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THE OPTIONAL SAMPLING THEOREM FOR PROCESSES
INDEXED BY A PARTIALLY ORDERED SET

By HARRY E. HURZELER

Ohio State University, Columbus

The optional sampling theorem (OST) is not necessarily true for super-
martingales indexed by a partially ordered set. However, if the index set
satisfies a mild separability condition, without necessarily being directed or
countable, we prove the OS inequality for a class of supermartingales that
extends the concept of S-processes defined by Cairoli on the plane R%. Under
a further restriction on these processes we obtain the OS equation, thus
extending the corresponding result for martingales to the case of nondirected
index sets. We then introduce strong martingales and strong supermartingales
for separable partially ordered index sets, and show that these processes again
satisfy the OST. By defining stopping domains as well as the value of a
process for a stopping domain, we show that the strong (super)martingales are
precisely those processes which satisfy the OST for all bounded stopping
domains. This extends a result of Cairoli-Walsh and Wong-Zakai on R2.

0. Introduction. The optional sampling theorem for a positive super-
martingale X with index set [0, co] states that for any two stopping times
T < Ty

(0.1) E[X,7] <X,

with equality if X is a uniformly integrable martingale. On partially ordered sets
other than the real line this theorem is not necessarily true anymore, as a
counterexample by Chow [7] shows. However, in the case of a martingale on a
directed set, Chow proved that (0.1) was indeed still correct for a restricted class
of stopping times; Kurtz [19] removed this restriction on the stopping times and
generalized the result to where the index set T is a topological lattice. As
concerns (0.1) for supermartingales, Haggstrom [12] showed that the optional
sampling theorem is true on certain graphs if the 7, are control variables;
Washburn and Willsky [26] extended this result to general countable index sets
and to the larger class of reachable stopping times, a class that includes the
tactics of Krengel and Sucheston [17], but in general does not contain all
stopping times (see also [17], Section 2). Results for supermartingales with
uncountable index sets other than R” do not seem to be known.

The approach we take here is different: Rather than restricting the class of
stopping times, we use a combinatorial method introduced in [13], [14] to
characterize a special class of supermartingales. The basic idea is to interpret
E[ X,; F] as the value of a measure P*: > on the set {t € T|t > s} X F, where F
belongs to an appropriate o-algebra on . X is then called an S-process if PX> =
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is positive, and a special M-process if P* = is concentrated on the maximal
elements of T, a characterization that is possible both for countable and uncount-
able sets T. The concept of an S-process was first introduced on R2 by Cairoli in
[4], and was then extended to more general partially ordered index sets in [13],
[14]. In the classical case T = R, the S-processes reduce to the positive super-
martingales [8], [9], [11]. As to the special M-processes, they are precisely the
L'-bounded martingales if T is directed. '

The precise definitions are given in Section 2. We show there that the
S-processes satisfy the OST (0.1) for all stopping times, and that Kurtz’s
martingale version of (0.1) holds for the special M-processes, although it does not
hold generally for martingales if T is not directed. Interpreting E[ X; F'] as the
value of a measure PX' = on the set {¢ € T|t < s} X F then leads to the dual
concept of a strong submartingale if P%> = is positive and a strong martingale if
P¥ = vanishes; on the plane these processes are well known [5], [23], [25], and
again they satisfy the OST for stopping times.

In Section 3 we extend the OST to stopping domains 8, which on the plane
correspond to the stopping lines of Merzbach [20], [21] and the stopping times of
Wong and Zakai [27]). We define X;, and then show that X is a strong
submartingale iff

(0.2) E[X,|% ] = X,,

for all bounded stopping domains §, < §,, with equality iff X is a strong
martingale. This generalizes results of Wong and Zakai [27], of Cairoli and Walsh
[6], and of Walsh [25].

1. Basic definitions. Let T be a set with a partial order > ; let T¢ be a
countable subset which is dense from above in T in the sense that for any ¢t € T
there exists a sequence (¢,),cn € T¢ with

(1.1) t,lt,

ie., with ¢, > ¢,,, and inf,t, = £. We assume that there exists an increasing
sequence (K ), cn of finite subsets of T such that
(1.2) T= U K,

neN
and such that V s, ¢ € K, there exist integers ¢](s, t), d (s, t), r € K, satisfy-
ing

(1.3) n(xET|xs.s‘)ﬁ(xET|x5t)= Z C;Z(S:t)“(xeﬂxg):
rek,

(14) n(xETlxzs)ﬁ(xET]xzt)= E d;z(s7t)n(xET|x2r)’
rek,

Examples of such posets are the countable trees, R’} furnished with the product
order, the set of closed sets of a separable topological space with the partial order
defined by inclusion, as well as all those lattices Kurtz [19] calls separable from
above.
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For t € T set
t,=min{s€K,t<s}e€K,, if{seK,t<s}+ T,
1.5
(1.5) =1, if{seK,|lt<s}=g.

