 
is infinite. Since any left continuous function in 3 b(R) is a survival function, 
Lemma 3 implies that only vectors (u, v, w) E F with nonnegative components 
lead to a survival function a- o t. Hence 

(P(x, y, z) = f 3 exp[-(ux + vy + wz)] dg(u, v, w) 

for some probability measure , on [0, oo]3, and together with (15) we see that Z 
indeed is a mixture of Marshall-Olkin distributed i.i.d. sequences. Several "de- 
generate" cases are possible in this mixture; the vector (oo, v, w) E [0, oo]3 for 
example corresponds to (0, Y) where Y is exponentially distributed (if 0 < v + w 
< oo), the vector (0, 0, w) with 0 < w < oo corresponds to an exponential 
distribution concentrated on the diagonal in R24, and all the vectors (u, v, 0o) in 
F lead to (X, Y) = (0, 0). 
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Lauritzen for many stimulating discussions, in particular during our special 
seminar at the Department of Statistics in Stanford. 
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