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A MARTINGALE APPROACH TO SUPERCRITICAL (CMJ)
BRANCHING PROCESSES

BY HARRY COHN

University of Melbourne

A new method of tackling convergence properties of random processes
turns out to be applicable to finite mean supercritical age-dependent branch-
ing processes. If {Z#} is a Crump—Mode-Jagers process counted with general
characteristics ¢, convergence in probability of {e~*/Z} follows from conver-
gence in distribution. Under some mild restrictions on ¢, norming constants
(C(t)} are identified such that {C™'(#)Z#} converges almost surely to a
nondegenerate limit.

1. Introduction. Let us consider the age-dependent model defined by Jagers
in Chapter 6 of [11], which is now known as the (CMJ) process, where (CMJ)
stands for Crump-Mode-Jagers. The data of the model consist of a random
point process ¢ on [0, 00) ruling the reproduction ages of an individual, the
life-length variable A, and a random characteristic process {¢(¢)}. Write G for
the distribution function of the life-length, i.e., G(z) = P(A < u) and §(t) for the
¢ measure of [0,t], ie., &)= £(0,¢t]). Further p = E(£) is to denote the
intensity measure of £ and pu(¢) = E(&(¢)) is the so-called reproduction function,
which we assume to be nonlattice. Suppose P(£(00) < 00) = 1.

We shall throughout assume the following conditions on £(¢):

(i) There exists a Malthusian parameter a € (0, o), i.e., a finite positive solution
of the equation N

fooe"“‘p.(dt) =1.

0

(ii) The first moment of e~ *u(dt) is finite, i.e.,
fooue““"u(du) < 0.
0

We shall require that {¢(¢)} be a product-measurable separable nonnegative
random process and, define a (CMJ) process by

T;
(1.1) zy =Y ¢t —oy),

i=0
where o, = 0 is the birth time of the ancestor and o;), i > 1, is the birth time of
the ith of its T, descendants that have been born up to and including ¢. The
{$:(2), N, £,(t)) are iid. copies of {§(t),]\,&(t)}. Write o7y, for the o field
generated by the biographies of the ancestor and its first 7, descendants. An
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ordinary Crump-Mode-Jagers process {Z,}, introduced independently by Crump
and Mode [7] and Jagers [10], is obtained by specializing ¢(¢) to ¢(¢) = 1if t < A
and 0 otherwise. In this case Z$ counts the number of individuals alive at time ¢.
If reproduction is allowed only at the time of death of an individual, the resulting
model is the so-called Sevastyanov process. If in addition A and (o) are
independent, one obtains the Bellman—Harris process.

We shall now assume that {¢(¢)} satisfies the following:

CoNDITION 1.1. The function E(¢(t)) is continuous a.e. with respect to

Lebesgue measure and
0

(1.2) Y sup e “E(¢(t)) < .
k=0 k<t<k+1
It is known that (1.2) permits application of a renewal argument (see [11] and
[14]) that yields
ve “E(¢(t))dt
(1.3) lim m? = m¢ = o = (5(2)) ,
t— oo fO tp'a( dt)
where m? = E(e”*“Z$) and p(t) = [{e” **un(ds).

We shall be concerned here with the limit behaviour of {C~'(¢)Z¢} for suitably
chosen constants {C(¢)}. Problems of this kind have been studied by Jagers [11]
under second moment assumptions, and by Nerman [14] under rather general
assumptions. For an updated account and more results see Asmussen and Hering
[3].

We shall show that the Laplace transform @ of the limit distribution of
{C~Y(¢)Z}}, or a subsequence thereof, satisfies the functional equation

(1.4) o(u) = E[iﬁlcb(ue“““m)],

where o;; is the birth time of the ith child of the ancestor.

This is the equation satisfied by the limit variable in an ordinary
Crump-Mode—Jagers process [8]. A useful consequence of (1.4) is that any
nondegenerate weak limit of {C~'(¢)Z?} must be a proper distribution.

