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THE I-FUNCTION FOR DIFFUSION PROCESSES WITH
BOUNDARIES

By Ross PINSkY?

Technion-Israel Institute of Technology

The Donsker-Varadhan I-Function which measures the asymptotic rate
of decay of the distribution of the occupation measure of a Markov process is
evaluated for diffusion processes with boundaries.

1. Introduction. In this paper the Donsker-Varadhan I-function is evalu-
ated explicitly for diffusion processes with boundaries. Stroock and Varadhan
[8] have shown that there exists a unique strong Feller diffusion process with
state space A, a compact region of R” with C? boundary, and whose generator
(L, 2) is an extension of (L, &) where L = %V - aV + b - V and 9 =
fu € C*(A): J - Vu =0 on dA}. Here a is a strictly positive n X n matrix with
entries a;; € C'(A), b is an n-vector with terms b; € C(A) and J is an n-vector
with terms J; € C'(dA) and with |J - n| = v > 0, where n is the outward unit
normal to the region A. The work of Stroock and Varadhan actually allows for
more general coefficients. For our purposes, we need the above smoothness
conditions.

Let p(t, x, dy) be the transition probability of a Feller process with state space
A, a complete separable metric space, and let w = x(-), w € Q, be a realization of
the process. For each x, p(t, x, dy) induces a probability measure P, on Q.
Consider L,(w, B) = [§ x(s)(x(s)) ds. Then (1/t)L,(w, B) is the proportion of time
up to t that a particular path w spends in the set B. Thus (1/t)L;(w, -) € 2(A),
the set of probability measures on A; it is the occupation measure for the process.
We endow ##(A) with the weak topology. For u € #(A), define

I(p) = —infueo+ f
A

Note that I(u) is lower semicontinuous under weak convergence on #(4). Under
suitable transitivity and recurrence conditions, Donsker and Varadhan [1, 2, 3]
have proven that for x € A and open sets G C #(A)

L
Tudu where 2% =92 N {u:u=c> 0}

(1.1) lim inf, .. (1/¢t) log P,((1/t)L(w, ) € G) = —inf,ecl(u),
and for closed sets C C 2(A),
(1.2) lim sup;—.»(1/t)log P,((1/t)L:(w, -) € C) < —inf,ecl(u).
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Thus for large ¢, if U, is a small neighborhood of y, then
e IW*) < P ((1/t)Ly(w, -) € U,) < e w2,

The transitivity and recurrence conditions are easily satisfied by the diffusion
processes we have described above.

The first difficulty that arises in computing the I-function is that the domain
27 is not known explicitly. In [7], it was shown in a general context that the
infimum could be taken over a nice dense subdomain. In particular, for the
diffusion processes above,

L
(13) _inquQ*’f—udﬂ——lnfuegﬁf&dﬂ
A U A U

where 9% = 9 N {u: u = ¢ > 0}. Thus, it is the right-hand side of (1.3) that we
will evaluate.

Let the region A be given by §(xy, x2, « -+, x,) = 0,0 € C*(R") and | V8| # 0
on dA. We may write J = ((J - an)/|an|?)an + J, with J; L an. Since |J - n|
= v > 0 and since a is strictly elliptic, the boundary condition Vu - J = 0 is
equivalent to the boundary condition —Vu - Ty + Vu - T = 0 where Ty(x) =
a(x)n(x) and T'(x) is a vector field on dA—that is, T(x) is a vector in the tangent
space to dA at x € dA. Since n = (1/| VP |)(—0,, - -+, —0,) € C*(3A), and since
J € C1(dA), T(x) is a C'-vector field on JA.

In Section 2, we prove

THEOREM 1.4. Let u € #(A) with density ¢ € C'(A) and set g = 2, If
Ja (IVP|?/¢) dx = », or equivalently, [, |Vg|2 dx = o, then I(u) =
If [4 (IVP|?/¢) dx < , or equivalently, [, | Vg|? dx < =, then

L[V )% __f Vg
L e N

(1.5)
- inf,,eczw[% f (Vh — a7'b)a(Vh — a7'b)g? dx — % f (Vh - T)g? da].
0A

In fact there exist positive constants c,, ¢z, cs and ¢4 depending on a, b, T and A
but not on @ such that

Ve |? ve|?
(1.6) lel_ldx—CQSI(/.L)SC;;fI I dx+c4.
@ @
Furthermore, I(1) can be written as
VSDaVSD b - V<P
I(p) = f
A
D Ve - T 1
- f do+ - f (VhaVh)® dx
94 4 2 Ja

where h € W(A, dy) is the unique weak solution in W3(A, dy) (up to a constant)
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to the variational equation

(1.8) f (VhaVq)® dx — f (Vg - b)®e d —lf (Vqg-T)¥ do =0
A A 2 Jaa

forallq € C*(A).
IfbE C'(A) and ¥ > 0, then h also is the unique solution (up to a constant) of
the elliptic equation

i) V.-[¢(b—-aVh)]=0 on A
ii) 2¢(b—aVh) - n=V - (¢T) on A.