Hypothesis (1.4) implies the existence of min{s € K, U {1}|¢ < s} €.K, U {1},
where 1 is the artificially introduced largest element of T' U1} ([14] Lemma 1.5
gives the dual statement). (¢,,),,c v is then a decreasing sequence, and due to 1.1
¢t = inf ¢, ([14] Lemma 1.9). If there is any ambiguity, we will denote (t)nen bY
v=(t).

Since K, is finite, there exist two operators D™ > and D™ = which map any
function f: K, — R into new real valued functions D™ >f = (D =), . k, and
D™=f=(D=f);ck, on K, in such a way that

(1.6) f(s)=" X Dr=f,
tekK, t>s

(1.7) f(sy= X Dr=f
teK,, t<s

for all s € K. These two operators are uniquely defined by (1.6) and (1.7), and
can be explicitly computed: Define the Mobius function p™ K, x K A
recursively by

1, s=1
s t)={~ X w(sr), s<t
(1.8) n(s,t) = rekK,, s<r<t
0, otherwise;
then
DrEf= X pr(s,r)f(r)
rek,
(1.9)
- X Wi r)i(r),
rek,,r=s
DrEf= X fwtr)
rekK,
(1.10)
= Z f(r),un(r,s)’
reK,,r<s

The functions D™ = f and D™ =f, called the upper and lower Mobius inversions
of f, intuitively describe the “mass” allotted by f to the points s € K s
depending on whether f(s) is regarded as describing the mass of {¢t € T|t > s} or
{t € T|t < s}. Or, if the reader prefers, D’ = f can also be regarded as the mass
of the atom Ay > of o{{t € T|t > r}|r € K,} containing the element s of K,
(s is unique and minimal in A} *); similarly for D> = and A? =. (For details see
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[1], [13], [14], [24].) In the case where an artificial 1 had to be introduced, define
D= f=0,
(1.11) Drsf=f1)- ¥ D <

tekK,

and note that (1.7) now holds for all s € K, U {1}, and also (1.6) if f(1) = 0

Let (2, #, P) be a probability space and &#= (#,),. an isotone family of
o-subalgebras of # satisfying #, =N ,%#, V teT. X =(X,),cr denotes an
adapted L'-process, i.e., X, € L‘(Q Z,, P); we assume X to be L' right continu-
ous in the sense that X L1 — lim , X, . Note that this does not 1mp1y that X is
L' right continuous Wlth respect to a general sequence s, | ¢! X is a martingale
if E[X|#]=X, V s>te T, a supermartingale 1f E[X,|#,]< X, and
a submartingale if E[X,|#]= X, (X,)),en 15 a quasimartingale if
Sup, (7 ELX, = X, sl + 1 X illy) < 00. If (F,), < is decreasing and
E[X,|%,.1]=(=2)X,,, wecall (X,),cn @ reversed (sub)martingale, and analo-
gously for the other types of processes. We repeatedly use the fact that reversed
quasimartingales converge a.s. and in LY(Q,%#,P) (8]). Amap 7: @ > T is a
stopping time if {w € Q|T(w) <t} €% V te T, the associated o-algebra is
F={FeEZF|IFn{r<tieF, Vte T} For any stopping time 7 we define
7" by

(1.12) (7"(@))nen = ¥ = (7(@)).

The 7" are again stopping times, with values in K, U {1}, and 7" | 7 pointwise,
Z. = N ,%.n. Here it becomes apparent why we only require T to be dense from

above (1.1).
Furthermore we denote the maximal elements {s € K, |2 ¢t € K, with s < ¢}
in K, by K;»**; K* does not contain the artificial 1.

2. The optional sampling theorem for stopping times

DEFINITION 2.1. An adapted L' right continuous process X = (X,),cr is an
(upper) S-process iff
(2.1) E[DM>X|#] >0, Vse€K, VneN,
and if the variation of X is bounded, i.e., if
(2.2) varX=supE| Y |E[DM>X|%]|| < .

neN s€K,

We will omit the word “upper” since we will not deal with any other kind of
S-processes here. Due to
(2:3) E[X,-X|#]= Y E[D»>X|%]

rek,
r>s,r¢t
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V s <t € K,, an S-process is a positive supermartingale; the converse however is
not generally true, as can easily be seen on the plane T' = R2. Note that if T' has
a smallest element, then (2.2) follows from (2.1).