Convergence in distribution turns out to be equivalent with convergence in
probability for {e~*Zg}. Nondegenerate limits of this kind occur only if

(1.5) E[,£(o0)log é(0)] < oo,
where

£(0) = [ e ue(du).
0 .
We further derive a.s. convergence for {C~'(¢)Z}} for suitably chosen constants
{C(¢)} and a slightly stronger condition on ¢ in a case that includes
(1'6) E [ £(o0)log;¢(e0)] = 0.

The result under (1.6) parallels the one solved for the Bellman-Harris process in
[4]. For an alternative proof and further results see [15].



A MARTINGALE APPROACH TO BRANCHING PROCESSES 1181

The key idea of the approach rests upon the identification of a martingale
derived from a (weakly) convergent subsequence of the process to be shown to
converge. In the case (1.6) our proof seems simpler than those given in [4] and [5]
for the less complex model of a Bellman-Harris process.

2. Outline of the proof. Suppose that {X,} with ¢ € [0, o) is a random
process that we would like to show to converge in probability or a.s. Assume that
X, is #,-measurable for some nondecreasing o fields { #,} and that we can choose
x and {tn} with lim,, ¢, = o such that lim,_, P(X, <x)=7v, 0 <y<]1,
and 7, = hmn_,ooP(Xt < x|%,) as. exists for all £. Then {n,} is a martingale. If
the limit of {7,} is identified to be 1 A, for some event A,, where 1, denotes the
indicator function of A ., then we shall prove that lim, _, ooP({X ¢ x}AAx)

A being the symbol of symmetrlc difference of two sets. Such a property for every
x and {¢,} entails convergence in probability for { X,}.

Assuming that 1, is the as. limit of {n,}, the martingale property of {n,}
yields lim,_, 1., .5 = 1, as. for any constant § with 0 < § < 1, whereas if we
show that for any x P(hmsupt_,oo{nt > 8)A{X, < x}) = 0, then hmt_,wl{Xl <x) =
1, a.s., which turns out to imply a.s. convergence for {X ,}

In the case under discussion X, = C Xt)Z} and {X, } is chosen to converge in
distribution to a nondegenerate hmlt F. We also show that

(2.1) n,=Pl Y W;e“(”f‘_‘)sxe“‘|ﬂn) a.s.,
jest

where {W)} are i.i.d. copies of a random variable distributed according to F and
independent of /5, #(¢) is the set of individuals to be born after ¢ whose
mothers are born before or at ¢, and o; is the birth time of the ith individual of
#(t). Thus, proving convergence in probability or a.s. convergence will boil down
to dealing with (2.1) as ¢ — oo, and this, in turn, will involve the limit properties
of ¥ic sne %9 and X, ¢ s he” *W,.

3. A key martingale. The results to be further derived rely heavily on the
following:

THEOREM 3.1. Suppose that { X,} is a random process with t € [0, »0), X, is
F-measurable, and F, C %, for t < s. Assume further that there exists a real x
and a sequence {t,} with lim, , t, = oo such that lim,_, P(X, <x|#)=n,

(say) a.s. exists for any t € [0, 0). Then

(i) {m,} is a martingale with respect to {%,};
(i) i lim,_ n,= 1, a.s. for some event A, then hmn_,ooP({Xt x}AA) =
and 1, = P(A|#,) a.s. for any t € [0, ).

. PROOF. Choose ¢, > s> t>0. Then %, C % in conjunction with an ele-
mentary property of conditional expectations yields

(3.1) E[P(X, <x|%,)|%] = P(X, <x|%,) as.
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Taking n — oo in (3.1) gives
(3.2) E(n,)%#,)=m, as.fors>t
and (i) is proved.

To prove (ii) notice that lim,_, . n, = 1, a.s. implies
(3.3) lim n,dP = P(A)

t— o0 Y(n,>8)

for any constant § with 0 < § < 1.

