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RECURRENT SETS FOR TRANSIENT LEVY PROCESSES WITH
BOUNDED KERNELS

BY STEVEN J. JANKE

Colorado College

In the study of recurrent sets for transient Lévy processes on the real
line, we present two main results. As long as the process has a “well-behaved”
(bounded in a particular way) kernel, a set is recurrent for the process if and
only if the sum of the capacities of pieces of the set is infinite. In the second
result, we show that a simple condition on the Lévy measure guarantees that
the process has a “well-behaved” kernel. Finally, the results are applied to
subordinators in order to construct examples of recurrent sets including a
recurrent set with finite Lebesgue measure.

1. Introduction. Past investigations of recurrent sets for transient random
walks have yielded some rather complete results. Bretagnolle and Dacuhna-
Castelle (1967) showed that if a random walk on the real line is nonsingular (i.e.,
the distribution of X has a nonzero absolutely continuous part), and if EX, > 0
with E|X|| < oo, then a set B is recurrent (i.e., hit infinitely often) if and only if
A(B N (0,0)) = oo where A is Lebesgue measure. This result does not directly
generalize to continuous processes. For these processes, infinite Lebesgue measure
is still sufficient for recurrence since the set will be recurrent for some imbedded
random walk (i.e., {X,,}¥_,). However, infinite Lebesgue measure is not neces-
sary for recurrence (even if the process has no linear or Gaussian component—see
the example in Section 6). One of the two main results in this paper gives a
necessary and sufficient condition for recurrence under the assumption that the
continuous process has a bounded kernel. In order to make this result useful, the
second main result gives a criterion which guarantees a bounded kernel. This
second result is of independent interest in investigating the behavior of kernels.

To be more precise, let X = {X,,t> 0} be a real-valued stochastic process
with stationary independent increments (i.e., a Lévy process). Then the char-
acteristic function of X,, denoted ¢,(u), is E %“*: = exp{ —ty(u)} where

; 02 2 tux ux dx
Y(u) = —iua + Pk +/ 1—e +1+x2 v(dx).
Y is called the exponent of the process, and the measure » is the Lévy measure
which satisfies [|x|2/(1 + |x|?)r(dx) < co. We assume that a version of X has
been chosen so that the sample paths are right continuous with left limits. We
also assume that »(R — {0}) = oo, since otherwise the analysis of recurrent
sets is best done using random walk methods. Without loss of generality,
we may assume further that »(0, c0) = co. It follows from »(0, c0) = oo that
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RECURRENT SETS FOR TRANSIENT PROCESSES 1205

P[T, ;1o < 0] >0 where r>0, ¢>0, and T, ,., =inf[t: X, € (r,r + ¢)].
The measure P* is the distribution of the process when starting at x (i.e.,
X(0) = x) and E~ is the expectation with regard to the measure P*. When x = 0,
we drop the superscripts. Finally, let U(0, A) = E°[&°I,(x,)dt for all Borel sets
A. The measure U is called the potential measure for the process, and we write
U(A) for U, A). .

A transient Lévy process is one such that liminf, , |X,| = o as., or, equiv-
alently, for every compact B, lim,_  P*[X, € B, some s > t] = 0. For a Borel
set B, let Tz = inf{¢ > 0: X, € B}. Then we have the following definition.

DEFINITION. A recurrent set is a Borel set such that P*[T; < 0] =1 a.e. x.
If a set is not recurrent, it is transient.

Without loss of generality, we can restrict ourselves to considering the recur-
rence or transience of only those sets contained in [0, o0).

DEFINITION. A partition is a collection of sets {S,}? such that S, =
{x:a,<x,<a,,,} wherea, > 0, {a,)7 is an increasing sequence with a, — .

DEFINITION. A partition {S,}¥ is said to have nonzero mesh if
inf (a,,, —a,) >8> 0.

If welet B, = BN S, it can be shown that B is recurrent if
P"[limsup[TBn < oo]] =1la.e.

The Borel-Cantelli lemma would supply a necessary and sufficient condition for
recurrence if the sets {Tp < co] were independent. Unfortunately, they are
generally not independent. "A condition on the kernel of the process, however,
does allow us to use an extension of the Borel-Cantelli lemma.

