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A PROCESS IN A RANDOMLY FLUCTUATING ENVIRONMENT

BY NEAL MADRAS
New York University

For every integer x, construct a stationary continuous-time Markov pro-
cess y(x;t), with state space {—1, +1} (all processes independent, and
having the same distributions). Consider a particle moving at unit speed along
the real line, with its direction completely determined by the y'’s, as follows:
if S, is its position at time ¢, then §,=0 and S,,, =S, + ¥(S;; i) for
it =0,1,2,.... The increments are not stationary, nor is S, Markov, yet this
process has much in common with the classical random walk, including
zero-one laws, a strong law of large numbers, and an invariance principle. The
main result of the paper is the proof of the natural conjecture that the process
is recurrent if and only if P{y(0;0) = +1} = ;. We also show how the FKG
inequality can be used to investigate this process.

1. Introduction and summary. Let {y(¢), ¢ = 0} be a stationary two-state
continuous-time Markov process on the state space { —1, +1}, with transition
probability matrix

(1.1) p——l,——l(t) p—1,+1(t)}= [q + prt P_prt}
p+1,—1(t) p+1,+1(t) q_qrt p+qrt ’
where

(1.2) p=8/(B+8), q=8/(B+8), and r=e B+

(B and & are positive parameters in this model.) By stationarity, {y(0) = +1} has
probability p. On a probability space (2, %, P), construct a family of indepen-
dent copies of y(¢), indexed by x € Z; call these processes y(x; ¢). Now, think of
a particle moving along the real line at unit speed, starting at time ¢ = 0, from
position x = 0. Its speed remains constant, but its direction is determined by the
¥(x; t) processes, as follows: If y(0;0) = +1, then the particle begins by moving
to the right; if y(0;0) = —1, then it moves to the left. The direction does not
change at nonintegral times. In general, if the particle is at position x’ (€ Z) at
time ¢ (where ¢ is an integer), then it moves in the y(x’; t) direction.

Explicitly, let S, be the position of the particle at time ¢ > 0; let X, = S, —
S,_,. We define

S, =0,
(1.3) X, =v(S; i), i=0,1,2,...,
S,=8+(t—i)X; 1, i<t<it+l

We remark here that the process may be easily generalized so that S, takes
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120 N. MADRAS

values in Z% in this case, the state space of y is a subset of Z%. This general
model will be discussed only in Sections 2 and 3. We will refer to the process in
which X, € {—1, +1} as the “simple model.”

The process {S,} is not Markovian, nor are the increments {X,} stationary.
However, it turns out that { X} is asymptotically stationary, and {S,} has many
of the properties of classical random walks. For example, in Section 2 it will be
shown that the following are equivalent: P{S, = 0 for some n > 0} = 1; S, visits
every point infinitely often, a.s.; and E(card{n: S, = 0}) = co. We say that S, is
recurrent if these properties hold; otherwise, we say that S, is transient. In
Section 3, we use a convergence theorem of Norman (1968) to show that {X,} is
exponentially ¢ mixing, which helps us to prove a zero-one law, a strong law of
large numbers, and an invariance principle.

Section 4 presents the main result of the paper: the criterion for recurrence in
the simple model. The result is exactly what one would naively guess: The
process is recurrent if and only.if 8 = 8. However, no simple proof of this is
known. The proof given here uses coupling and relies heavily upon the one-
dimensional nearest-neighbor feature.

Finally, Section 5 presents another tool for investigating the simple model: the
correlation inequality of Fortuin, Kasteleyn, and Ginibre (FKG) (1971). We use it
to prove the following result, which is well known for classical simple random
walk: lim,, _, S, = + o if and only if E(7) < + oo, where 7, = inf{n: S, = 1} is
the first hitting time of the point 1. We also use it in the case 8 = § to derive a
bound for probabilities associated with the Gambler’s Ruin Problem in terms of
the corresponding classical probabilities.

2. Some basic properties. Let E be a finite subset of Z¢ such that the
additive semigroup generated by E is all of Z% Let y(¢) be an irreducible
stationary continuous-time Markov process with state space E. For a, b € E and
©t>0,let p,y(t) = P{y(t) = bly(0) = a} and p, = P{y(0) = b}. It is well known
that there exists a constant r < 1 for this process such that

(2.1) |Pas(t) — Dyl <r* foralla,be E, t>0.

Let {y(x; t): x € Z¢} be i.i.d. copies of y(¢) on a probability space (2, #, P).
We define {S{=T): t > T}, the path of a particle starting from position z € Z¢ at
time T € N (let N = {1,2,...} and Ny, = N U {0}):

S =2

(2.2)
S&D = 8D +y(8=1;i), i=T,T+1,....

(We write S, = S/*® and X, = S; — S;_,.) Observe that the sequences {(S{;7’ —
z): n >0} and {S,: n > 0} have the same distributions. By construction, these
processes coalesce: i.e., if S{»T) = S for some u > T, then S/ = ST for
all t > u.