On the other hand

f nth=f lim P(X, < x|%,)dP
( (

n,>8} n,>8)}n—> 0

(3.4)

lim P(X, < x|%,)dP

n—0 Y{n,>8}

lim P({X,ﬂ <z} n{n,>8}).

Further, lim, _, .1, .4 = 1, as., (3.3), and (3.4) together yield
lim lim P({X,n <x}n{n,>8})

t—> o0 n—o0

= lim P({X, <x} nA)=P(A).

n— oo

(3.5)

Since {n,} is a martingale, E(n,) = lim,_, ,P(X, < x)= P(A) which combined
with (3.5) leads to lim,, _, , P(X, x}AA) = 0. The latter equality is easily seen
to be equivalent with the convergence in probability of {1y, .} to 1, as
n — oo, and invoking now the dominated convergence theorem for condltlonal
expectations we get
lim P(X, <x|%)= lim E(1x, _,|%)=E1,|%)=P(AlZ%) as.

n— oo n

n— oo

Thus 7, = P(A|#,) a.s. and the proof is complete. O

We shall next identify {n,} in the case of a (CMJ) process. We need consider
two conditions on {Z}}.

ConbpITION 3.1. The random process {e~*Z} converges weakly to a limit F
with F(0) < 1.

ConDITION 3.2. There are some constants {C(t,)} with lim,_ C(¢,) = o
such that {C~'(¢,)Z} } converges weakly to a limit F' with F(0) < 1, {(Z})~ AN
converges in probability to e*® as t > o0 on {T, > o} for any s > 0, and
{C~(¢t,)9(t,)} converges in probability to 0 as n — co.

PROPOSITION 3.1. Suppose that either Condition 3.1 or Condition 3.2 holds,
and write 1, = lim P(e~*°Z¢ < x|y, if Condition 3.1 holds or n,=

§— 0
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lim, P(C™X(t,)Z} < x|y, if Condition 3.2 holds, x being a continuity point
of F. Then the limit defmmg n, exists a.s. with

(3.6) n, = P( Y We o< x|J2€T) a.s.,

JEHL(L)
where #(t) is the set of individuals to be born after t whose mothers are born
before or at t, o; the birth time of the jth individual of #(t), and {W;} some i.i.d.
copies of a random variable distributed according to F and independent of ;.

REMARK. The formula (3.6) follows from a convergence in distribution prop-
erty, and {W} are any iid. random variables with distribution function F,
independent of . We can always extend, if necessary, the initial probability
space on which {Z"’} is defined to make it accommodate such a sequence of
random variables. Thus, {¥;c 5,W;e”*” < x} may be considered an event in
(3.6).

PROOF. Let s>t >0 and notice that if { ;Zf} are iid. copies of {Z}},
independent of r,, then
P(e=z¢ < x|,

(3.7)

T,
=P Z e i(s o(t)) + Z e as(j) s—o, = xldT)
[ = JjeFA(L)

Notice now that Condition 1.1, in conjunction with the Markov inequality,
implies convergence in probability to 0 of {e~*%(¢)} as ¢ = oo, which shows that
Ylioe *¢;(s — o) has no contribution to (3.7) as s — oo.
Letting s — oo in (3.7) yields
lim P(e™*Z¢ < x|/ )
500 t
= lim P( Y e etsmo DL e " < x|.sz¢Tl) a.s.
§70 A\ jes(t)

=P( Y VVje‘“Jsxpszl) a.s.
jeF(t)

and (3.6) is proved under Condition 3.1.
The proof under Conditions 3.2 is similar and will be left to the reader. O

4. A functional equation. The variable ZJ can be expressed as

§o(t) )
(4~1) Z? = ¢0(t) + Z (i)Z?—am
i=1
where {;,Z?} is the ¢-counted process of i descendants initiated under the
assumption that i is born at 0. The processes { ;,Z?}, i = 1,2,... are independent
copies of {Z?}, independent of ¢, and &,,.
Denote by @ the Laplace transform of F.
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THEOREM 4.1. Suppose that either Condition 3.1 or Condition 3.2 holds.
Then
£(c0)
(4.2) o(u) = E[ @(ue_“”[ﬂ)].
=1

