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ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM
ALGEBRAIC EQUATION

By KaMB1Z FARAHMAND!
Chelsea College, University of London

There are many known asymptotic estimates of the expected number of
zeros of a polynomial of degree n with independent random coefficients, for
n — oo. The present paper provides an estimate of the expected number of
times that such a polynomial assumes the real value K, where K is not
necessarily zero. The coefficients are assumed to be normally distributed. It is
shown that the results are valid even for K — oc, as long as K = ()(\/17).

1. Introduction. Let

n—1
(1.1) P(x) = Y ax',

1=0
where a,, a;, a,,...,a,_, is a sequence of independent, normally distributed
random variables with mathematical expectation zero and variance unity; let
N(a, b) be the number of real roots of the algebraic equation P(x) = K in the
interval (a, b), where K is a constant independent of x, and multiple roots are
counted only once. Some years ago Kac ([4] and [5]) found that in the case of
K = 0, the mathematical expectation of the number of real roots, EN(— o0, x0),
is asymptotic to (2/7)log(n). We know from the work of [2] that if the
coefficients a; (j = 0,1,2,..., n — 1) are independent identically distributed ran-
dom variables, belong to the domain of attraction of the normal law, and have
zero means and Prob(a; = 0) > 0, still we are able to get the same asymptotic
relation. Further in case of E(a;) # 0, they [3] proved that the asymptotic
formula is exactly half of the previous case.

In this work it is proved:

THEOREM. If the coefficients of (1.1) are independent, standard normal
random variables, then for any constant K such that (K ?2/n) tends to zero the
mathematical expectation of the number of real roots of the equation P(x) = K
satisfies,

EN(=1,1) ~ (1/7)log(n/K?),
EN(-o0,—1) = EN(1,0) ~ (27) 'log(n).

2. Proof of the theorem. First we use the expécted number of level cross-
ings ([1], page 285) for our special equation P(x) — K = 0. The covariance and
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NUMBER OF REAL ROOTS 703

correlation coefficient of P(x) and P’(x) are

n—1
y= Y ix%"' and p=v/(aB)"? respectively,
i=1

where
n—1 ) n—1 )
a= Yy x% and B= ) i%x%.
i=0 i=0

Then we have

EN(a, b) = fb(Al/z/a)¢(Ka_1/2)[2¢(Kya—l/zA_l/z)
(2.1) ¢
+Kya_1/2A'1/2{2(I)(Kya'1/2A'1/2) - 1}] dx,

where
A=af -y

Then since ®(x) =1 + (27) %erf(x) from (2.1) we can get the extended
Kac-Rice formula [6],

EN(a, b) = fa °[A2 /(e )exp(— BK 2/2A)

(2.2) +(|K|y\/—2'a‘3/2/7r)exp(—K2/2a)erf{|K|y/\/M}] dx
= be(x) dx.

Since a; and —a; (j=0,1,2,...,n — 1) both have the standard normal
distribution, EN(0,1) = EN(—1,0) and EN(1, ) = EN(— o0, —1).
Now we find the asymptotic relation for EN(0,1) as n — 0. Since

y={(n—-1)x**' — nx® 1 + x}(1 - x2)7?
=x(1-x2")(1- x“’)_2 - nx? (1 - x2)7!
for0 <x <1 - 1/n we have
y<x(1-2)(1-x?)77
)
v/(a¥?) < x(1 - x2) (1 - x2) VP <x(1 - =) V(1 — x2) V2,

On the other hand, for 1 — 1/m < x < 1 we have

n—1 ) n—1 )
y= Z ith—l < (n/x) Z x2!’
i=0 i=0
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so in this range of x and for all sufficiently large n,
V/(@¥?) < (n/2)(1 = £/ - 220) 7
<(n/x){1-(1- 1/n)2}1/2{1 - (1-1/n)"")
< (2nV%/2)(1 — e %) "2
Hence, since erf(x) < 1,

/ly|K|\/2_/(7ra3/2)exp(—K2/2a)erf{|K|y/\/2aA } dx
0

-1/2

< |K|(27) %1 - e_z)_l/zfol_l/nx(l — x2) 12
Xexp{ —K2%(1 — x2)/(1 —x?")} dx
(2.3)  +2(27) A KWn (1 — e 2)" " ?exp| —Kz/(2n)}flil/n(1/x)dx