We define a walk W to be a finite sequence of points in Z9, W=
(wy, Wy, -« -, W,), such that wy=0and w, — w;,_, € E fori=1,2,...,n. W will
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also denote the event {S; = w,,...,S,=w,}. If V= (v,,...,v,) is a second
walk, we define a third walk V* W = (v,,..., v, 0, + wy,..., v, + w,).
Let AW, = w; — w;_,, and T(k, W) = sup{j: j <k, w; = w,} (as usual, the

sup of the empty set is — o). The probability of W = (w,...,w,) is computed
as follows:

P(W)=[]P(X,=AW|X,= AW, j=1,...,i— 1}
i=1

(2.3) P{Y(wi~1; i—-1)= AVViW(wi—l; TG -1, W)) = AWT(i—l,W)+1}

=11

=1
= l—llpAWn,_l,wm»AW.(i -1-T(i-1,W)).

i
[To understand (2.3), look at this example for the simple model: P((0,1,0,1,2)) =
pa(p + qr®)(p — pr?)]

Although the process {S,} is obviously not Markovian, we can use the
following lemma to show that it shares many properties with classical random
walks and Markov chains.

LEMMA 2.1. There exist constants L and U (0 < L <1 < U < o), depend-
ing only on the transition probabilities of v, such that for any walks V and W we
have

LP(V)P(W) < P(V*W) < UP(V)P(W).
(Note that in the classical random walk, L = U = 1.)

Proor oF LEMMA 2.1. Let V= (v,...,v,) and W= (w,,...,w,) be two
* walks, and let J = V* W. Notice that
(i) T(k,J)=T(k,V) if k<m; and
(2.4) (ii)) T(k,J) —m=T(k—m,W) ifk>m and
either T(k,J)= —c0 or T(k—m,W)+# —co.

Expand P(V), P(W), and P(J) as products of conditional probabilities, as in
(2.3). By (2.4)(1),

P(J) n

(2.5) .

PONB(W) i %

1
where @, equals
pAJT(m+¢—I,J)+lvAJ (m+i_ 1- T(m+ i - 1, J))

m+1

pAWT(i*l.WHhA,W(i -1- T(l -1, W))

By (2.4)(ii), @, = lunless T(m + i —1,J)# —c0and T(i — 1, W) = — 0. [This
is the case where i — 1 is the first time that W hits x, but J hits x + v,, at some
time ¢t <m (ie, J,=dJ,, ;1 =%+ 0,).]
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So if @; # 1, then Q; is of the form p,,(¢(i))/p,, where #(i) > i and a, b € E.
Let M = max{p;': a € E}. Then by (2.2), |Q; — 1| < Mr*d < Mr’. So by (2.5),
the right-hand inequality of the lemma holds with U =TI1® (1 + Mr®). The
left-hand inequality is similar: We use the facts that @,>1— Mr’ and
inf{p,(t)/pPy: a, b€ E, t>1}>0.0

We use the notation ¢(C) to denote the sigma algebra generated by C, where
C is either a collection of sets or a collection of random variables. We define the
following sub-sigma algebras of % :

Z, =o({X,..., X,}), 54;=o( UZ),
n=1

0
F=o({X:k>n}),  F'=F.

We now define the shift operator 6 to be the set transformation 6: %, —» %,
satisfying

(26) 6A = {weQ:3w € Asuchthat,forallkeN, X, (v)=X,(w')}.

It is straightforward to extend Lemma 2.1 to

LeEMMA 2.2. Let 7 be a “stopping time” for S,; i.e., T is a random variable
taking values in {0,1,2,...,00} such that {r<n} € %, Let # ={Be %,
Bn{r=n} €%, for every n}. If (BN {t= +o})=0, then for A € Z,
and B € %,

LP(B)P(A) < P(Bn 67A) < UP(B)P(A).

For x € 79, define ©, = {w € ©: S(w) = x for infinitely many n}. Let 7(x, i)
be the ith smallest integer in {j > 0: S; = x} (or + o0, if this set has fewer than i
elements). For a set A, let |A| denote its cardinality.

PROPOSITION 2.3. The following are equivalent:

(@) P{7(0,1) < o0} =1;
(b) P(Q) > 0;

(© PU,c242))=1;

(d) PN, cz42,))=1;

(e) E(|{n: S, = 0}) = co.

Proor. (i) (a) implies (b): If (a) holds, then
P(r(0,n) < 00, 7(0,n +1) = 00} = P({r(0,n) < 00} N §7®™(7(0,1) = 0})

equals 0 by Lemma 2.2. Summing over all n gives P(Q§) = 0.
(ii) (b) implies (c) by the zero-one law for %’ which will be proven in the next
section, independently of this proposition.
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(iii) (c) implies (d): For any e € E, inf{p,(¢): a € E, t > 1} > 0; it is then
easy tg see that P(Q,\ 2,..) = 0, and consequently P(2,AQ,) = 0 for every x,
yeZ°

(iv) (d) implies (e) is obvious.