13

Proor. Suppose that Condition 3.1 holds. Then by (4.1)
§o()
(43) eTZp = e (t) + X e ZE e,
i=1
As we have noticed in the course of the proof of Proposition 3.1, {e”“¢(t)}
converges in probability to 0 as ¢t — oo, and (4.2) obtains on letting ¢ — oo in
E[exp(—ue *Z})].
The proof under Condition 3.2 is similar and will be omitted. O

COROLLARY 4.1. If either Condition 3.1 or Condition 3.2 holds, then F is a
proper distribution function, and F(0) = q, where q is the extinction probability
of {Z,}.

Proor. Letting © |0 and u 1 o in (4.2) yields
(4.5) F(0) = E[F¥*)(0)] and F(o0) = E[F¥)(c0)].

Further, F(0) < 1 and Fatou’s lemma applied to {exp(—ue™ *Z?)} imply F(c0) =
1 > F(0). However, in view of (4.5), both F(0) and F(c0) are solutions to the
equation s = f(s), where f(s)=X%_,P({(0) = n)s™ Since E(£(c0))> 1, by a
well-known result in the branching processes theory, s = f(s) has exactly one
solution ¢ in (0, 1). It follows that F(0) = g and F(c0) = 1, where q¢ was shown
(p- 140 of [11]) to be the extinction probability of {Z,}. O

Doney [8] proved that if (1.5) holds, then any nondegenerate solution to (4.2)
is absolutely continuous on (0, o), admits finite expectation, and is unique among
the distributions with a given expectation.

5. Convergence in probability for normed {Z?}. The object of this
section is to show that convergence in distribution for {e~*/Z?} implies conver-
gence in probability.

According to Theorem 4.1 and the already mentioned result by Doney [8],
{e™*Z?} may admit a nondegenerate limit distribution only if (1.5) holds. An
important ingredient in what follows is the martingale (Y,} with Y, = X, ;e ™"
identified by Nerman (Corollary 2.5 of [14]). We state next Nerman’s result for
further reference.

LEmMaA 5.1. {Y,} is a martingale with E(Y,)=1, and Y, = lim,_, Y, a.s.
exists. ’

We shall need the following result on weighted sums of independent random
variables.
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LEmMMA 5.2. Suppose that {W,} is a sequence of independent identically
distributed random variables, E(W)) < oo, and {c{™} are some nonnegative
constants with ¢ <1 for all n and i. If {C,} are some constants with
lim,_ C,= o and lim,_ C,'(c{”+ --- +c{”)=c for some c>0, then
{C, (W, + -+ +cYW,)} converges in probability to cE(W) as n — oo.

The proof of Lemma 5.2 can be carried out as in [13] (Theorem 1).
THEOREM 5.1. Suppose that {e~*“Z$} converges in distribution to a nonde-

generate limit F as t > oo. Then {e”*Z}} converges in probability to E(W)Y,,
as t - oo, where

E(W) = /(;wa(dx).

Proor. By Proposition 3.1

(52) 9= P( Y We < wat) = P(e‘“‘ Y We o< xWTt)

JEH() JES(t)
and applying Lemmas 5.2 and 5.1 to (5.2) yields
(5.3) im 7, = 1 pwy <. as.
t— o0

Further, Theorem 3.1(ii), in view of (5.3), applies and yields lim,_, ., P({e”*Z} <
x}IAME(W)Y, < x})=0 for any x > 0, which is tantamount to the convergence
in probability of {e”*Z}} to E(W)Y,, as t = c0. O

ANOTHER PROOF. The as. convergence of {Y,} to Y_  with E(Y,) < oo
suffices for the proof of Theorem 5.1, and may be seen to follow from Theorem
3.1(i) without any appeal to Lemma 5.1. Indeed, choose a subsequence of {Y,}, say
{Y, }, converging for a given w to a limit Y, where lim, , ¢, = c0. Combining
(5.2) and Lemma 5.2 yields lim, , ., = 1 gw)y, <z According to Theorem 3.1
(i), the martingale {,} converges as ¢ — oo for almost all w, which boils down to
(5.3). Hereafter the proof may be continued as before.