Recall that a process has a kernel u if and only if the potential measure U is
absolutely continuous with respect to Lebesgue measure. In that event, U(A) =
fau(x)dx where u can be chosen so x — u(—x) is an excessive function.

DEFINITION. A kernel is well-behaved if it is bounded on R\ (—a, a) and
bounded away from zero on (a, o).

(Note that the definition of well-behaved is based on the fact that we are
restricting attention to recurrent sets in [0, c0).)

From capacity theory for processes with stationary independent increments,
we know that if A is a compact Borel set,

PTy < o] = [ u(-y - x)n_s(d),

where u is the kernel of the process and p_, is the capacitary measure (finite)
supported by —A. Also, C(B) = pg(B) is the capacity of B. Now we can state
the main results of this paper.
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THEOREM 1. Let X be a transient Lévy process with a well-behaved kernel.
Let {S,}Y be a partition of nonzero mesh, and set B, = B N S, where B C (0, o0)
is a Borel set. Then the following are equivalent:

(i) B is recurrent for X.

(i) XPP* [Ty, < 0] = 0.

(iii) XC(B,) = .

Note. Condition (iii) is interesting when compared to Lamperti’s results
(1963). It follows from Lamperti’s arguments that for stable subordinators of
index a, 0 < a < 1, if we set B, = {2" < x < 2"*!'} N B, then B is recurrent if
and only if XC(B,)/(2")! "* = 0.

In order to apply the theorem we need some way of determining if a process
has a well-behaved kernel. Unfortunately, even the existence of bounded, con-
tinuous densities does not guarantee the behavior (see Section 4). Since the Lévy
measure for a process is often known, the following result is useful and of interest
when studying kernels by themselves. The most interesting case is the one where
the process does not have a Gaussian component, so we make that assumption.

THEOREM 2. Let X be a transient Lévy process with positive finite mean and
Lévy measure v. Suppose v has a density g which is bounded on R — {(—¢, ¢)}
and satisfies,

lg(x) - Cx™17% <& on(0,¢),
lg(x) — Cox™17% <8 on(—¢,0),
where C, > 0, Cy, > 0, and 0 < a < 1. Then X has a well-behaved kernel.

NoTE. Theorem 2 covers many processes that do not hit points. Results of
Kesten (1969) give criteria for a process to hit points, and Bretagnolle (1971)
showed that these processes have bounded kernels. By showing that the kernel is
bounded away from zero on (a, ), it can be established that the kernel is
well-behaved.

We proceed with the proofs of Theorem 1 and Theorem 2 by first dispensing
with some preliminary results in Section 2. Section 3 contains the proof of
Theorem 1. Sections 4 and 5 present the proof of Theorem 2. Finally, in Section
6, we give some illustrative examples of recurrent sets for certain subordinators.
With subordinators, the calculation of C(B,) is often tractable, so determining
recurrence is often straightforward.

2. Preliminaries on recurrent sets. Port and Stone (1971) established the
basic characterization leading to the definition of recurrent set.

"THEOREM (PorT AND STONE). Let B be a Borel set. Then, either
P*[Ty < 0]=1 ae. x (Tg=inf{¢t > 0: X,€ B}) or lim,, P*[X,€ B for
some s > t] = 0 a.e. x.
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In the above theorem and in the first proposition below, “almost everywhere”
can be replaced with “for all x” if the process is nonsingular (i.e., for some ¢ > 0,
the distribution of X, has a nonzero absolutely continuous part).

PROPOSITION 1. The set M = {w: [¢t: X, € B] is unbounded} is measurable
and P*(M) = 0 almost everywhere x or P*(M) = 1 almost everywhere x. B is
recurrent if and only if P*(M) =1 a.e. x.