(do is the volume element on dA and W2(A, du) C L%(A, du) consists of
functions with one generalized L2(A, du) derivative. More explicitly, we define
W2(A, du) as the closure of C'(A) under the norm || ||, defined by ||u|, =
(fa u?* du + fa |Vul|? du)V% For Lebesgue measure, dx, we will write
W3i(A) = Wi(A, dx).)

Theorem 1.4 can be slightly strengthened with no additional work. At the end
of Section 2 we prove

(1.9)

COROLLARY 1.10. Let u € 2(A) with density ¢ € Wi(A). Then I(u) is finite
or infinite according as [ (| V¥ |?/®) dx is finite or infinite (equivalently,
g = Y2 does or does not belong to W2(A)). In the finite case, (1.6) is still valid
and (1.5), (1.7), and (1.8) hold with the term

1 . _lf Ve ).
e ma (<] (- 1))

i‘f (ZZ]=1 (cij)xj‘px,«) dx- (= '1_ f (sz=1 (cij):tj(gx,~/g)g2 dx)
A 2Ja

replaced by

Here C = {c;j} is the skew symmetric matrix discussed in Lemma 2.6.
Several remarks are in order.

REMARK 1. Suppose there exists a reference measure 8 with respect to which
the semigroup is selfadjoint. Then there exists a corresponding selfadjoint gen-
erator (L, &) on Ly(A, 8(dx)). Donsker and Varadhan [2] have shown that for
nE€2(A),

I(w) = | (=L)2f12)3
(1.11) if u has a density du/d8 = f with fY2 € Sy
= o, otherwise.

Here 91/2 is the domain of the selfadjoint operator (—L)2. In our case, taking 8
to be Lebesgue measure, we encounter selfadjointness if 7= 0 and b = 0, in
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which case we obtain from Theorem 1.4, I(x) = [4 (VgaVg/2) dx. Since .@1/2 =
{h: 4 (VhaVh) dx < o}, this is in accordance with (1.11).

REMARK 2. If b = aVy for some ¢y € C*(A), and T = 0, then the
variational part of Theorem 1.4 vanishes and we are left with I(u) =
Y2 fa ((Vg/g) — a'b)a((Vg/g) — a™b) g? dx. In this case, the semigroup is
selfadjoint with respect to the measure with density e* and one can check readily
that the calculation agrees with (1.11).

REMARK 3. In [4], Donsker and Varadhan obtained a formula for I(x) for
diffusions on R™ with C* coefficients in the case where u has a density
¢ € Cy(R™). Their formula is identical to (1.5) if we set T=0 and A = R™.

The theorem and corollary show that under the a priori assumption that x has
a density ¥ € Wi(A), I(x) is finite or infinite according as [, (| V¥ |%/¢) dx
<wor [4 (| VP|?/¢) dx = «. In Section 3, we briefly discuss the case in which
u has no density in W$(4). Our theorem and corollary and Remark 1 strongly
suggest that I(u) = o for all such measures. However, this is difficult to prove—
we cannot integrate by parts so it is difficult to get a handle on [4 (Lu/u) du. In
fact, we have shown elsewhere that I(u) = o for most such measures [6].

2. Proof of Theorem 1.4. To simplify notation, we will sometimes write
—To-Vg+T-Vg=0asdJ - Vg=0.Foru € 9%, let u = e Then

. 1 1
(21) I(;l.) = _lnf‘gecz(A):JAVg.—_()onaAl Ll::?“ V. an +5b- Vg + 5 Vgan]ﬁo dx.