REMARKS. Nerman [14] has given some conditions on {¢(¢)} guaranteeing
convergence in probability of {e~*Z?} to E(W)Y,, as t > oo. To show that
P(Y, > 0) > 0 it suffices to produce one random characteristic process {¢(t)}
such that {e~*Z?} converges in distribution to a nondegenerate limit F. Such a
case is the ordinary Crump-Mode-Jagers process mentioned in the Introduction
(see Doney [8]). This argument was invoked by Nerman [14] and goes back to
Athreya and Kaplan [2] who used Athreya’s result of [1] when proving a.s.
convergence in the Bellman-Harris case. Asmussen and Hering [3] used a
different approach based on a Kesten-Stigum-type result (Chapter X, Theorem
4.1). For another proof see Jagers and Nerman [12]. In a remark at the end of
Section 6, we shall indicate yet another way of showing that P(Y,, > 0)=1—g¢q
> 0.
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6. Almost sure convergence for normed {Z}}. We shall identify a class of
random characteristic processes {¢(¢)} and norming constants {C(¢)} such that
{(CXt)Z¢) converges as. to a nondegenerate limit, under the assumption
E[ &(c0)log?&(0)] < 0. For the proof we shall need some results of [14] and [4].
The following proposition is due to Nerman [14] (see also [3] p. 375).

LEMMA 6.1. Let ¢,y be characteristics with sample functions which are
right-continuous and satisfy E(sup,e P(t)) < o and E(sup,e” 4(¢)) < o for
some 0 < B < a and suppose that p. () < co for some 0 <y < a. Then, on
{T, > o}

o0
- —— a.s. ast— oo.

zy mY

<)

¢
z _m

The following result is contained in Lemma 7 of [4]; see also [6].

LEMMA 6.2. Suppose that {c{™;i = 1,...,n} are some nonnegative constants
with ¢ < 1 for all n and i, and {W}} are independent and identically distrib-
uted random variables. Write S, = ¥* W, T, = ¥ ,c¢{"W,, and V,, = L c{™.
Assume that {V, /n;} converges to ¢ as k = oo with ¢ > 0, where {n,} is a
sequence of integers with lim,, , ,n, = o, and {S, /b,} converges in probability
to m as k — oo for some constants {b,} and m. Then (T, /b,} converges in
probability to cm as k — 0.

Lemma 6.2 expresses a result similar to Lemma 5.2, but unlike Lemma 5.2 it
may accommodate the case E(W) = oo which appears when E[ {(o0)logy{(o0)]
= 00. As in [4] we shall define the norming constants {C(¢)} to be the y quantiles
of {Z?}, i.e., C(t) is the positive integer with the property

(6.1) P(Z¢ <C(t)) <y <P(Z¢ <C(t)+1)

with y € (g, 1), q being the extinction probability of {Z,}.
The following results are the objects of this section.

THEOREM 6.1. Let {¢(¢)} be a right-continuous random characteristic pro-
cess with E(sup,e Pp(¢)) < oo for some 0 < B < a and p(oo0) < . Then, with
C(¢t) defined by (6.1), lim,_, C Y (¢)Z¢ = W a.s., where W is a nondegenerate
random variable. If F denotes the distribution function of W, then F is continu-
ous on (0,0), F(0)=gq, and ®, the Laplace transform of F, satisfies the
function equation

£(o0)
O(u) = E[ I d)(ue_““l‘l)}.
i=1
Before giving the next result we need consider the notion of slow variation: A
function L will be said to be slowly varying if lim, _, ., L(8x)/L(x) =1 for any
§>0.
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THEOREM 6.2. Suppose that the assumptions of Theorem 6.1 are satisfied.
Then L(x)= [§ P(W > u)du is a slowly varying function, E(W") < o for
u <1andC(t) ~ e*L(e*).