(v) (e) implies (a): Assume P{7(0,1) < o0} < L. Then (d) can not hold, so the
above shows that P(f,) = 0. Hence for some m, P{7(0, m) < o0} < QU) L As
in (i), we can show '

(2.7) P((0,i+j) < o0} < UP{7(0,i) < )} P{7(0, j) < 0}.

Now, E(|{n: S, = 0}) = 1 + £, P{7(0, i) < oo}. This is a sum of nonincreasing
terms, so it is finite if and only if £2_, P{7(0, km) < oo} is finite. Using induction
on (2.7), we find

ki::lP{T(O’ km) < w0} < 1§1 U+ P{7(0, m) < oo}k

U-'27*
1

™8

<

;
I

< O

8

3. Ergodicity. In this section we show that P(6" - ) converges to a probabil-
ity measure P*(-), with respect to which {X,} is stationary and exponentially ¢
mixing. To this end, the following two paragraphs show how to apply a conver-
gence theorem of Norman (1968) to our model; the reader is advised to look at
the first two sections of Norman’s paper before continuing. (Alternatively, the
reader may skip directly to Proposition 3.1, since the intervening material is not
used in the sequel.)

Consider a process { = {{,: n € N} defined by = (X Xy 1y, X)) €
takes values in = = U®_,E", where E" = {(e,,...,€,): ¢; € E,i=1,...,n)} for
n > 1, and E° consists of the “empty string” (in our setting, it is the value of { at
time 0). We will use this notation: If u € E”, then u; =e; fori=1,...,n and
u;=A for i > n. We will view { as a (time-homogeneous) Markov process on
S =3 U EN, with “event operators” f(u) = (e, Uy, uy,...) foreach e € E, and
transition probabilities

(8.1) o (u) = P{§i+1 = f(w)l§; = u} = Pu,, AT),

where T = T(u) = min{k € N: u, + --- +u;, = 0} (T = o if no such k exists,
or if u € E°). Thus we can define the process ¢ starting from any §, € S.
Define the following metric on S:
d(u,u) =Y, r'o(u;,u}),
i=1
where 8(a, b) = 0 if a = b, and 1 otherwise. Then (S, d) is a compact metric
space. We will now check the rest of Norman’s conditions. Since ¢ (z) > 0 for
every u € S and e € E, conditions H8 and H9 are trivial; H7 is just as easy,
since d( f(u), fAu") = rd(u, u’) for every u,u’ € S, e € E. The only remaining
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condition to verify is H6:

(3.2) sup ———|¢e(zz; Zf§ w)| < o0

u#u

Let u and u’ be distinct elements of S; let n = min{k: u, # u},}. By (3.1), if
T(u) < n, then ¢ (u) = ¢p(); if not, then |¢p,(u) — ¢, (u")| < 2r". But d(u; u’) >
r”, so the left-hand side of (3.2) is dominated by 2; hence H6 holds. We can now
apply Norman’s Theorem 2.4, obtaining:

PROPOSITION 3.1. There exists a probability measure P* on (2, %), and
constants K < o, a < 1 such that: forallj>1, A € ¥, andn > 1:

(3.3) sup |P{8"A|¢, = u) — P*(A)| < Ka™.

ueS

In particular, convergence of P(6" - ) to P™(-) follows.

From (3.3) we easily conclude:
(i) P=(6 - )= P>(-); i.e., {X,)} is strictly stationary with respect to P>.
(i) P and P> are equlvalent measures on (2, £#,); in fact, LP* < P < UP*
(let B=Q and 7 = n in Lemma 2.2, and let n — o0).
(iii) P> is exponentially ¢ mixing; i.e., let
o(m) |[P*(B N C)— P*(B)P>(C)|
¢*(m) = sup P=(B) :

n>0, P°(B)>0,Be n,CeZl;m}

Then ¢*(m) < Ka™ for all m.

(iv) P (the law of the chain started from {, = empty string) is exponentially ¢
mixing: If ¢(m) is defined as above with P* replaced by P, then ¢(m) <
2Ka™.

(v) In particular: |cov(X,, X,,, ;)| < 2Ka™ for all m and k, when cov is the
covariance with respect to either P or P*.

(vi) Zero-one law: If C € #’, then P(C) is either 0 or 1.

(vii) S, is recurrent if d =1 and y is symmetric [ie., p, ,(t)=p_, _4(¢)].
(Proof: P{limS,= +o0} = P{limS, = —oo}; hence both must be 0 by
(vi). Since E is finite, (c) of Proposition 2.3 must hold.)

(viii) Strong law of large numbers: Let i = [o X (w)P*(dw). Then by Birkhoff’s
ergodic theorem (using (i), (ii), and (vi)), lim, _, . S,/n = ji a.s. [P*], hence
as. [P]. ]

REMARKS ON (viii). (a) If S, is recurrent, then i = 0.

(b) For A > 0, let ™ be the constant for {S*}, which is determmed as in
(1.3) by processes y[(.; -) with rescaled transition probabilities pAl (1) =
Pas(At) (e.g., in the s1mple model the parameters are S* = A8 and 8["] = Ad).
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Then it is not hard to prove that lim, _, A =X _ zap, (“classical limit”) and
lim, _ ,A™ = 0 (“frozen environment limit”). In particular, in the simple model,
A # p — q in general.