Proor. Let T, =inf{¢ > n: X, € B}. Since {[¢: X, € B] unbounded} =
®_ UL [T, < oo], measurability is established. Assume B is recurrent. Port
and Stone (1971) showed that P*[ X, € B some ¢ > s] =1 for all s and a.e. x.
Hence, P*[T, < co]=1 for all 2 and a.e. x. Thus, P*[w: [t: X, € B] is
bounded] = 1 a.e. x. If B is transient, let {¢;} be an increasing sequence such
that, for x outside an exceptional set of measure zero, P*[ X, € B for some

t>t7]<27" Then

Y P*[ X, € B forsome t > tZ| < 0 a.e. x,
n

and by the Borel-Cantelli lemma,
P*[w: [¢: X, € B] is unbounded]

= P*|limsup[ X, € B forsome ¢ > ¢,]| = 0a.e. x.0

n

For the next proposition, let {S,}T be a partition and set B, = BN S,. Let
Tp, = inf(¢ > 0: X, € B,}.

PROPOSITION 2. For a transient process X,
{w: [¢: X, € B] unbounded} = {w: [tB,, < oo infinitely often]}

= limsup [TB,, < oo] almost surely.
n

ProoF. The result follows from the fact that almost all paths of a Lévy
process are bounded on finite time intervals, and the fact that for transient
processes, liminf, , |X,| = c0. O

The above two propositions show that we can determine recurrence or tran-
sience by finding the probability of limsup,[T < oo].

3. Proof of Theorem 1. The first step in the proof is to show that
LPP*[Tp < 0] = oo ae. x is a necessary and sufficient condition for recurrence.
Then an argument from capacity theory will show that ¥{°C(B,) = oo is an
equivalent condition so the qualification “a.e. x” can be removed.

According to Propositions 1 and 2, a set B is recurrent if P*[limsup,{Tp <
}] = 1 a.e. x. By the Borel-Cantelli lemma, it follows that L°P*[T < o0] = o0
a.e. x. This establishes the necessity.
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To show sufficiency, we will use a well-known extension of the Borel-Cantelli
lemma. This result states that if ¥°P[ A, ] = o0 and P[A,A,,] < KP[A,1P[A,,]
for n,m > M, then P[limsup,A,]> 0. In our case, we must show that
P*[limsup,[Tp < oo]] =1 a.e. x. From Propositions 1 and 2, we know this
probability is either zero or one. Thus, we need only show it is greater than zero.

Since the kernel is well-behaved, there exist z, > 0 and z, < 0 such that if
z > z,, then K, < u(z) < K,, and if z < z,, then u(z) < K. The constants K,
K,, K, are all positive.

Let 2z* = max{z,,|2,|}. Since {S,}_, is a partition of nonzero mesh,
inf (a,,, —a,) >8> 0. Let £ be an integer such that & > z*/8. For the
sufficiency, we assume L°P*[T; < oo] = oo a.e. x. We rewrite this sum in blocks
of £ summands to get, Eﬁ=02§=1P"[TBM+p < o0]. Since the sum is infinite, one
of the sums }:2=OP"[TBM+F < 0], p=1,2,...,k, is infinite. Given x, we choose
the appropriate infinite sum, and consequently may suppose that we have sets
{Ts < oo} where the distance between B, and B,, r # s, is greater than z*, and

2 P*[Tp < 00] = c0.
Consider the following inequality,

P[Ty, < o0, Ty, < o0 s/[ P70 Ty < oo] dP

Ty, <o0]

(A)
XTB,,. :
+/{Tm<w]P [T, < 0] dP

We proceed to estimate the right-hand side of this inequality. Note first that if
r < s, then z € B,, y € B, implies z < y.
From capacity theory,

P’[T, < o] = f_Au(—y — 2)p_4(dz),

where p_ , is the capacitary measure. If —y — 2 > z,, then
KC(-A)<P’[T, <] <K,C(-A).
From the definition of sets B,, y € B, and z € —B, (r <s) implies
—y — 2> 2* > 2z,. Further, if s is large enough (s > r;) then P[Tp < 0] >
K .,C(-B,). Thus
PY[Ty < o] < KK 'P[Tp, < o]
whenever y € B,, r, <r <s. Now, X, € B,, and therefore the first term on

the right of (A) is bounded above by K,K; 'P[Ty < w0]P[Ty < col.
Return again to the capacity equality. If —y — 2 < z; < 0, then

P’[T, <] <K,C(-A).