We need more lemmas for the proofs. It will be convenient to work first with a
truncated ¢, i.e., to assume that

(6.2) ¢(¢) =0 for ¢t > some v > 0.

Throughout this section we shall assume that the conditions of Theorem 6.1 are
in force.

LEMMA 6.3. Suppose that (6.2) holds. Then, on {T, » oo},

limt_,oo(Z;")_IZ;‘;s =e* a.s. foranys > 0.

Proor. Take y(¢) = ¢(¢ — s) and apply Lemma 6.1 to ¢ and . O

LEMMA 6.4. Suppose that (6.2) holds and choose any weakly convergent
subsequence of {C~(t)Z}}, say {(C~X(t,)Z})}, with lim, , t, = oo. If F denotes
the lzmzt distribution of {C~ (¢, )Z"’} then F is a proper distribution and
F(0) =

ProOF. Notice that (6.2) makes the convergence of {C~(¢)¢(¢)} to 0 as
t — oo obvious. Thus in view of Lemma 6.3, Condition 3.2 is satisfied and the
result stated now follows on applying Theorem 4.1 and Corollary 4.2. O

LEMMA 6.5. F is continuous on (0, o).

Proor. It follows from Proposition 3.1 as in the proof of Lemma 2 of [4] by
noticing that the concentration function of such sums of independent random
variables tends to 0 as £ = 0. For an alternative proof see [15]. O

PROOF OoF THEOREM 6.1.

STEP 1. In the light of Lemma 6.1 it suffices to prove the theorem for
{C~Y(¢)N,}, where N, is the cardinality of #(¢). Indeed, if &(t) is the truncate of
¢(t) that satisfies (6.2), then Lemma 6.1 implies the existence of a constant k
with 0 < & < co such that lim,_, _ Z{ /Z“’ =k as. on T, - oo. Thus, a.s. conver-
gence for {C~ 1(t)Z"’} would imply a.s. convergence for {C~Y(#)Z})}. Since the
limit variable of {C~'(¢)Z, “’} or converging subsequence thereof differs from the
corresponding one of {C~'(¢)Z?} only by a multiplicative constant, the previous
lemmas apply to ¢ as well. This reasoning may also be used to show that it
suffices to prove the theorem for a particular ¢ satisfying the conditions of
Lemma 6.1. It will be convenient to take ¢(¢) = £&(c0) — &(¢), in which case
Z? = N,.
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STEP 2. Suppose now and hereafter that a sequence {¢,} satisfying the
condition of Lemma 6.4 is chosen and kept fixed, and W is a random variable
distributed according to F, which until proven otherwise depends on {¢,}. Then
we shall see that from any sequence {u,} with lim, _,  ©, = co one can extract a
subsequence {u,} such that
(6.3) G(y)= lim Ple ™ ) W,<«x

n—oo ;

Jj=1

[C(uy)y] )

exists for all x and y nonnegative, {G(y)} are nondegenerate distributions for
any y > 0, and lim ,_, ;G,(y) = 1 for any x > 0.
To prove this we shall start off, as before, with the martingale

(6.4) n, = P(e“” Y We o9 x|MT[) a.s.

jest)
Notice that if we take ¢(¢)= £&(0) — &(2), yielding Z? = N, and () =
e®t[° e~ *¢(ds), yielding Z} = X . 4, e~ %", then by Lemma 6.1

Z e A(t e_a(o’_t)
6.5 lim —=22
(6.5) Jim N,
on {T, - oo}, where & is a constant with 0 < £ < 1. Choose now a constant u
with 0 <u <k and let T, = {j € #(¢): e %9 > u} and B, be the number of
elements in I',. Then

=k a.s.