LEmMMA 2.2. If X is an S-process, there exists an adapted modification X of
X such that .

(2.4) X,(0) = { hm X, (©), if the limit exists,

0, otherwise,
Vte T, where (t,),cn =v=(2).

ProOF. For every t€ T, (X,),cn is a reversed supermartingale with
sup,|| X, |l; < || X,l;, which therefore converges a.s. and in L'. Define X,(w) =
lim, X, ( ) if the limit exists, and X,(w) := 0 otherwise. X satisfies (2.4) because

X,=X, V te T and because X,=X, as. V t€ T due to the L' right
continuity of X. O

THEOREM 2.3. Let X be an S-process satisfying (2.4), and let v, < 7, be two
stopping times. Then X, and X, arein L', and

(2.5) E[X,%]<X,.

Proor. If necessary introduce an artificial largest element 1 and define
X, =0, # =%.Then X,» =X, g X,-_, is % -measurable, and for F € %,
we get

E[X,- X, F|= ¥ E[DF>X;Fn{r <t} n{r) £ t}]
(2,6) tekK,

>0
since F N {1 <t} €, {1 «t) €%, This proves (2.5) for stopping times

assuming only values in K,,, m € N. Defining 7, :== 1%, 7, := 7' ! it follows in
particular that (X..),cn is a (one-dimensional) reversed supermartingale with
sup,|| X |, < varX < oo. Therefore X, converges a.s. and in L', and due to our
assumptlon (2.4) this limit must be X a.s. The observation % =N,%, com-

pletes the proof. O

The basic argument is thus to first apply the Mobius inversion to obtain the
OST on finite subsets, and then to pass to the limit using one-dimensional reverse
(quasi)martingale convergence. In the sequel this idea will be applied to a number
of different situations, the details being left to the reader.

The following discrete example shows that the OST (2.5) does not necessarily
haold for uniformly integrable martingales (unless T is directed, [19] Theorem
2.15): Let T = {1,2,2’} be the poset with 1 < 2,1 < 2/, and let & = {a, b} with
P{a} = P{b} = ;; define #, = {¢,Q}, %, =F, = {¢,{a},{b},2}, and X, =1,
X, = 21,,, Xy =21,); X is a martingale. If =, =1, 7, = 2’1, + 21, 7y =



THE OPTIONAL SAMPLING THEOREM ON POSETS 1229

21, +2'1,,, then 7, <7, 7, <7, and yet 0=X, <1=X <X, =2 For
such an index set the following concept is more appropriate:

DEFINITION 2.4. An adapted L' right continuous process X with var X < oo
is an (upper) special M-process if

(2.7) E[D»>*X|#]=0, VseK,\K ™, VneN.

The term M process on posets was introduced in [13], [14] as a generalization
of the concept of a weak martingale on the plane [4], [5], [22], [27]. But since the
stopping theorem does not even hold for weak martingales on the plane, we need
this more restrictive class.

LEMmMA 2.5. If T is directed (not necessarily a lattice), then X is a special
M-process iff X is a martingale with var X = sup, .|| X,|| < 0.

ProoF. Since T is directed, {x € T|x >s}N{x€T|x >t} * I Vs+te
K,; (1.4) therefore implies |K*| =1, say K ={1,}. If X is a special
M-process and s € K, then

Xs=E[ > Dt”’zXIZ]=E[X1,,I7's]

teK,, t>s

implies that X is a martingale. Conversely, if X is a martingale, then X is L!
right continuous, and

E[DP=X|#Z]= ¥ u(s,t)E[X,|Z]

teK,,t>s

- X (1) ws0)

teK,,s<t<l1,
_ {XS, ifs=1,,
0, otherwise,

where in the last step we have merely used (1.8). In particular, if X is a
martingale or a special M-process, then

sup Y [IX,l,

neN ge Kmax

var X

sup “Xl,,”l = sup|| X,||;. O
teT

neN

If T is not directed, the two concepts of special M-processes and L'-bounded
martingales are not equivalent. In particular, if X is a special M-process and
te T, (X,),en does not necessarily have to be a reversed martingale. But since
(X Dnen Is still a reversed quasimartingale, X has a modification satisfying
2.4).
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PROPOSITION 2.6. Let X be a special M-process satisfying (2.4), and let
7, < 7, be two stopping times. If

(2.8) lim E E |Xs|n{1,ss,‘rz£S) =0,
n=oo | g gma

then

(2.9) E[X, 7] =X

Proor. All that is needed is to show that (X, . )“EN is a reversed quasi-
martingale, which therefore converges to X, a.s. and in L. Taking the limit as
n — oo of (2.6), the proposition then follows from (2.7) and (2.8).