<|K|27)” %0 - e—2)—l/"’f0‘“‘/"x(1 — x2) 2exp{ —K*(1 — x?)} dx

—2(27) AKVn (1 — e %) ?exp{ —K?/(2n) }log(1 — 1/n)
< (2/2) (1 — e 2) V2 + 4K |(27n) " *(1 — e72) " ?exp{ - K ?/(2n))}.
Also Kac ([4], page 318) obtained
A = {x* — 22D 4 2(n? — D)a?n — n22 D 4 1} /(22 - 1)°
24) = [(1 - 22?1 - nZ2 01 - 22)°(1 - x27) ] /(1 - x2)!

= {1 - A=)} @ - =)/ - 2%,
where
(2.5) h(x) = nx""}(1 - 2%)/(1 — x*"),
and since
26) ,B—E:le —{—nx (1 -x2)" - 2nx?"(1 — x?)
+ (1 +x2)(1 -2} -22) 77,

it follows that
-1

27) B/A=(1- xz){(l —x27)" — n2%x27"2(1 - x?) }

X { —n%22(1 — x2)® — 2nx2"(1 — x2%) + (1 + x2)(1 - x“)}.
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But for 0 < x < 1 — 1/n and all sufficiently large n we have
Max{x2"~2(1 — x2)*} = 4/(n%?){1 + O(1/n)},
(2.8)
Max{x?""%(1 — x%)} = 2/(ne®){1 + O(1/n)}.
Then from (2.7) in this range of x and for all sufficiently large n we have
(2.9) B/A > (1 —5e72)(1 — x2).

On the other hand, by [4], page 319, AY%/a = {1 — h(x)*}"/2/(1 — x?) and for
0 < x < 1 satisfies the following inequalities,

1

(210) A2/a < (2n-1)"?/(1-x)"? and A/%/a < (1-x2)7".
Let A = (1 — 5e2)K 2. Then from (2.9) and (2.10) we have

'/(-)l—l/n(Al/Z/a)exp{ —KZ,B/(2A)} dx
y '/(.)1_1/;:(1 — x?) lexp{ —A(1 — x?)} dx
- '/(-)1—1/"(1 —x?) 14N - 22)) Tax

< fol—l/”[(l —xf) T oAl (1 -2?)) Y e

(2.11)
e 2] -0 e
= Hlog(n) + Hlog(2 — 1/n) — 1(1 + 1/A) " "*log(A)

—1(1 + 1/70)"?10g(4 — 1/n)
< llog(n/K?) + 0.27.
Also from (2.10) we have
/ l_l/n(A1/2/a)exp{ ~K?B/(24)) dr < | ‘_l/n( N/2/a) da
(2.12) <" @rn-)"(1-x)""a

1-1/n ‘
<22 -1/n)"%

Finally from (2.2), (2.3), (2.11), and (2.12) we have
(2.13) EN(0,1) < (27) 'log(n/K?) + 1.1.



706 K. FARAHMAND

In order to obtain a lower estimate for EN(0,1) from (2.7) and (2.8), and for
0<x<1-1/n we have,

B/A=(1-x2)(1 - x2){(1 —x%") — n®%x2""2(1 — x2)?)
X { —nZ?" %1 - x2)2/(1 — x2n)

—-2nx2"(1 — x2)/(1 — x2") + (1 + x2)}

-1

(2.14)

<20 -2){(1 - e?)’ - 4e7?) <9701 - x?)

for all sufficiently large n.
Now let X = 9.7K? and ¢ = 1 — x. Then from (2.14) we have

EN(0,1) = [ "6/ (na)exp{ - K ?/(24)} da
0

> (2m) " [' " exp(—X2) dt
(2.15) v .
= (27) 'log(n) = (2m) ' [T(1 — ™) /tat
0
+(27r)_1fx/n(1 — e Y) /tdt.
0

Since, by hypothesis, (X/n) — 0 it follows that the last integral is (X /n) +
O(X?/n?) and also,

fx(1 —e /et = ['(1 = et)/tdt + fN(l — e ) /tdt

0 0 1

(2.16) < fo‘(l — e t)/tdt + log(X) + O(1/X) + O(X /n)

<log(N) +1
for all sufficiently large n. Then from (2.15) and (2.16) we have
(2.17) EN(0,1) > (27) 'log(n/K?) — 0.53

for all sufficiently large n. So from (2.13) and (2.17) we have the asymptotic
formula

EN(0,1) ~(27) 'log(n).