We would like to write g = Y2 log ¢ — h for some h € C?(A). But if ¢ & C%(A) or
if ¥ is not strictly positive, this is not possible. If we extend ¥ continuously to a
function on all of R™ with compact support and mollify with the smooth kernel
G.(x) = (2me)™2e™1*1”/% then ¢, = G, » ¢ is smooth and strictly positive on A
and as ¢ approaches zero ¢, — ¥ and V,, — V, uniformly on A since ¥ € C*(A).
In order to apply the dominated convergence theorem later on, we need
to consider ¥, + 6 rather than ¥,. After we let ¢ — 0, we will let § — 0.
Thus we write g = % log(®?. + 6) — h for h € C?(A). Since g satisfies
—Vg - To+ Vg - T =0, h satisfies

=Vh - To+Vh - T=(VP, - T)(2P. + 68) — (VP, - To)/(2(P, + §)) = .
Substituting g = 1 log(¥, + 6) — h into (2.1) gives

I(p) = —inflhecz(A):J-Vh=yonaAn

1 1 1 VhaVe,
. . —"V' v - 'V _v v - - <
(2.2) [L( 9 aVh—b h+2 haVh X 6><de]

Ve,avVe, 1 f ave, f b- Ve,
| L e g2 | ey — | 2 oy
»£8(<P,+6)2 de=2J <¢¢+a)dx TR M
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By the divergence theorem, the boundary condition on h, and the fact that a(x)
is hermitian,

1 1f 1f ve, - T,
Vv - == Vh - = L. 70
J;QV @Vh)¢dx=7 | (#Vh T)da+4M<<p£+6¢)da

1 f ve, - T 1 f
- = - = v .
1 BA(¢C+6¢>dG 2 A(SDth)dx
Using this in (2.2), we obtain

Ve.aVe, 1 J’ ave,
Tw = _f,,sm Tort 9 )oY (sob + 5) dx
b- Ve, fVSOt-To fV¢¢-T
S AR - @
f,,w, 70 % e 0t Jaiwrat

. 1 1 VhaVe, 1
- lnflhECZ(A):J»Vh='yon6A| [£ ((5 Vhth) P — E ©+6 Y+ 5 V®aVh

—(b - Vh)ﬁo) dx — f M‘P da].
9A 2

Consider now just the variational term. For ¢, § > 0, let

1 1 VhaVe,
Ves(h) = [J; (-2- (VhaV h)¥ — 2% 45 2

+1veavh — @ - Vh)<P> dx — f Gh - D da].
2 A 2

(2.3)

(2.4)

An important step in proving our theorem is

LEMMA 2.5.

infihec?a):d. vh=vyonsaj¥e,s (R) = infrec?ay¥es (h).

To prove the lemma, we will need the estimate y,;(h) = M [4 | Vh|?dx. To
show this, we first must show that the integrals on dA may be converted to
integrals on A involving no derivatives higher than the first order. This can be
done using the divergence theorem.

LEMMA 2.6. Letf, g € C'(A) and let T be a C*-vector field on dA. Then there

exists a skew-symmetric matrix C(x) with c;;(x) € C'(A), and for x € A, T =Cn
where n is the outward unit normal on dA. Furthermore,

2.7) f (fVg - T)do =f (Xij=1 (fcij)xjgx,-) dx.
9A A

Thus, in particular [s4 (fVg - T) do can be expressed as an integral over A
tnvolving f, g, V f, and V g but no derivatives of higher order.
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PROOF. Let Q be the constant matrix with entries g3; = —¢» = 1 and all
other entries zero. Let S(x) be the n X n matrix whose first two columns are,
respectively, n(x) and T'(x), and the rest of whose columns are identically zero.
Then C(x) = S(x)QST(x) is skew symmetric, satisfies C(x)n(x) = T(x), and has
entries c;j(x) in C'(dA) since the components of n(x) and T'(x) are in C!(9A).
Now extend C(x) to the interior so that it is still skew symmetric and continuously
differentiable. This proves the first part of the lemma. The second part is just
the divergence theorem. First assume g € C2(A). We have

f (fVg - T) da=f (fVgC) - nde = f V - (fVgC) dx
A A A
= L (ZZJ-:l (fcij)xigxi) dx + L (El":}'=l fcijgx,-xj) dx

= f (2=t (feir)s ) dx,

since ¢;; = —c;;. Thus if g € C%(A), we have

f (fVg - T)do =f (Xf=1 (feij)x8s,) dx.
34 A

It is clear then that in fact this must hold for g € C'(A). This completes the
proof of Lemma 2.6.

We use Lemma 2.6 to prove Lemma 2.5.