(ix) Invariance principle (d = 1): For each n, define the process W, (¢t) = (S,, —
ntji)/on'/2for 0 < t < 1, where ¢ is a positive constant defined in the lemma
below. Then as n — oo, W, converges in distribution to the standard Wiener
process in the space of continuous functions with the uniform topology. (This
holds for the law of W, induced by either P* or P.) This follows im-
mediately from Theorems 20.1 and 20.2 of Billingsley (1968), with the aid of
the following lemma.

LEMMA 3.2. Let V and V* denote variance with respect to P and P®,
respectively. Then there exists a constant o > 0 such that lim,,_, V*(S,)/n = o2

ProoF. By (v) above, it is obvious that

V(S V(S *
lim (n)=1im (n)=co+2Zci,

n— oo n n— oo n i=1

where ¢; = cov*(X,, X, ;) = lim,_, .cov(X,, X,,,). Thus we only need to show
that the right-hand side is not 0. Assume it is; then

n—1 00 n—1
Ve(S,)=nco+2 ) (n—i)e;=-2n) ¢, —2 ) ic
i=1 i=n i=1
which is bounded by (v). Hence E(|S, — nji|?) is bounded (where E is expecta-
tion with respect to P) by (ii); and this in turn dominates V(S,,).
Let p, = E(S,). Since V(S,) is a bounded sequence, there exists an integer %
such that

(3.4) P{|S, — p,| = k/3} <1/4 forall n.
By Minkowski’s inequality, since E(S{*?) = u, + &,

(Elsto - s,,|"’)l/2 < 2V(S,)"* + k.

The right-hand side is bounded, so liminf, _, . |S{**® — S,| < o a.. by Fatou’s
lemma. By an argument similar to (iii) in the proof of Proposition 2.3,
liminf, _, w|S,§k’°) - Snl = 0 a.s. (Note: if S, is periodic, we must exercise a bit of
care in choosing k.) These paths coalesce when they meet; i.e., there exists
a random N < oo such that S*® =8 for all n > N. Therefore,

lim,_ P{S{*?® = S,} = 1; but this yields a contradiction, because (3.4) implies
P(S{:0 =8} < P(|S{#® —(p, + k)| = k/30r IS, — p,| > k/3}
<3 ’ |

4. Proof of the main theorem. In this section we will restrict attention to
the simple model [i.e., y is described by (1.1) and (1.2)]. We will prove that
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A = (B, 8) is a strictly increasing (respectively, decreasing) function of 8 (respec-
tively, 8). In conjunction with (vii) and (viii) of Section 3, this will prove

THEOREM 4.1. S, is recurrent if and only if B = 4.

By symmetry, it suffices to prove the following: Fix 8 > B8’ > 0 and § >,0; then
(= p(B, 8)) > f'(= (B, 9)).

The proof uses two kinds of coupling. First, let L = {(2,¢) € Z X N
(2+t)/2€Z).1f(2,T)€ L, then S{*T) € L for all i > T. The nearest-neigh-
bor characteristic gives a useful coupling of these processes: If (y, T')is alsoin L,
and y <z, then ST < 8T for all ¢t> T. [If we regard these paths as
continuous curves in the (z, ¢) plane, by linear interpolation for nonintegral ¢,
then the coupling says that these paths do not cross one another; of course, paths
can coalesce.]

Second, we will construct a' coupled family of stationary Markov processes
¥'(x; t) with transition probabilities described by (1.1) and (1.2), with 8 replaced
by B’, and satisfying
(4.1) v (x;t) < y(x;¢) forall x and ¢.

Now define X/, S/, and S;* T as in (1.3) and (2.2), with y replaced by y’. It
follows from (4.1) and the preceding paragraph that for any (2, T) € L,

(4.2) ST < 8T foreveryn > T.

From (4.2), i’ < ji is obvious; it remains to prove that the inequality is strict.
This will be done in two steps, which we will now outline.

Step 1. lim,_ E(S, — S;) = + oo (Lemma 4.2). Idea: for a large integer V.
Then for sufficiently large N’, it is unlikely that S, — S; < V for all n < N’; and
once these processes get far apart, it can be shown that they remain far apart (in

expectation) at later times.

STeEP 2. We define a process S* which approximates S, from below. Let
S¢ = 0, and let S “run naturally” for a long (fixed) time N [ie., S} , = S} +
¥(S;¥; n) for 0 < n < N]. Then let S* take a step to the left at each unit of time,
for a random time 7, which is long enough to forget the past. Then let S*
continue to run naturally for another N time units; then it moves left for T, time
units, and so on. These random times have two key properties:

(a) if ¢[k]=(Ty+ N)+ -+ +(T, + N) for k>0, then {S};;— S¥r-1y:
k > 1} are i.i.d. random variables, with mean E(Sy) — E(T)); and

(b) as N — o, E(T,) remains bounded. If 8’ = §, then E(S{) =0, so by
Lemma 4.2, we can choose N so that E(Sy) — E(T,) > 0; then Theorem 4.1
follows from the classical law of large numbers and the fact that S} < S,. The
general proof is similar.