From the definition of sets B,,if r <s, y € B,, and z € —B,, we have —y — 2
< —2z* < z,. Thus, for y € B, and r > r,,

PY[Ty < | < KC(-B,) < K;K;'P[T < oo].
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Since Xr € B,, the second term on the right of (A) is bounded above by
K ;K{'P[Ty < o]P[Tp < oo]. Consequently, for all r, s sufficiently large,

P[TB, < 0,Tp < oo] <(K,+ K3)K1_1P[TB, < °°]P[TBs < °°]’

Finally, observe that given x, we can choose ry(x) sufficiently large so that
r > ry(x), s > ry(x) implies

P*[Ty < 0,Ty < | < (K, + K3)K; 'P*[Tp, < o] P*[Ty, < oo].
This establishes the Borel-Cantelli extension, and hence
P*[limsup| Ty, < ]| >0
holds for every x for which E*P*[Tp < oo] = oo. Hence
P"[limsup[TBn < oo]] =1

a.e. x and B is recurrent.
Finally, if n is sufficiently large, —y — 2 > 2, for z€ —B, and y fixed.
Hence,

K,C(-B,) < P?[T; < o] < K,C(—B,).

Since C(B,) = C(—B,), ¥P’[Ty < o] = o if and only if X3°C(B,) = oo. This
completes the proof. O

COROLLARY 1. Under the hypotheses of Theorem 1, let B =U{B, be a
recurrent set where B, = BN S,. Set B’ = U¥B;, where B, = B, + x, and {x,)T
is a sequence such that B, N B, = @ if n + m. If there exists a partition of
nonzero mesh, {S;}, such that B;, = S; N B’, then B’ is recurrent.

Proor. C(B))= C(B,+ x,)= C(B,). O

The corollary shows that suitable rearrangements of a recurrent set are still
recurrent for processes with well-behaved kernels. In particular, the corollary
holds for nondecreasing sequences, {x,}7, of positive numbers. In this case, the
distances between successive B, are made larger and larger—B is “spread out.”
Similarly, if {x,}? is a sequence of negative numbers that insures the existence of
the partition {S;}, then the resulting “compressed” set is still recurrent. O

4. Preliminaries on kernels. If u is a kernel for a process, then x — u(—x)
is excessive and Uf(x) = [f(z)u(z — x)dx for all bounded Borel f (where by
definition, Uf(x) = [e *E*f(x,)dt). A kernel exists if and only if the potential
measure is absolutely continuous with respect to Lebesgue measure. In that case,
U(A) = [su(x)dx. Finally, if X, has a density f,, then there exists a version f, of
f, such that u(x) = J&fAx)dt.

The next proposition shows that we can use the renewal theorem for random
walks to investigate the potential measure for continuous processes. Recall that if
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F, is the distribution of X,, and we write U(x) for U([0, x)), then

U(x) = EO[OWI[M)( X,) dt

=/(.)OOP[Xt€ [0, x)] dt=f0°°F,(x)dt.

ProposITION 3. Let F(x) = cf/{®e “‘F(x)dt, ¢ > 0. Then U(x) =
¢ 'X®_|F*"(x) where F*" is the nth-fold convolution of F.

Proor. Let {Y,} be independent, identically distributed random variables
with distribution Fy(x) =1 — e~ “*. Then

P[X(Y,) <x] = c'/:oefcyP[X(y) <x]dy=F(x).

Let Z,=Y, +Y,+---+Y,. Then Z, is a gamma random variable with
density e ““(cx)" " '¢/(n — 1)l. Now X(Z,) = X! X(Z,)— X(Z._,)] where
X(Z,) — X(Z,_,) has the same distribution as Y,, which is just F. Hence X(Z,)
has distribution F*".

Also,
P[X(Z,) < x] =/(; ——(n(—_y—)l)—F (x) dy.
Therefore,
F*"(x) =j(; ——(;(—_3%)—F(x)dy
Finally,
Z F*"(x)—f fL))m ) dy

= cj(; F(x)dy.O

Notice that if F, has finite expectation p > 0, then F has finite positive
expectation. Now we turn to some refinements of the renewal theorem estab-
lished by Feller (1971).