Since %, restricted to {7 < s} is contained in %, it follows that for m > n

E[X, 0 — X | Fpn]
(2.10)

z E|E[Dr+ (LA P el
se

m+1

and therefore
m
z E[|E[Xpe = Xopl Fopn]|]
(2.11)

< Z E,:IE[DS”H—LEXIZ],( z ‘(‘r,"”ss)ﬁ{f{'{s))]'

s€K,, n=1
For s fixed, ({r/**' < 5,7 £ s}), <n are disjoint sets, so that
m
sup Y [ E[Xoper = Xpl Fopen] |
meN p=1

<sup Y E[E[Dr' =X ||| <varX < oD

meN se K

(2.12)

REMARK 2.7. If T is a directed set, fix n, and note that {1, <1, }=
{r"<1,} €% V n=n, (2.10) then simplifies to

E[(Xpo = Xl a1, For |
2.10b - '
( ) - E[Xl,,+|n(1[‘+lslnﬂ)ﬁ(‘r{‘{1,,4,”[%[”']“(1[51"0)

=0
since {7 £ 1,.,} N {7" <1, }= @. Therefore (X1 ., ))n>n) is a reversed
martingale V n, € N. The assumptlon var X < oo of Proposmon 2.6 can then be
weakened to X, € L' to obtain Theorem 2.15 of Kurtz [19].

* To obtain a dual version of the preceding results, involving D™ = rather than
D™ = set
(2.13) F"=o{FIt€ K, t#s)
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for s € K, #" == {¢,§} if s is the smallest element in K,; #" can be regarded
as the “wide past” of s with respect to K,.

DEFINITION 2.8. An adapted L' right continuous process X = (X,),c7 is a
(lower) strong submartingale if '

(2.14) E[DM=X|#"] >0, Vse€K, VneN,
and a (lower) strong martingale if
(2.15) E[Dr=X|#"| =0, Vse€K, VneN.

Applying the dual of (2.3) it is easily seen that a strong (sub)martingale is
actually a (sub)martingale. In particular, a strong submartingale has a modifica-
tion satisfying (2.4).

Examples for strong submartingales are the strong submartingales defined in
[23] on the plane T = R%. Examples of strong martingales are the sums of i.i.d.
random variables on a finite poset T, or the Gaussian processes with independent
normally distributed increments defined in [15].

THEOREM 2.9. Let X be a strong submartingale satisfying (2.4) and let
7, < 7, be two stopping times. If 1, is bounded, i.e., if there exists an n € N such
that 1y(w) € U e [t E T|t <5} V w € Q, then
(2.16) E[X, %] = X,.

If X is a strong martingale, then we have equality.

The proof is completely dual to the one of Theorem 2.3: Since for s € K, and
Fe%#" wehave FN {1]' > s} € £" aswell as {1y’ > s} € #", (2.6) holds with
< and > interchanged.

REMARK 2.10. (i) If X is a strong submartingale, then Y, := X, x D" =X
defines a one-dimensional submartingale with respect to ¥, = o{Z%|s € K ,}. If
(Y,),,cn is uniformly integrable then (2.16) also holds for unbounded stopping
times: Simply note that (X,),cr (1) with X, = L' — lim,Y, is again a strong
submartingale.

(i) A strong martingale satisfies (2.7): Applying (1.9) and then (1.7) it follows
that E[Dy > X|#]=L,cxCrck,, rat,r=sh"(S T)E[D™ = X|#]. Now use
E[D»=X|%#]=0 for t £s, and X p"(s,r)=0 if s € K, is not maximal, 1
otherwise.

3. The optional sampling theorem for stopping domains. The set of
(lower) domains

(3.1) A= {D CcTID=lim U {te T|t‘$ sn}}

n—>0 seD

furnished with the inclusion order— is a lattice, so that

K! = { U(te T[tSs}|IgKn}

sel
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satisfies (1.1) to (1.4). For D € A! define D, by (1.5) applied to A’ and
(Kb, en; PAD) = (D)), en- Fa = (Fp)pen is defined by

(3.2) Fyy = o( -ngi)’ VvDeK.u(T)

and by #, = N,%p otherwise.