(6.6) Y We *ir>u ) W,
JEHA(t) JET,
It is easy to see that X, . 5, e %™ < u(N, — B,) + B,, so that
Nk, — u)
6.7 >—,
(67) N

where k, = X, c 4, e “*"9/N,. By (6.5) lim,_, , k, = k as. on {T, » oo}, which
in conjunction with (6.7) implies that lim, , 1.4 - gn,) = 1(1,- ) @8, Where B is
a constant and 0 < B8 < (k — u)/(1 — w). Further (6.4), (6.6), and (6.7) entail

BN,
e ) W< u“xlﬂn) as.on {B,> BN,}.

J=1 .

(6.8) n, <P

On the other hand, e %~ 9 < 1 implies

(6.9) n,>P

N,
ey W< x|MTt) a.s.

Jj=1
It is easy to see that (6.8) leads to
(6.10)

[BC(uy)y]

Mg <Ple ™ 3} W< u_lx) as.on {N,, > C(u,)y} N{B,, > BN, }

J=1
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and (6.9) gives

[C(up)y]
(6.11) Ny, = P(e_‘““' X W< x) as.on {N,, < C(u})y},

Jj=1

where {u/} may be any sequence, but in what follows will be assumed to be a
subsequence of {u,}.

Since E(n,) = F(x), by Lemma 6.4 {u,} can be chosen such that {C‘l(u;,)Nu;}
converges in distribution to a nondegenerate limit, (6.10) and (6.11) boil down to
the existence of a subsequence of {1/}, denoted also {u/}, such that

[Clup)xn]
(6.12) G(y)= lim Ple ™ ) W< x)

exists for a certain y, and all x,G(y,) being a nondegenerate vague limit. Since
{(W,} are i.i.d. we deduce that {G,(y)} exists for all x and y nonnegative. If we
notice that F(x) = E(n,) may be made as close as desired to 1 by choosing x
large enough, and take (6.10) into account, we deduce that lim, ,  G.(y) = 1 for
any y > 0. Thus G(y) are proper distributions and since by a classical result they
are infinitely divisible, it follows that lim,_, , G.(y) = 1 for any x > 0.

Step 3. Write 1, = lim,_ 7, as. We next prove that 5, is not as.
constant on {T, — o }. Indeed, choose a subsequence of {¢,}, say {¢,}, for which
G.(y), defined with {¢,} replacing {u,}, exists. Since lim, _, ., P(N,, < C(%;)y) =
F(y) and by Step 2, lim, _, ,G,(y) = 1 we may invoke (6.11) for {¢;, } to claim that
P(n, > 1 —¢) > q for any ¢ > 0 provided that we prove that inf{x: F(x) > g}
= 0. Such a property in conjunction with E(n,) = F(x) < 1 would lead to the
existence of a constant § and a set A with 1, =lim, 1, ., as. where
g < P(A) <1, proving Step 3. To complete the proof write m(X) =
inf{x: F(x) > F(0)} for a nonnegative random variable X with distribution
function F which may have an atom at 0. If X and Y are independent variables
of this kind, then m(X + Y) < m(X)m(Y) and m(XY) = m(X)m(Y), whereas
if H(x,w) is a variant of P(X < x|%/), & being an arbitrary o field, them
m(X) = essinf inf {x: H(x,w)> F(0)}. Using these properties in (3.6) we get
m(W) < m(W)Y, as. on {Y, > 0}. Then, if g = 0 m(W) = 0 follows from E(Y,)
= 1 and the fact that {Y,} being not a.s. constant must admit values smaller than
1 with positive probability. If ¢ > 0 we get m(W) < e”**m(W) a.s. for any
i € #(t) and m(W) = 0 obtains in either case.

STEP 4. We shall show that there exists an event A, such that n,, = 1, as.
Indeed, choose x’ and y’ such that G,-.(By’) = 8 for the 8 defined in Step 3,
and take (6.10) into account to conclude that A defined in Step 3 has the
property -

(6.13) I, < lliminf,,_.w(NynSc(t;,)y'} a.s.