PROPOSITION 4. Let the distribution F have finite expectation p > 0, and
density f. If f *" is bounded for some n, then U = £%_, F*" has a density u such
that u—f—f*2— ... —f*" >y ! as x> o0, and u— --- —f** >0 as
x = —oo.
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PrROOF. u — f— f**— ... —f*" is a solution to Feller’s renewal equation, so
Feller’s results prove the proposition. O

If the process X has a Gaussian component (6% > 0), then the distribution F
defined in Proposition 3 has a bounded, continuous density f. It is then easy to
see from Proposition 4 that the kernel is well-behaved. Based on these cases, we
might conjecture that any process with bounded, continuous density has a
well-behaved kernel. However, the following example shows that the situation is
more delicate than at first glance.

ExaMPLE. Let X = {X,} be a symmetnc stable process of index a < 1. Its
characteristic function is e~ %“", so if f, is the density of X,, f,(0) = [® e 1" du
= K, t"'/® Dby the Fourier 'inversion theorems. Let Y = (Y} be a com-
pound Poisson process with Lévy measure v = X°r.e, where ¢, is the
measure with unit mass at x, and {x,} is a sequence such that x, -0, Now
Z,=X,+ Y, has a density h and h,(x)= [*_f(x — y)P[Y, c dy]. Thus,
supxh,(x) < sup, f(x) < f(0) < 0. So for a < 1, Z = {Z,} is transient and has
bounded, continuous density. However,

h(x,) = P[Y,=x,]£,0)
> P[Y has one jump of size x, and no other jumps] £,(0)

> e Tntr, £,(0).

If £Pr, < oo, then A (x;) > K t'"/® near t=0 and [{h(x,)dt= oo for
a < 1. This shows that the kernel is unbounded near every x,. [This example was
presented by Kanda (1975) in greater generality.]

The procedure for showing that a process has a well-behaved kernel will be the
following. First we will show that under appropriate hypotheses, the distribution
F of Proposition 3 has a density that is bounded on (R, ). This implies f ** is
bounded on (R, o0). Next we show that f *” is bounded everywhere for some n,
and then Proposition 4 establishes that the density is well-behaved.

There is one technical detail that we will dispense with first. The density of

the potential measure may not be a kernel.

PROPOSITION 5. Suppose the potential measure U has a density g that is
well-behaved. Then the process has a kernel that is well-behaved.

Proor. Since g is well-behaved, g(x) < K, for |x| > x* > 0 and g(x) > K,
for x > x*. It is known that since U has a density it has a kernel u such that
u(—x) is excessive and u = g a.e. Further, since U has a density, all excessive
functions are lower semicontinuous. In particular, u(—x) is lower semicontinu-
ous, and therefore u(x) < K, for |x| > x* > 0.

Take x, > x*. Then g(x,) > K,. Choose a nonnegative continuous function f
with compact support in (—oo, —x*), with f <1, and with f(—x,) =1
Let &(x)=u(—x) and B(x)= g(—x). For excessive functions A, h(x)=
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lim, _, ,AU*h(x), and therefore we have,
u(x,y) = o(—x,) = Ali_)n:o ANUMa(—x,)
> li)\nlior.}f NUM fi)(—x,)
= liminf AU(2)(~,)
> Kzlixrr_l)iorgf AU (—x)
> K,f(—x,) = K,.
Since x,, is arbitrary, u(x) > K, for x > x* and u is well-behaved.
5. Proof of Theorem 2. We first need two lemmas.

LEmMMA 1. Let Y = {Y,} be a process with density g, and kernel uy, such that
uy(x) < K, for |x| > M. Let Y = {Y,} be a process derived from Y, by deleting
all jumps bigger than J. Then, there exists A > 0 such that

ud(x) = fowe""g,(x)dt <K, for|x|> M.

Proor.
P[Y,€ A] = P[Y¥, € A and no jumps bigger than o occur up to time ¢]
=P[Y, € Ale "/t
" This shows Y, has a density &, and
g(x) 2 g(x)e™* (A =»(J,c0))

which implies uy(x) > ul(x). O

LEMMA 2. Let X = (X,} have a density f* and a A-kernel u} such that
uMx) < K, for |x|> M,. Let Y= {Y,} be a compound Poisson process with
Lévy measure v. Suppose that v has a bounded density p. Then if Z,= X, + Y,,
Z = (Z,) is a process which has a A-kernel u} such that ux)< K, for
|x| > M,.