In both steps we will need to be able to say when we are sure that our
processes have forgotten the past. We will use an event I or I’, whose occurrence
ensures that the past and future are (conditionally) independent.
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We begin by constructing an explicit coupling of y and y’. For each x € Z, let
p'*) be a Poisson point process on the real line with intensity 8 + & (i.e.,
E|p™ N [s, t]] = (B + 8) - (¢t — s) for any real interval [s, t]). Define the random
sets p*), p§, and p§*) by assigning each point of p*) independently to one of
these sets with probabilities 8'/(B + 8), 8/(B8 + 8), and (8 — B')/(B + 8), re-
spectively; hence p{*), p§”, and p$§*) are independent Poisson processes with
intensities B, §, and (8 — B’), respectively. We construct all of these processes to
be independent on a single probability space (2, #, P). For t € R, x € Z, define

y(x;t) = { +1 ifsup{s < t: s € p®} is a point of p{® U p{*,
’ —1 otherwise,
. . ) . 3
yi(x; t) = { +1 if sup{s <t:se(pPuU p(2x))} is a point of p{,
—1 otherwise.

It is easy to check that y and y’ are stationary Markov processes having the
desired distributions and satisfying (4.1). Let F = {(—1, —1),(—1, +1),
(+1, +1)} and let n(x; £) = (Y'(x; t), ¥(x; t)). Then for each fixed x, n(x; -) is a
stationary F-valued Markov process. Let #(:) = P{n(0;0) = -} be the stationary
distribution of 7:

7((+1,+1)) = P(y'(0;0) = +1} = B'/(B’ + 8)
(4.3) 7((—1,-1)) = P{y(0;0) = -1} = 8/(B + §)
m((=1,+1)) =1-B'/(B +8) - 8/(B +9).

Let a, b€ R (a <b)and x € Z.Let A € o{y(x; t): t < a}. Then it is easy to
see from the construction that

(44) P{y(x;0)=+1]A N[e®Nn{t:a<t<b)+ ¢]} =B/(B+39)
= P{y(x; b) = +1}.

[Roughly speaking, any point of p*) landing in (a, b) cuts off the effect of any
earlier points of p®), and restarts y; thus, A is forgotten.] We need two
extensions of (4.4). In the following, f, g, and & are functions from Z into R such
that f(x) < g(x) < h(x) for all x € Z. Define

H=o{y(x;t):x€Z,t<f(x)}
HE=o({v(x;t):x€Z,t>g(x)}
g, =o{(fn{t: f(x)<t<g(x)}):xe z)

I(f,8)={weQ:foreachx €Z,p* n{t: f(x) <t<g(x)}+ o}

H,=ofn(x;t): x€Z,t<f(x)}

Hh=o{n(x;t):x€Z,t>h(x)}
I'(f,g,h)=1(g,h) n{w € Q: foreach x € Z,
[(5 U p52) N {t: f(x) < t<g(x)}] # )
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First extension. If C € 9, ; and C C I(f, g), then we have, as in (4.4), that
the conditional distribution of {v(x; g(x)): x € Z} given the event A N C is
simply the distribution of a collection of { —1, +1}-valued i.i.d. random variables
with P{y(x; g(x)) = +1} = B/(B + §). But this is just the unconditional distri-
bution of {y(x; g(x)): x € Z}. So, using the Markov property of y(x; -) we have

P{B|AN C} =P(B), for A€, Bex¥ and
Ce¥ ,withCclI(f,g).

[Visualize I( f, g) on the (x, t) plane: For each x, a point of p*) (or rather, of
{x} X p®) falls on the line segment {x} X ( f(x), g(x)). Thus the ys above the
curve t = g(x) have lost all memory of anything that happened below ¢ = f(x).]

(4.5)

Second extension. Let A € 9?}, and let x € Z. Then, using (4.4), we have
Py(x; h(x)) = —1I'(f,g, h) N A} = 8/(B + 5)
Ply'(x; h(x)) = +1I'(f,8, h) N A} = B'/(B' + 8);
so reasoning as before, we obtain from (4.3) that
(4.6) P{B|I'(f,g,h) NA} = P(B) forany B € #".
[Given that I'(f, g, h) occurs, the ys and y’s above the curve ¢ = h(x) are
stationary and independent of those below ¢ = f(x); i.e., the processes “restart”
at the curve ¢t = h(x).]
The following type of observation will hereafter be used frequently: since
IS{#T) — 2| <|T — ¢| for t > T, we have o{S{>T: t > T} c #/, where f(x)=
T + |x — z|. With this in mind, we proceed to the key lemma.

LEMMA 4.2. lim E(S, - 8S))= +oo.