PROOF OF LEMMA 2.5. Apply Lemma 2.6 to the boundary term in Ves(h).
We obtain

1
1 f (PVh - T) do = = f (2%e1 (Pei;)shs) dax.
2 Joa 2 Ja 7

Hence from (2.4) we may write

v
¢¢,a(h)=fw¢dx—th'[l a ¢‘<P—%av¢+¢’b]dx
A A

2.8) 2¢,.+6

1
- f _(2?=1 E;’l=1 (‘ocij)xjhx,») dx-
a2
In particular,
[¢.s(h)] < Mf |Vh|?dx for some constant M,
A
by the Schwarz inequality and the fact that ¢ is bounded. Pick any g € C?(A).
Define v(x) = —=Vq - Ty + Vq - T. To prove our lemma, it suffices to show that

one can pick r(x) € C*(A) with —=Vr - To+ Vr - T = —p(x) + v(x) on A and
J 41 Vr|?dx arbitrarily small. For then h = g + r satisfies the boundary condition
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and |y, s(h) — ¥.5(q)]| is as small as we like. Let —v(x) + v(x) = {(x). Note that
¢ € C1(8A). Extend ¢ to all of R" in such a manner that { € C*(R") and is
bounded. It suffices to show that for any 6 > 0, we can pick an r;(x) € C%(A)
satisfying —Vr; -+ T = { on dA wit r; = 0 except in a é-neighborhood of dA and
with | Vrs;| = D for some constant D independent of 6.

The idea behind our method is as follows. We would like to obtain a smooth
one-to-one map which takes each point x in a neighborhood of dA N A to a
pair (y, t) with y € dA and t € R* such that y + ¢t(=Ty + T)(y) = x. Let
p = supPzesa| (—To + T)(x)| and let 6, = 6/p. We would like to define r;(x) =
(6, — t)3/382)¢(y) if t < &, and rs(x) = 0 if t > 6;. Then rs;(x) is supported
in the §-neighborhood of dA and for y € dA, Vrs(x) - (=To + T)(x)|r=y =
0/ t)rs(x) | x=y = $(¥). In actuality the function will be a little more complicated
than this because {(y) is only C! and r;(x) must be C?; we will use a mollification
procedure. The one-to-one mapping that we wish to obtain may be achieved
locally using the implicit and inverse function theorems. With the help of a
partition of unity, this is enough. Unfortunately, we will need a somewhat
cumbersome notation to prove all this rigorously.

Let x; denote the ith coordinate of x ER™ Let x' = (%1, *+, Xi, =+, Xn) €
R™! and let x; = (x4, ***, Xi-1, 2, Xi+1, ***, X,) € R™ For y € A, pick i, €
{1,2, -, n} such that 6, (y) # 0 and conmder the map M,: R" — R" defined

by M,x = %3,,- Since 0, (y ) # 0, the inverse function theorem guarantees the

existence of a nelghborhood U, of y and a C*-function #,: {x>: x € U,} — R’
satisfying H(xfgy(x;,)) = 0 for x € U,. Let V, = {x»: x € U,}. Define the map
Sy: V, X R — R" by
Sy (x5, t) = x5 + t(=To + T)(x¥s))-

One can check that the determinant of the Jacobian of the map S, evaluated at
(y¥%, 0)is =V0(y) - (=T, + T)(y) which is nonzero by hypothesis. Thus by the
inverse function theorem, S;' exists on an open neighborhood W, of y. Thus
through S;?, every point x € W, is specified uniquely by a boundary point

z € JA and a real number t such that x = 2z + t(—=To + T)(z). Note that
t=t,(x) = (S;(x)), for x € W,. Let

Qy(x) = ((ST'(®))1, * -+, (ST1(®))i-1, P(STHX)™), (ST, «* +, (S51(x))n—1)
for x € W,. Q,(x) is just the point z € A mentioned above. That is,
(2.9) x = Q(x) + &,(x)(=To + T)Q,(x)).

From this, it is clear that for functions g(x) and A(x) of the form g(x) = f(Q,(x))
and h(x) = F(t,(x)),

Vg(x) - (=To+ T)(x)|+-: =0 and
Vh(x) « (=To + T)(x)|s=: = (F")(t,(2)) = F’(0)

forz€dANW,.
Pick {y;}7=1 C dA such that UL, W, covers dA and let {{;}], be a partition
of unity for dA subordinate to the cover {W, }7.,. That is, each y; is smooth and
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vanishes off W, and Y-, ¢;(x) = 1 for all x € dA. To simplify notation, we will
call @, W,, and ty, by Qi, W; and t;. Let T'(x) = e™***/2/(2x)™?, x € R" and let

fs‘(y)lla(y)l‘< )dy, t>0.

Note that lim,,oPi(x, t) = 0 and lim, ,o(1/t)P;(x, t) = {(x)¥i(x). Thus define
P,~(x, O) =0. Set

Pi(x, t) =

ri(x, t) = ((6 — t)3/6%)Pi(x, t), 0<t=<3$
=0, t> 6.
Since ri(x, 0) = 0, we have
(0/38)ri(x, t) | im0 = lim,ori(x, t)/t = {(x)i(x).