DEFINITION 3.1. A map & £ — A’ is a lower wide stopping domain if
(w|8(w) € D} € F,, V D € A. The associated o-algebra is #; = o{F € #|F N
{6 c D} e %, VDEA’}.

REMARK 3.2. (i) A lower wide stopping domain is simply a stopping time
with respect to the poset A’ and the o-algebras Fy.

(i) We use the term wide stopping domain because we do not require
{(wit€ed(w)eF VEET.

(iii) If & = D, then %; = %),

If T = N2 and & is a stopping domain in the sense of Walsh [25], then § is also
a lower wide stopping domain [the converse is not true, due to Remark 3.2(ii)].
On T = R2, if A is a stopping line in the sense of Merzbach [2], [20], [21], [22],
then 8(w) := {t € T|t < s for an s € AN(w)} is also a lower wide stopping domain.

For D € A define X,, by

X,= Y Dr=X, iDeK,
s€K,,seD

(33) _ [ lim X,,  if thelimit exists,

D \ n—oo .
0, otherwise.

THEOREM 3.3. X is a strong (sub)martingale iff for any bounded lower wide
stopping domains 8, < §,,

(3.4) E[X,| %] = (2)Xs,.

Here bounded means 3 m € N such that 8y(w)C U,k (t€ Tt <s)
Vwel. .

PrOOF. Approximate §; by (8),cn With (87(w)),en = ¥{(8:(w)); Xpr =
Yoek D" =Xl sepm is then Fsn-measurable, and (3.4) follows from {s € 5 } €
F.", Fﬁ (sgdyes™ Vv FE%,. The sufficiency of (3.4) is obtamed by
choosmg 6, and 6, in such a way that X5, — X5, = D= X1y, FEF"

. REMARK 34. (i) If X is- a strong (sub)martingale, then (X,)pcn is a
(sub)martingale with respect to (%)), < 4 In particular, lim ,D, exists a.e.

(ii) As in Theorem 2.9, 8, bounded can be replaced by (Y,), <y uniformly
integrable.
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(iii) If T is countable and [{t € T|t < s}| < 0o V s € T, Theorem 3.3 shows
that X is a strong martingale iff (X)), < » is an additive martingale with respect
to &, in the sense of Edgar [10].

The analogous results involving S-processes are only possible in a weaker form.
Let the upper domains

(3.5) A = {D CTID=1m U (teTit> s}}

n-o geK,ND

be furnished with the partial order D, < D, iff D, 2 D,.

K= { U{teTit=s)Ic K,,}

sel
again satisfies (1.1) to (1.4), so let »*(D) = (D,), <n denote the sequence associ-
ated with D € A*. F. = (Fp)pea is defined by £, = N, < pZ.

An upper stopping domain is a map §: @ — A* satisfying {w|t € 8(w)} € &,
V t € T; the associated c-algebra is ;= (FeF|FN{w|t€d(w)}EF V
t € T).If v is a T valued stopping time, then §(w) == {t € T|t > 7(w)} defines
an upper stopping domain with #; =%, (a result that has no analog for lower
wide stopping domains).

For D € K} define X, =Y cx ~pDy" > X. Since X}, is not necessarily %)
measurable, X; is not necessarily %;-measurable either. Therefore the analog to
Proposition 3.3 becomes:

PROPOSITION 3.5. Let X be an adapted L' right continuous process with
var X < co. Then X is an S-process iff

(36 F[X; — X;|%,] 20

for all upper stopping domains 8, < 8, assuming only values in K} for some
m € N, and X is a special M-process iff equality holds in (3.6) for all such upper
stopping domains satisfying K € §,(w) V w € §.

So if X is an S-process and D € A%, we can only define the projection

Xg = lim E[Xp, |#,],  if the limit exists,
0, otherwise.

For any two stopping domains 8, < 8, the usual arguments then show that
E[X§ — X§|F51= 0, with equality if X is a special M-process and &, is
bounded.

REMARK 3.6. In [13], [14] we constructed a positive finite measure P*
associated with the S-process X by means of
PX[{teS|t=s)XF|=E[X;F], VFe#, VseT,

where S is a certain completion of T, T'C S. If 7 is a stopping time and é an



1234 H. E. HURZELER

upper stopping domain, denote
(r,1]xF= U {(x,0)|w € F,x > 7™(w)},

neN

(8,1] X F= nLEJN {(x,0)|lw € F,x € §"(w)}.

It is then possible to prove that
PX[(r,1]xF]=E[X,;F], VFeZ%,
PX[(8,1]1xF]=E[X;F]l, VFe4,

from which the various OST can also be deduced. Similarly for strong sub-
martingales.
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