ProorF. Choose M > 0; we will show that there exists an N’ such that
E(S,—S;)> M forall n > N'. Let J =112,(1 — e '®)® > 0, where a = (8’ +
0)/2. Choose an integer V > M /J. Define the random time o = o = min{n:
S, — S, = 2V}. Since inf{ P{n(x; 1) = a|n(x;0) = b}: a, b € F} > 0, it is easy to
see that o < o a.s. Choose N’ such that P{oc < N'} >1/2. Since S, — S, > 0,
we have

n k
(4.7) E(S,-8)=> Y X E((Sn - Sr:)l{o=k,s,;=j)11,,,,)
=V j=—k
where 1., is the indicator function of the event C, I, ; = I'( f;, &, hy;), and
fl(2) =k -1

hy;(2) = k + min{|z — j|, |z = (j + 2V)|}

&r(z)= (fk(z) + hkj(z))/2'

[See Figure 1. Observe that if {0 = &, S} = j} occurs, then the paths of S’and S
after time £ lie above the curve t = h, (x); and if I, ; also occurs, then S" and S
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d jr2v y/a

Fi1c. 1. The functions fy, & ;, and hy,, and the event {o = k, S = j}.

after time & will forget that {0 = k, S; = j} has happened.] Now, for any ; and
k,

P(Ik,j)
=TI [1 - exp{ = (B + 8)(iy(x) ~ £1(x))}]

1= exp{ = (8 + 8)(&4,(x) = £u(x))}]

(4.8) .
> xIE—IZ [1 - exp{—3(B + &)(min{jx — j|, |x —j — 2V|} + 1)}]

> [T[1 - exp{—a(lx —j|+ 1)}]2[1 —exp{ —a(jx —j - 2V| + 1)}]2-

xeZ

> dJ.

S;® and S*2V: are i ’+-measurable, and {0 = k, S; = j} € 4, so from
(4.6) it follows that the expectation term on the right side of (4.7) is

(4.9) E[(S¢*0 = §00)1 0y il ]

= E(SY+?b — §10-M)P(o = k, S} = j} P(I, ;).
Using the observation following (2.2), as well as (4.2), we obtain
E(SY**:0 —§0R) = E(2V + 8, ;) — E(S;_,)
> 2V.

(4.10)
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Now, combine (4.7), (4.9), (4.8), and (4.10) to get, for n > N/,
n k
E(S,—S.)> Y Y 2VP{o=Fk,S]=j}J
k=V j=—F
= 2VJP{o < n}
> M. ' O
Now we proceed to Step 2. Fix a large integer N (to be specified later). Define
the “independence indicator” function
1 if(pNn(sit—|z—x|<s<t})+¢
K(z,t,t;0)= foreachx=z—-N,...,z+ N,
0 otherwise.
Define ¢[0] = 0, Sy = 0, and recursively define
Sx =SS olkD - for ¢[k] <n < ¢[k] + N;
¢[k+1]=min{t € N: t> ¢[k] + N, K(Sg 4y n> 0[]+ N, t; 0) = 1};
S¥=8kmin—(n—¢[k]-N), for¢[k]+N<n<o¢[k+1].

We can think of ¢[% + 1] as the first time that S* can be allowed to run
naturally, with the assurance that the influence of {S;*: ¢[k] < ¢ < ¢[k] + N}
has been forgotten, as in (4.5) (and by extension, {S*: 0 < ¢ < ¢[k] + N} has
been forgotten). With this intuitive picture, the proof of the following lemma is a
straightforward but tedious exercise, which is omitted. (We will only check, in
passing, that P{¢[k] < o0} = 1))

LeEmMMA 4.3. Each of the following is an i.i.d. sequence {(¢p[k] — ¢[k — 1]):
: k S N}, and {(S(#*[k] - Stﬁ*[k—l]): k (S N}.

For arbitraryz € Z,t < t':
z+N

P(K(z,6,0)=0) < L P{(p0(s€R:t=|z=x|<s<1)) =)
N
= =Z_Nexp[—(ﬁ +8)(¢ =t +y)]

<2rl=t(1 — )71,
Therefore
(4.11) P(¢[1]-N>a} <2r(1-r)"" (aeN).
The left-hand side equals P{¢[k + 1] — (¢[k] + N) > a|¢[k] < oo}, so we know
that ¢[%] is finite a.s. for every k. (4.11) also implies

(4.12) E(s[1]-N)< ¥ 2r(1 — r) " =201 - 1)

a=0
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By Lemma 4.3 and the usual strong law of large numbers, lim,S},,/k =
E(Sy — (¢[1] = N)) and lim,¢[k]/k = E(¢[1]) as. [P], so lim,S¥,,/s[%]
= E(Sy — (¢[1] — N))/E(¢[1]) as. Since S, > S, it follows that

E(Sy-(¢[1] - N))
E(¢[1])

Now we can define an analogous process S;* which is always to the right of S,
and a sequence ¢'[ k], exactly as above except that S;* = S/*, + 1 for ¢'[k] + N
< n < ¢/[k + 1]; then we have, as in (4.12) and (4.13),

(4.13) B>

(4.14) E(¢[1]1-N)<2(1—r)"% wherer’ =e ¥*® and
E(S; +(¢[1] - N))

E(¢'[1])
Combining (4.13) and (4.15) and rearranging, i’ < ji will follow if

E(¢'[1] - N)+E(s[1] - N)%[[ll]] N E(SN)[E¢[1;¢—[15‘]¢'[1]}

(4.15) <

(4.16)
< E(Sy — S§)-

The left-hand side is a bounded function of N, by (4.12) and (4.14); so Lemma 4.2
implies that there exists an N satisfying (4.16), and we are done.