PROOF. Let f;° be the density of Z, and denote the distribution of Y, by F,".
w(a) = [TeNfAx)dt = [Te N[ [ X(x - y)FX(dy) dt.
. 0 . 0 — 0
Now, F)Y = e "R + e v(Biyo ((»(R)t)*/R!)F** where F(dx) =

v(dx)/v(R), so F has a bounded density equal to P(x)/»(R). Since each F**
has a density bounded by the same bound, F,Y — e *®Y  has a bounded
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density. Call this density f,Y.
wd(x) = [Te[” Xz = ) e ®ieg(dy) +£,"(y) dy] e
= [eMe PNy + [T e[ fX(x = )M () dyat
ul(x) +'/‘°oe_"‘Mfoo fX(x — y)dydt
0 — o0

<uMx)+ M/A.

This establishes the bound on u?. O
Before proving the full theorem, we prove the following restricted version.

IA

A

RESTRICTED THEOREM 2. Let X = {X,} be a transient process with finite
mean and Lévy measure v. Suppose v has a density g on R — {0} that is bounded
on R — {(—¢,¢)}. Suppose g(x)=Cx '~* on (0,¢) and g(x) = C,|x|"'"* on
(—¢,0) where C; =20, C, > 0,0 < a < 1. Then X has a well-behaved kernel.

Proor. X can be thought of as a stable process that is altered by first
deleting jumps bigger than ¢ and then adding a compound Poisson process with a
Lévy measure that has a bounded density. By Lemmas 1 and 2, X has a A-kernel
which is bounded for |x| > M.

Now let f, be the density of X,. [Since » has a density, X, has a density
(Chung, 1970)]. So far we have,

uMx) = fooe"“ft(x)dt <K for |x| > M.
0

Au? is a density for F(x) = A [°e~*'F,(x) dt. By Propositions 3 and 4, we need to
show that f *" is bounded where f = u™.
The Fourier transform of f is (A + ¢(u))~! so the transform of f*" is

(A +d(u)™"
fool)\ +y(u)| "du < 2[00[}\ + f(l - cosux)v(dx)]ndu
0 0

< 2/0‘”[)\ +fa- cosux)g(x)dx]"du
<K+ 2/528[}\ + g(m/2u)[(7 — 2) /2u]] " du

<K+ 2/00 [K'u'"*u"'] "du < «
7/2¢

By Fourier inversion, f *" is bounded. Therefore X has a well-behaved kernel. O ‘

Now we are in a position to complete the proof of Theorem 2. Recall that if a
process has a Gaussian component, then the kernel is well-behaved. Therefore, in
both Restricted Theorem 2 and Theorem 2 we assume the process X has no
Gaussian component.
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Proor oF THEOREM 2. Define the following functions:
Cix '™ on(0,¢)
8o(x) = Cox™ ' on(—¢,0)
&(x) on R —{(-¢,¢)}

min(g(x),Cx"'"*) on(0,¢)

g/(x) = min(g(x),CZx_l_"‘) on (—¢,0)
8(x) on (R —{(-¢¢)})

Cx ' *—g(x) onf{xe(0,e): Cx7'7*—g(x) > 0}
8y(x) = Cx ' —g(x) on{xe(—¢0): Cx 7% — g(x) > 0}
0 elsewhere

g(x)—Cx'"* on{xe(0,¢): g(x) - Cx~ 1" "> 0}
85(x) = g(x) — C,x™ '™ on {x € (—¢,0): g(x) - Cx~'"*> 0}
0 elsewhere.

If », and », are Lévy measures with densities g, and g, respectively, then the
corresponding processes are compound Poisson. By Restricted Theorem 2, if Z, is
a process with Lévy measure having density g,, Z, has a well-behaved kernel.

Let Y, be a process with Lévy measure »; (density of v, is g;), i = 1,2,3. We
have Z, = Y;! + Y,? where Y;',Y;? are taken to be independent. Hence,

P[Z,e A]=P[Y} + Y2 € A]
> P[Y} € A,Y? = 0]
= P[Y} € Ale " where c = »,(R).