We will show that | Vri(x, t)| is bounded independent of § and that ri(x, t) €
C*(R™ X R*). Assuming this for the moment, we can now construct the function
rs(x) with the desired properties. Pick 8o > 0 such that [0, §] C N7, {t;(x): x €
W;}. Let p = supsesa|(—To + T)(x)| and let 6, = §/p. For 6, < 60 and x € A,
define r;(x) = ¥, rf;l(Qi(x), t:(x)). Thus r;(y) € C%(A), | Vrs(x)] is bounded
independent of 4, r;(x) vanishes outside the §-neighborhood of dA, and using
(2.9) and the remark which follows it, we see that for y € 9A,

Vrs(t) « (=To + T)(x) |y = T 21 (8/3t) r5,(Qi(¥), t) ] =0
=¥y S(Qi(y)W:i(Qi(y))

= Y1 S(i(y) = $(y).

We now show that | Vrf; (x, t) |is bounded independent of é. Since ri(x, t) = 0
for t > 6 and since (3/dt)ri(x, t) | ;=0 = §(x)¢:i(x) independent of §, we may restrict
to 0 < t < 6 when considering (3/9t)ri(x, t). We have

9, _06-t°a 3(6 — t)*

atr.s(x, t) 5 P( x, t) 5
From above, we have P;(x, 0) = 0 and lim,_,..(1/t)P;(x, t) = @ (x)¢;(x). This is
enough to conclude that lim sup;_osupo<;<;(9/9t)ri(x, t) < . For the gradient
in x, we have V,ri(x, t) = ((6 — t)*/3)V,Pi(x, t). In the course of proving that
ri(x, t) € C*(R"™ x R*), we will prove that P;(x, t) € C2(R" X R™*). Hence
V,.P(x, t) causes no trouble as t — 0, and it is clear that

lim sup;_oSupo<<;((6 — ¢)3/6°)V, Pi(x, t) < .

Pi(x7 t)

Thus we have shown that | Vri(x, t)| is bounded independent of .

Now we show that ri(x, t) € C*(R" X R*). We must show that P;(x, t) €
C*(R™ X R™). Of course P;(x, t) is C* for t > 0 so it is only at t = 0 that we must
be careful. Changing variables, we have

f s‘xla(y)l“< ) dy = tf Wi(x — tw)T'(u) du.

Pi(x, t) =
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Thus

%P,-(x, t) = f Wx — tw)l'(w) du — tf V() (x — tu)-ul'(u) du.
Rﬂ Rn

Changing variables in the second term on the right-hand side above, we obtain
d 1 xX—U
g Diln ) = f Wx — )T (w) du — = f (V) - (x— v)I‘(—) dv.
¢ R™ t" Jp» t

Thus

62

PYe Pi(x, t) = — f (V(&))(x — tu) - ul'(u) du
.

n

+ n+1f (v(ﬁ[/t))(v) < (x — U)r(ﬂ) dv
t RM :

+ tn1+2 J; [(V(Wa))(v) < (x— v)][(VF)<x : v) < (x— v)} dv

== L (V{5 (x — tu) - ul'(u) du

+n J;,. (Vi) (x — tu) - ul'(u) du

+ j;,. (V) (x = tw) - w][VI'(w) - w] dw.

Since { € C*(R"), it is clear that (82/dt?)P;(x, t) is continuous for all ¢t = 0 and
one can show similarly that the same is true of the other mixed partial derivatives.
Thus P;(x, t) € C2(R™ X R*). This concludes the proof of Lemma 2.5.

At this point, we can show that I(u) = ® if [4 (| V¥ |%/¢) dx = . Since
V.s(h) = 0 if h is a constant, we have infyecz2(a)¥.s(h) < 0. Thus, using Lemma
2.5, applying the divergence theorem to % [4 ¢V -(aV®,/(¥. + §)) dx, and letting
¢ — 0, we obtain from (2.3),

Veave _fsob-w’ . fso(vw-T)
I(u)2~£8(¢’+6)dx e+ ) e %

Since a is strictly positive, letting 6 — 0 gives us I(u) = oc.
From here on in the proof, we assume [4 (| V¥|%/¢) dx < .
We want to let ¢ — 0. Notice that only one integral in ¢, ; depends on ¢, and
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as ¢ — 0, that integral approaches %2 [4 (VhaV®/(¥ + 6))¥ dx. Let
Yos(h) = lim, 0¥, s(h)

(2.10) = fw ¢ dx — f (b - Vh)P dx + l f (VhaV®) dx
A 2 A 2 Ja

1f\7haw th-T
2 A‘P+6¢dx 9A 2 ¢ do.