5. The FKG inequality, with applications. In this section we again re-
strict attention to the simple model. Let B be a finite subset of L = {(x,¢) €
Z XNy (x+t)/2 € Z}, and let I'y = o{y(x; ¢): (x,¢) € B}. For C C B, let C
also denote the event {y(x; £) = +1 for each (x,¢) € C, and y(x; t) = —1 for
each (x,¢) € B\ C}. Then P is a probability measure on the lattice Ly of
subsets of B. As usual, we identify I'y-measurable random variables with func-
tions on L. A real-valued function & on the lattice Ly is called increasing
(respectively decreasing) if for every C, D € Ly such that C ¢ D we have
h(C) < h(D) [respectively, hA(C) > h(D)]. (We will sometimes suppress the
phrase “on Ly”, or decline to specify the precise set B.) To show that a function
is increasing, we would typically argue as in the proof of the following lemma.

LEMMA 5.1. If B is a subset of‘ L which contains L N ([—n, n] X [0, n)),
then S{9 is an increasing function on L.

PROOF. Clearly S®? is Tz-measurable. It suffices to show the following: If
(x,t) € B\ C, then S®9(C) < S©9(C"), where C' = C U {(x, ¢)}. If S®9(C)
# x, or if ¢ > n, then S@O(C) = S®9(C"). On the other hand, if S®(C) = x
and ¢ < n, then S@)(C)=x—1 and S$Y(C’) = x + 1. Now, using the fact
that S paths do not jump over one another (see beginning of Section 4), we
have that S'(lO,O)(C/) = S,(zx+1’t+1)(cl) = S'Ex+1, t+1)(C) > S)Sx—l, t+ 1)(C) = S,(l0,0)(C)’
as desired. O
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ProposITION 5.2 (FKG inequality). If f and g are both increasing functions
on Ly (for some finite B C L), then E(fg) > E(f)E(g).

Proor. This follows from Fortuin, Kasteleyn, and Ginibre (1971), once we
verify the “convexity condition”: For any C,D € Lgz, P(C N D)P(C U D) >
P(C)P(D). Since the processes y(x; ‘) are independent for different: x’s, it
suffices to check the special case where B C {0} X 2N,. In addition, for nota-
tional simplicity, we will assume B = {(0,0),(0,2),...,(0,T)} for some even
integer T.

For C C B, we can write

(5.1) P(C) = f+(0) l'I golini+2),

where f.(i) equals p if (0, i) € C and equals q if (0,7) € B\ C, and
p+qr? if {0} x{i,i+2}cC
8gcli,i+2)=(q+pr? if {0} x{i,i+ 2} c B\C
fo(i + 2)(1 — r?)  otherwise.

Now we proceed by inspection. First we see that f. . p(0)fcy p(0) = fc(0)fp(0).
Next,

(5.2) Eenpli, i+ 2)geupl(i, i +2) > goli, i + 2)gp(i, i + 2)

if (0,i)€ C\ D and (0,i + 2) € D\ C or vice versa. In all other cases, the two
sides of (5.2) are equal. Thus, using (5.1), the condition is verified. O

COROLLARY 5.3. Let W= (w,y,...,w,) be a walk such that
(5.3) w, > w; foreachi=0,1,...,n—1.

Let @ be an increasing function on L, where B is a finite subset of L N {(x, t):
t > n}. Then E(Q|W) > E(Q).

ProoF. Let v = min{w,,...,w,}, AW,=w,— w;_,, and ¢ty (x)= max{;:
w; = x}. Then (5.3) implies AW, ., = +1foreach x =v,v+ 1,...,w,_ ;. So
Wc W, where W = {y(x; ty(x))= +1 for each x=v,0+1,...,w, — 1}.
Moreover, the Markov property of the processes y(x; -) implies that E(Q|W) =
E(Q|W'’). 1, (the indicator function of W’) and @ are both increasing functions,
so, by Proposition 5.2, E(Qly,) > E(Q)E(1y,). Equivalently, E(Q|W’) = E(Q).
The lemma follows, since E(Q|W) = E(Q|W’). O

We are now in a position to reap some benefits from-the FKG inequality. Our
focus will be on first hitting times of points, which enables us to take advan-
tage of Corollary 5.3. For (x,T)€ L and y € Z, define (™ = min{i > T:
ST = y). Let T, = 7;0’0).