Since Z, has a kernel bounded on |x|] > M, Y} has a A-kernel bounded on
|x| > M. Now, X, =Y} + Y}, and by Lemma 2, X, has a A-kernel bounded for
|x| > M. The proof now proceeds as for Restricted Theorem 2. Notice that when
estimating the integral, |g(x) — x ' 7% < & implies g(x) > x 17 for some B < a.
The proof is complete. O

NoTE. In the hypotheses of Theorem 2, the density of the Lévy measure
is required to be close to the corresponding density for a stable process.
In the proof, the stable process is needed because it has a kernel bounded on
R — (—a, a). The same method of proof can be used starting with other processes
that have bounded kernels. For example, Hawkes (1975) showed that for sub-
ordinators if »(x, o) is log convex, the kernel is monotone. This result can be
used to weaken the hypotheses of Theorem 2 when considering subordinators.

6. Examples of recurrent sets. A Lévy process with increasing paths is
called a subordinator. In this section we prove some results about subordinators
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that allow us to use Theorem 1 and Theorem 2 to give examples of interesting
recurrent sets.

Recall that for subordinators the support of » is contained in (0, c0) and
foxv(dx) < co. Subordinators can be characterized by the Laplace transform
Eexp(—AX,) = exp(—tg(\)) where g is called the subordinator exponent and
g(A\) = aX + [(1 — e ™)v(dx) where a > 0. The constant “a” is called the
drift, and if a = 0, the subordinator has no drift.

If we set o(x) = »(x, o0) for x > 0, then the following are well known:

1. xo(x) > 0asx — 0.

2. If [xv(dx) < oo, then x6(x) = 0 as x — 0.

3. [Qxr(dx) = [§Po(x)dx.

If [°xv(dx) < oo, we say the subordinator has finite mean.

In order to use Theorem 1 to determine recurrence, we can either estimate the
probability of hitting a set, or estimate the capacity of a set. Both approaches are
feasible with subordinators, but here we concentrate on capacities since the
results are more easily obtained.

For subordinators with finite mean and nonzero drift, the following proposi-
tion gives rise to many examples.

PROPOSITION 6. Every unbounded set is a recurrent set for a subordinator
with finite mean and nonzero drift.

Proor. It is known (Kesten, 1969) that subordinators with drift and finite
mean have kernels which are bounded on (a, ) and are in fact continuous.
Hence, the kernels are well-behaved and Theorem 1 applies. Kesten also showed
that these processes hit points and therefore C({r})> 0 for r > 0. Since
C(A +x)=C(A), C{r})=C({s}) for r<0, s<0. Let B,=BnN[n,n+1)
and pick r, € B, if B, # &. Then £°C(B,) = ¥C({r,}) = o0, and hence B is
recurrent. O

Turning now to subordinators with finite mean and zero drift, we have the
following definition.

DEFINITION. A “set of intervals” is a set B = U{°B, such that the B, are
intervals (closed, open, or half-open), B is unbounded, and the B, are pairwise
disjoint. Let |B,| denote the length of B,.

Notice that if for infinitely many n, |B,| > 8 > 0, then for these n, C(B,) > §*
and hence, X°C(B,) = co which implies B is recurrent. We might as well focus,
therefore, on sets of intervals where |B,| = 0 as n — co.

ProposITION 7. If a subordinator has a kernel and no drift (a = 0), then
M,C(B,) < [{Bo(x)dx < M,C(B,) where B, is an interval and M,, M, are
positive constants independent of B,,.

Proor. We first utilize an estimate obtained by Kanda (1981) for transient
Lévy processes (not just subordinators). Following Kanda’s development, let
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J=[-r,rland I =[—r/2,r/2], then
2r 2r
4r2/_2rP [T, < o] dx = f_2r/u(y — x)p,(dy) dx
> C(J) inf /2r u(y — x)dx
yeJJ-2r
zdﬂfﬂ@w.