LEMMA 2.11.

lim,_oinfrec2ay¥es(h) = infhecra)lim, oy, s(h) = infrecaados(h).

PROOF. From (2.8), we may write for A > 0,

dslh) = f [Vhth VhaV$. ,  VhaV® o

2 et T2
1
s n =1 (2] 1 (¢cz])xl)hx,:|

2
(VhaVh) , f (VhaVh) 1 [ (v9.ave,)
Zf 2 b dx A8(<p+a)2¢dx

(VhaVh) f Veave f ©|Vh|?
-\ - —_— pu— —_—_—
A 2 ¢ dx N 30 dx — A A 2 dx

_1f¢|b|2 f|Vh|2
A Ja

1
Y J; Y| T (Peij)x;| /8P dx

where in four places we have used the inequality
|AB| < %A% + (B%/2))/2.

By the bounded and the dominated convergence theorems,

. . Vo,aVe, 3 f VPave
lim; . lim,_, J; 80, 1 5)° @ dx = R dx.

By hypothesis, [4 (VPaV¥/8¢) dx < . Since a(x) is strictly positive, by picking
A small enough we have from the above calculation,

(2.12) Yes(h) = ¢ f |[Vh|2® dx — c,
A

for e = 0 and 6 > 0 and also for ¢ = § = 0, where ¢, and ¢, are positive constants
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independent of h, ¢ and 6. Hence there exists a constant N independent of ¢ and
6 such that

infrecza)¥.s(h) = il’ltheczm):j,,|Vh|2¢dxsm¢e,a(h), for ¢ and &

in the same set as above.
Thus to prove the lemma, we need only show that the one term in y,;(h)
which depends on ¢, Y2 [4 (VhaV®, /¢, + §) ¥ dx, converges to

1 f VhaVe

2 ers T H
uniformly over {h € C*(A): [4 | Vh |*¢ dx < N}. But, by the Schwarz inequality,
for such an h,

1 f VhaVe, (VhaV¥)
A

2

(¢e+5)¢d 2 L ors T H

1 f ove, PVe
= —_ v —_——
lz A[ha<<p£+5 ¢+a)]dx
1/2y7 1/2y7 1/2 1/257
s%f(Vhth)¢dx-f(¢ % _¢ ‘p> (‘p Ve, _® ¢)d
A A

P.+5 P+6)\C.+5 P+
1
<= 2Nf
2|Iat||

by the bounded convergence theorem. This proves Lemma 2.11.

2

Q2P  ¢12Vp
P+ P+

—0 as £¢—0,

Taking the limit as ¢ — 0 in (2.3) and using Lemmas 2.5 and 2.11, we obtain

, R 1 f ave,
I(p) = llmt_*o[ £8(¢c+ 6)2‘de 1 A‘PV . ((p n 6>d

b. Ve, Ve, - To) , , f Ve T
(2.13) A —————2("05 ) ¢ dx + M ——4(% T 3) ® do b 2@, £ 0) ¢ do]

— infrecraVo,s(h).
Applying the divergence theorem to the term

1 f ve,
- eV . d
4 A (a ‘pe+6) *

then using this in (2.13) and letting ¢ — 0, gives

_ [ veave f«pb.w _1f¢(V<P~T)
I(”)_J;S(ww)dx s s P T 1) ers ¥

— infheczayVo,s(h)
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Let
El/o,o (h) = lima—ml/o,a (h)

=1f(Vhth)<pdx—f(b-Vh)wdx—f Vh'dea.
2 Ja A 9A 2

Since (2.12) holds for ¥ ;(h), the same argument used to prove Lemma 2.11 goes
through here to show that

lim; o infrec?a) Yo, (h) = infhec2(A) lim;_,o Yo,s (h) = infrecza) Yo,0 (h).

Thus, letting & — 0 in (2.14), and adding and subtracting % [4 (ba™'b)¥ dx, we

obtain

Veave J’ 1.

= = @
I(p) j; 30 dx + . 2 (ba™'b)¥ dx
.V

(2.14) —f(—b——ﬁdx—lf (Ve - T) do

A 2 4 Joa

- inf,.eca(,g,[1 f (Vh — a™'b)a(Vh — a”'b)¥ dx — f Vh-T '] da].
2 Ja 9A 2

Replacing ® by g* and collecting terms gives us (1.5).
We now show that (1.6) holds. We have for A > 0,

| Ve |2 f
sxf dr + — z
A Tox | b|*P dx

v 2
s)\fl-—(p—l—dx+c
A P

Y%
b ‘Pd

(2.15)

for ¢ independent of ¥. By (2.7),

f (Ve - T) do = f (T8 (Tt (e5),)%s) dr.
9A A

Hence
v 2
(2.16) 1JQ(V‘f«"-T)das)\‘fI “l dx + ¢
4 Jsa A ¢

with ¢ independent of ®. Also since ,0(0) = 0,
(2.17) infreczayVoo(h) < 0.