If we write 7, = lim,_, , P(N, < C(t,,)y'|#,) as. and take the martingale
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convergence theorem into account we get from (6.13) that hmn_,wn, >1, as.
and (6.10) leads to the conclusion that there must be some x and y with
G.(y)=1. We notice that G,(y) considered here, unlike in Step 3, is not
restricted to the case {u}} = {¢,}. Indeed, since {}} is a martingale we get
lim,  m,, > 1, as. as a consequence, and (6.10) may be applied to {u,}; thus
(e z[€<“ YIW} turns out to converge in distribution to a limit distribution
with bounded support. According to a well-known result for infinitely divisible
distributions (see, e.g., [9], p. 177) such a limit must be degenerate. Thus we can
assume that for some y > 0

[C(up)y]
(6.14) {e“"’“- y W;} —pCy asn — oo,

where ¢ is a constant and — , denotes convergence in probability. Since {W,}
are i.i.d., (6.14) must hold for any y > 0.

Notice further that (6.14), (6.5), and Lemma 6.2 imply that for any constants &
and nwith e>0and 0 <y <1

(6.15) {N,, < C(up)k™ e Y(x — )} \(n,, > n}io. cT
and
(6.16) {N,, > C(u)k™ e Y(x + )} \(n,, <n}io. CT,

where A\ B denotes the difference of sets A and B and I is the set of
probability 0 on which (6.5) fails. Since 7 is arbitrary, (6.15) and (6.16) boil down
to

(6.17) {N,, < C(u)k™ e Y(x — )} \(n, =1} i0. c T
and
(6.18) {N,, > C(uj)k™ e Y(x + €)} \(n,, = 0} i.o. C T.

Since by Lemma 6.4 the limit distribution of {C~'(u/,)N,, .} 1s continuous we
deduce that n,, = 1, a.o. for some event A .

STEP 5. Next we shall prove that

[C(t)y]
{e‘“‘ Y Vlﬁ} —pk™ly ast - oo.

j=1

Indeed, if we write F” for the limit distribution of {C~'(u,)N,, .} then (6.17) and
(6.18) lead to F(x) = F’(k~'c™'). Since F is continuous and the y in (6.1) is at
our disposal we can argue as in the proof of Lemma 3 of [4] to get that for some
Y, (F(1)— F(1 — e))(F(1 + &) — F(1)) > 0 for all ¢ > 0. Because (6.1) implies
F(1) = lim,_, (N, < C(t)) we get F(1) = F’(k~ ¢~ !) which entails ¢ = 2. Thus
¢ does not depend on the choice of {u/} and since {u)} was extracted from an
arbltrary sequence {u,} with lim, , u, = oo we get (6.19).

(6.19)

STEP 6. We are now in a position to finish the proof by showing that
{C™Y(t)N,} converges as. as t - co. Indeed, having established (6.19) we may
remove k¢! from (6.17) and (6.18) and let ¢ » 0 to deduce that
limn_,ool(cw.(u"wu"sx} =1, -1y for w&T and any sequence {u,} with
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lim u, = oo. Because I' does not depend on the choice of {u,} we conclude

n — oo n

that lim,_, . 1c 1N, <z) = L -1y for @ & I', which is tantamount with as.
convergence for {C~'(¢)N,}. O

The proof of Theorem 6.2 may be carried out as in [4] or [15] and will be
omitted.

REMARK. If Theorem 6.1 is applied to the case E[ £(o00)log&(00)] < oo, then
Theorem 4.1 in conjunction with Theorem A of Doney [8] on the solution to (1.4)
yields E(W) < 0. In this case C(¢) ~ e* follows from (6.19). In particular, if we
choose ¢(t) = e*[ e~ *¢(ds), then e “Z} = Y, and Corollary 4.1 implies P(Y,
> 0) = 1 — gq, the result referred to in the remark following the proof of Theorem
5.1.
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