Now we shall find the asymptotic relation for EN(1, o0). By putting y = 1/x
we have

0 [oe] —9
[ 1x)dx = [TT1/y)y > dy.
In this case we have

Y(x) = T it < (n/2) T 2% = (n/e)(w" — 1)/(x* — 1)
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and so for x € (1, co] we have
v(a){a(x)} % < (n/x)(x% = 1)/ *(x2" — 1)
<ny"(1-y2)"(1 - y2m)
= ny"{a(y)} %

(|K|\/§/7r)j;wya‘3/2exp{ —K?/(2a))erf(v|K|/V2aA) dx
< (IKI/@?)fOlY(y)a(y)_3/2y""dy
< (K1m) [ nyrrdy
G20

< n(|K|/V27)/(n - 2)exp(~ V)
+n(IK|/V27) /(n — 2){n(n - 1/Vn)} "

Hence

(2.18)
nyn-—3(1 _ y2)1/2(1 _ y2n)_1/2 dy

and also
2—1 )
B= L i1/
i=1
_ y—(2n-—4){(1 + y2)(1 _ y2n)(1 _ yz)—3
+n2(1 - y2)" ' = 2n(1 - yz)_z}.
Now from (2.4), (2.5) and since h(y) = h(1/y) we have

(2.19)

2

1/2 _
(2200 (A1)} =y @01 - n(y)*) (- 1)(* - 1)
Hence, from (2.10), (2.20), and the relation

a(l/y) =y~ @ 2(y2r — 1)(y> - 1),
we have

(872 /a)exp{ - BK?/(24)) dx
1
< '[I(Al/z/oz)y‘2 dy
0

<[TV-y) ey [ @r-)Yi -y
0 1-1/n

(2.21)

< 3log(n) + 1.36.
Fihally from (2.18) and (2.21) we have
EN(1, ) < (27) 'log(n) + 1.36.
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For getting the lower estimate of EN(1, o) from (2.8) and (2.19), and for
0<y<1-1/n wehave

B/A =y (1 - y?)(1 - y*") A1 - h(5)"}
x{(1+y2)(1 + %) +n*(1 - 52" - 2n(1 - y*)}
<y 1 - y?){(1 - 52)" - %221 - 7)) B
(2.22) X {n2(1 —y) + 1452 -2n(1 - y2)}
<yt 1-y) {1 -e?)’ —de 2+ O(l/n)}_l
X {n2(1 —y2)? -2+ l/n}
< 5n%y2n 41 - y2)3
for all sufficiently large n.
Now let N’ = 9K?/e% Since in this range of y, Max{y" %1 — y%)?} <

9/(n%?) we have

/1 *(A/2/a)exp{ - BK 2/(24)} dx
> j(;l_l/n(l — y2) exp{ ~NeeZn2y?4(1 - y?)°/18) dy
> fol_l/"(l - y?) lexp{ -Xy"(1 - ¥*)/2} dy
> ?fol_l/n(l — y) 'exp{ =X"y"(1 - ¥)} dy.

Now for large n,'Max{ ¥"(1 — y)} < 1/(en). Then for this range of y we have

exp{ —y"XN'(1 = y)} =1 - Xy"(1 —y) + O(N?/(e’n?)};
and finally by (2.22) we have

[ (872 /a)exp{ ~ BK2/(28)} dy.

1
1 1-1/n _ -1 1 1-1/n "en 1
240 Ty = [T Ny g

= llog(n) + O(X"/n).

1-1/n

O( }\//2/n2) dy

Hence
‘ EN(1, ) >(27) 'log(n) + O(K2/n).
So
EN(1, ) ~ (27) 'log(n).
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We could use the same method to obtain the asymptotic formula when
(K 2/n) tends to a nonzero positive constant, and it is interesting to know that in
this case

EN(-o0,00) ~ (1/7)log(n).
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