PROPOSITION 5.4. Suppose B > 8. Then, for positive integers x and Yy,
E(7.,,) < E(1,) + E(7).

ty
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Proor. We decompose the event {7, ,, > k} according to the path of S, up to
its first visit to x (we know that 7, is finite almost surely, by results of previous
sections):

(5.4) P{r,, >k} =Y ‘v;VP({TW >k} NW),

where the outer sum is over all integers n, and the inner sum is over all walks W
of length n such that w, = x and w; < x for each i < n. Now

P({r,, 2k} " W) =P({r&" 2k} n W) < P{5" > R} P(W)

by Corollary 5.3, since W satisfies (5.3), and since the indicator function of
{fr}i’y'” > k} is a decreasing function (on Lz, where B = L N ([ —k, k] X [n, k])).
We substitute this into (5.4):

P(n1y 2 k) s DP(d3 2 B} LPW) = TP{1, > k= n)P(r, = n}.

Thus, if 7/ is a random variable with the same distribution as 7,, but indepen-
dent of 7,, then we have

(5.5) P{r,,, >k} < P{r,+ 1> k}.

Summing over all £ =1,2,... in (5.5) gives E(7,,,) < E(7, + 7/). The proposi-
tion follows. O

THEOREM 5.5. E(m,)) < oo if and only if B > 4.

Proor. We divide the proof into three cases.

@) B<é6:lim,, S,= — as., so P{r, = w0} > 0 by Proposition 2.3.

(i) B = &: By (viii) of section 3, lim,, , (S, /7,) = 0; therefore lim,, _, . (7,/n) =
+ o0 a.s. By Fatou’s lemma, lim,_,  E(7,/n)= +oc0. But E(7,) < nE(r)
for all n > 1, by Proposition 5.4; hence E(7) = + cc.

(iii) B > &: For each integer x, let N(x)=|{n>0: S, =x}|. 7, < X, _N(x), so
it suffices to show that X, _,E(N(x)) is finite. Lemma 2.2 tells us that
P{N(x)=n} < UP{1, < 0 }P{N(0) = n} for any n; so it suffices to show
that ¥, _,P{7, < 0} < o0, by Proposition 2.3(e). Since lim, S, = + o

~ a.s., there exists an integer z < 0 such that P{r, < oo} < (2U)"}; the proof
now is analogous to (v) of Proposition 2.3. O

The last part of this section is devoted to a particular case of the Gambler’s
Ruin Problem for the process S, (Theorem 5.7). We introduce the notation
Pla, b]= P{r, <} fora,be Z.

LEMMA 5.6. Fix integers x, y, and z such that x < 0 <y < z. Then

P{Ty<Tx and Tx<Tz}SP[y’x]P[x—y;z_y].
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REMARK. An application of Lemma 2.2 will prove that
LP[y,x]P[x~y,z~y] < P{r, <t and 7, <1}
< UP[y,x]P[x - y,2-y].
ProOF oF LEMMA 5.6. Let @ be the indicator function of the event R =
(1™ < 7" 12" < m} (for some fixed integers m > n > 0). Then
P(RN({r, <1, 1,=n})= LE(QW)P(W),
w
where the sum is over all walks W of length n such that w, =y and x < w; <y

for all i < n. Since @ is a decreasing function, we can apply Corollary 5.3, to get
E(Q|W) < E(Q). Therefore

P(RN{r,<m,m,=n}) < P(R)%P(W)
' — P(R)P(r, <1, 1,=n).

Let m — o in the above inequality; then P(R) converges to P[x — y, z — y], so
summing on n proves the lemma. O

THEOREM 5.7. Suppose B = 8. For any nonzero integer c, and any positive
integer k,

P - —_—
w1 < Pllke), —cl < 7575
(Note that the left-hand side is the exact value for the classical simple symmetric
random walk.)

PrROOF. By symmetry, we may assume that ¢ > 0. We begin by proving the
following: For any positive integers ¢ and d, there exists a number A = A(c, d)
such that

5.6) Pld ] Pld, ~c] d L<A<1

. +c,—c]= <AL
( AT T AP[d, -] ™
To do this, we write P[d, —c]= P[d+ ¢, —c]+ P{ry;<7_, and 7_, < 745..}.
Now, let A = P{(r;<7__and 7_, <1, }/(Pld,—c]P[—c—d,c]). Then L <
A < 1 by Lemma 5.6 and its accompanying remark. Now rearrange terms and use
P[—c — d, c] = P[d + ¢, —c] to obtain (5.6).

We will now prove the theorem by induction on k. Our inductive hypothesis
will be the following:

(5.7) P[ ke, —c] for some ©,.€ [ L,1].

1
(k+1)0,
For £ = 1, (5.7) holds with ®, = 1, by symmetry. Assume (5.7) for k. Let d equal
kc.in (5.6); upon substituting (5.7) into (5.6), we obtain P[(kc + ¢), —c] =
1/((k + 1)®, + A). Then (5.7) holds for £ + 1, with®,,, = (R + 1)0, + A)/(k
+ 2). Thus (5.7) holds for all & > 1, by induction. The theorem follows im-
mediately. O
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