Thus, using the strict positivity of @ and picking A small enough, (2.14)-(2.17)
give

v 2
(2.18) I(p) = f |V dx — ¢
A P
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for positive c;, ¢, independent of ¥. To obtain

Ve |?
|(p|dx+C4

(2.19) I(p) <c3 f
A

for positive constants cs;, c, independent of ¥, we need only show that
infreczao(h) = —k, — ke [a | V¥ |?/¥ dx for positive ki, k; independent of ¥.
We have for A > 0,

(2.20) f(b-Vh)¢dx5)\f|Vh|2¢’dx+c
A A

for ¢ independent of ¥. Also

f (Vh - T)® I
T ds
A 2

1
-1 J. 3e0 5 @ ax
A

(2.21)

1
<A f |Vh|2¢ dx + — f Y O (‘Pcij),./¢1/2)2 dx
A 16\ Ja 4

Ve |2
SAfth|2¢dx+éf| Id3c+é
A a @

for ¢ > 0 independent of ¥. Hence (2.20), (2.21) and strict positivity give for
small enough A,

. | Ve |2
(222) Ipo,()(h) = kg IVhI ® dx — kz dx - kl
A A P
for positive ki, ks, ks independent of ¥. Thus,
. ve|?
infecutonth) = —h — ks | 120 0y

and (2.19) holds. Combining (2.18) and (2.19) gives (1.6).
We now show that (1.7) and (1.8) hold. From (2.14), we need only show that

(VhaVh) "

2 dx

(2.23) infeec2a)boo(q) = _J;

where h satisfies (1.8).
From (2.7), we have for ¢ € C%(A),

Yoo(q) = f <1 (VgaVq)¥ — (b - Vq)gc)) dx — f
A \2 oa

- | (1 (Vaa¥q)# — (b - qu) dx — | 23 (S (P dx
a \2 a2

Va -
L—I‘Pdo
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For g € W%(A, du), define

Yoolq) = J; % (VqaVq)® dx — J; (b - Vq)¥ dx
(2.24)

- f l 2?=1 (21"=1 (¢cij)xj)Qxi dx.
a2

Thus @o,o(Q) = yYo0(q) for g € C*(A).
From (2.22),

(2.25)  Voolq) = ky f | Vq|2¢ dx — k, for constants k;, k; > 0.
A

Now pick a minimizing sequence g, € C*(A) so that
infoec2aool(q) = infqecﬁ(A)\ZO,o(q ) = limn—)w\ZO,O(Qn)-

Since y,0(g) depends on Vq but not on g, we may fix a point x, € A and require
grn(x0) = 0 for all n. By (2.25), there exists a ¢ with [4 | Vg, | dx < c, for all n.
Hence {q,} is weakly relatively compact in W2(A, du). Pick a subsequence {g,}
with gn,' —, ho € W3(A, du). From (2.24) and the fact that [, | V¥ |%/¢ dx < o,
we see that nﬂo,o is lower semicontinuous with respect to weak convergence in
W2(A, du). This, together with the fact that {g, } is a minimizing sequence, gives
us

inquCZ(A)\ZO,O(Q) = \ZO,O(hO)-

But C%(A) is dense in W2(A, du) and since [, | V¥ |2/® < o, J, is continuous
in the W%(A, du) topology. Thus we have

il’lfqecﬁm)@o,o (q ) = infqewm, du)¢0,0 (q).

Hence, in fact
(226)  Yoolho) = infrewtaanVoo(q) = infoecrarboo(q) = infoecrartoo(q).
Then using the calculus of variations—that is, solving

d/de(foo(ho + ¢q)) | =0 = 0, for all q € W%(4, du),

we find that the function h, satisfies the weak variational equation,

1
(2.27) J; ((VhoaVq)¥ — (b - Vq)¥) dx — J; g L1 L (e dx = 0,
for all g € W%(A4, du).

Since C'(A) is dense in W2(A, du) and since the variational equation as a
function of ¢ is continuous in the W?2(A, du) topology, it suffices to consider
(2.27) for g € C*(A).

Converting the second integral to a boundary integral, we have

(2.28) f ((VheaVq)®P — (b - Vq)¥) dx — 1 f Vg - TP de =0,
A 2 Jsa

for all g € C'(A). This is (1.8).
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Consider (2.27) for ¢ = ho. Using this with (2.24) and (2.26), we see that
infiec?a)¥00(q) = —fa ((VhoaVhe)/2)® dx. This gives us (1.7).