Hence, C(J) < 4r[ [” ,u(x)dx] . Further,
r=/r/2 P*[T, < o0]dx < C(I)supfr/2 u(y — x)dx
—r/2

yel*—r/2

<o) [ u(x)d.
Since C(I) < C(J), we have
r[/_r u(x)dx]_1 <C(I)< 4r[/_r u(x)dx]_l.

In the present context, if we let r = |B,| and recall C(B,) = C(B, + x), we can
replace C(I) with C(B,) in the above inequality.
From an inequality in Hawkes (1975) for subordinators, we have,

NI[ﬁB”lu(x)dx]_l <g(1/|B,) < NZ['/;B"lu(x)dx]‘l,

where g is the subordinator exponent and N, N, are constants. It now follows
from the previous inequality that

N,C(B,) <|B,|g(1/|B,|) < N,C(B,).

From Horowitz (1968), we have if there is no drift,

|Bn| |B"|
N;["o(x)dx < |B,lg(1/1B,) < N, [ "o(x) dx.
0 0
Putting the inequalities together gives the result. O

Note. Kanda’s inequality used in the above proof establishes a criteria
which can be applied to processes other than subordinators to show L°C(B,) = co.

PROPOSITION 8. Let B be a set of intervals such that the distance between
any two intervals is greater than 6. Let X be a subordinator with no drift
satisfying the hypotheses of Theorem 2. Y[|Brla(x)dx = o if and only if B is
recurrent.

Proor. The hypotheses of Theorem 1 are satisfied and by Proposition 7,
Y¥C(B,) = «. O ’

Using Proposition 8, we can construct an example of a recurrent set with finite
Lebesgue measure.
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ExaMmpPLE. Let X be a subordinator with no drift, finite mean and EX, > 0.
Let the Lévy measure have a density g such that g is bounded on [¢, o0) and
g(x)=x"'1"%on (0,¢) where 0 < a < 1.

Now

0(2)=fzwg(y)dy = f:y“‘“dy + v(e, )

=C,27*+ K wherez <e.

Hence, [Jo(2)dz = Cyx'~* + Kx. Let |B,| = n~*** and let B = U?B,, be a set
of intervals with the length of B, equal to |B,|, and with the distance between
any two intervals greater than 6 > 0. We have,

Z/ "a(y) dy = 202n—(1+a)(1—a) + Kn-(+a
170 1

o0
Y LK = o
1

Thus, B is recurrent, but Y°|B,| = Xn 1% < 0. B has finite Lebesgue
measure. Notice that in this example, X is a process that does not hit points.
In Theorem 1 and throughout this section, we have broken a set B into sets
B, = BN S, where {S,}{ is a partition of nonzero mesh. The requirement of
nonzero mesh is in some sense essential since we can now show that Y°C(B,) is
finite or infinite depending on whether the partition has nonzero mesh or not.

ExAMPLE. Let X be the subordinator designated in the previous example.
* Then o(z) = C,z7* — C,e"* + K. Hence, o(2) = C,z7* — K, if ¢ is sufficiently
small and K, > 0. It follows that [fo(z)dz = Cox'"*— K,x. Let x, =
2~ (re/A=e) gnd let B, = [r,, 1, + x,,] where we choose the r, sufficiently large
that the B, are mutually disjoint and at least a distance § from each other.
Hence B, = B N S, where {S,}*_, is a partition of nonzero mesh. By Proposition
7,

C(B,) = My "a(y) dy.

Then

Yo(B) <My X [o(3)dy

=M, Y G2 — K2 (ne/0=e) < oo,

1

M8

Now divide B, into 2" intervals of equal length. Call the smaller intervals

B, i=1,2,3,...,2"~ Bn=U?;anl. Again by Proposition 7, C(Bn,)Z

nl



1218 S. J. JANKE
M, f(JB""o(y) dy. Then we have

2"
I n,

Y C(B,) = M, Zf o(y) dy
i=1 i=1

2"
> Ml/ Z (2—,1 ) 2-(na/<1—a)))1—a — Mf-

i=1

Therefore, 2,7~ ,C(B, ) = oo. Thus if we let B, = B, = Bn S, where {S,)
is a partition of zero mesh, then 22C( B ) = 00 whereas Y*C(B,) < oo for the
partition {S,} of nonzero mesh.
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