We now assume b € C'(4) and ¥ > 0. We will show that (1.9) holds. Say
(2.28) holds for some h € C*(A) in place of hy. Then, integrating by parts, we
obtain

J;q[—v - ((aVh = b))] dx

1
(2.29) + f q[‘Pth -n—%b-.-n+ 2 V. (‘PT)] do =0,
A

forall g€ CY(A).

(In integrating by parts, we have used the fact that the divergence theorem gives

f(¢Vq-T+qV-(‘PT))da=fV-(¢qT)do=f eqT - n=0
oA oA a(04)

since 9(dA) is empty.) So (2.29) implies that h satisfies the elliptic boundary
value equation (1.9). It is easy to see that, conversely, any solution of (1.9) is also
a solution of the weak variational equation (2.28). Equation (1.9) has a C?
solution [5, page 122]. Call it h. If we consider k = h — hy in (2.28), we obtain

(2.30) f (VkaVq)P dx =0 for all g € CYA).
A

But then in fact, (2.30) is true for all ¢ € W%(A, du). Pick g = k. Then (2.30)
becomes [, (VkaVEk)¥ dx = 0. Since ¥ is positive and a is strictly positive, we
have, up to a constant, k = 0 a.e. or h = hy a.e. Thus h, may in fact be identified
with a C? function h which satisfies (1.9). This analysis also shows the uniqueness
of the solution to (1.8) and concludes the proof of Theorem 1.4.

We now turn to Corollary 1.10. Since it is still true that ¢, —;2 ¢ and
V@, —p2 VP, all we need do is replace the term [s54 (V®, - T)/4(®, + 6))¢ do

in (2.13) by
‘[QZUI((F_'_(,5 )(¢)x,dx

3. Measures without nice densities. An important application of the
I-function theory is to the evaluation of asymptotic limits of functional integrals.
This evaluation usually involves the infimum of the I-function over all probability
measures supported in a certain region. Thus, we are interested in a representa-
tion for the I-function for all measures. The representation in Section 2 is for a
measure u with a density ¥ € Wi(A). We relied heavily on integration by parts,
and it seems clear that this is the only way to obtain much of an explicit
representation for the I-function. However, if u does not posses a density
¢ € Wi(A), we cannot generally integrate by parts. Mollifying u to give u, with

and proceed as before.
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a smooth density ¥, does not help because the I-function is only lower semicon-
tinuous. Thus I(u,) — © does not allow us to conclude that I(u) = . If L has
constant coefficients and there is no boundary, that is A = R", then one can
convolve with a translation invariant kernel and use the convexity of the I-
function along with lower semicontinuity to obtain I(u) = lim, oI(u.). For
bounded regions, this is not possible.

However, from Section 2, we see that under the a priori assumption that
© € Wi(A), then I(u) is finite if and only if [4 (| V¥ |%/®) dx < o, that is, if
and only if g = ¢¥2 € W%(A). In fact, (1.6) holds. Furthermore, in the case
that a™'b = V¢ and T = 0, the semigroup is selfadjoint on L,(A, dv) with
dv/dx = e*, and (1.11) holds. For any measure p with du/dx = ¢, considering
du/dv = Pe~* and using (1.11), we see that

_ [ veave lf . _fb-V‘P
I(p)—J; 30 dx+2 A(ba b)¥ dx T3 dx

if the right-hand side is finite and equals infinity otherwise. Since a is strictly
elliptic, we see that in the selfadjoint case

(8.1) I(u) <o if and only if u has a density ¢ with ¢Y2 € W%(A).

From the above, it appears likely that (3.1) is also true in the nonselfadjoint case.
In fact, in [6] we proved the following theorem which places no a priori restrictions
on the density of u.

THEOREM 3.2. (a) If T = 0, then I(n) < o if and only if u has a density ¢
with 12 € Wi(A).

() If T#0,let V=1{D: D isopen, D C AwithD N A =§. ForanyD € V,
consider u € P(A) restricted to D as a measure u € #(D), the space of finite
measures on D. Define

Ve |2
I?(p) = L I o l dx if u € #(D) has a density ¢ with ¢Y? € W¥D)

= oo, otherwise.

If there exists a D € V for which I8 (u) = o, then I(u) = .

Thus, if T # 0, we are left to account for the case in which the measure u has
a density ¢ & W2(A) with ¢¥2 € W%(D) for all D € V. That is, the only
singularities in ¥ occur on dA. We conjecture that I(u) = o for such measures,
and thus, that (3.1) holds.
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