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HOW SMALL ARE THE INCREMENTS OF THE LOCAL TIME
OF A WIENER PROCESS?

By E. CsAKI AND A. FOLDES
Mathematical Institute, Budapest

Let W(t) be a standard Wiener process with local time L(x,t). Put
L(t) = L(0,t) and L*(t) = sup_, <, < L(x, t). We study the almost sure
behaviour of small increments of L(¢) and also, the joint behaviour of L(t)
and the last excursion, U(t). The increment problem of L(x, t) are also
studied uniformly in x. This implies a liminf-type law of the iterated
logarithm for L*(¢) due to Kesten (1965), in which case the exact constant,
not known before, is also determined.

Introduction. Let {W(t),t>0} be a Wiener process and let L(x,¢)
(-0 <x < 00,0 < ¢) be its local time which is jointly continuous a.s. Csaki,
Csorgd, Foldes, and Révész (1983) investigated the big increments of the local
time and proved the following results:

THEOREM A. Let 0 < a; < T be a nondecreasing function of T. Assume
that a,/T is nonincreasing. Then

(1) limsupy,Y(T) =1 a.s.
T— o
and
(2) limsupB,X(T) =1 a.s.,
T— oo
where
(3) Y(T) =az'? sup (L(0,s+ ap) — L(0,s)),

0<s<T-ar

(4) X(T) =az? sup sup (L(x,s+ ap) — L(x,s)),

0<s<T-ap —c0<x<oo

(5) yr = (log(T/az) + 2log logT)_l/z,
and
(6) Br= (2log(T/a;) + 2loglog T) /2.
If we also assume that
log(T/ar)
(7) Too loglogT
then
(8) 7}im vY(T)=1 a.s.
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and
9) 7}im BrX(T)=1 a.s.

On the other hand, investigating the small increments of the Wiener process,
Csorg6 and Révész (1979, 1981) proved the following results:

THEOREM B. Let ar be a nondecreasing function of T for which

(i) 0<ar<T (T20),
(ii) ar/T is nonincreasing.
Then
(10) liTnlingTI(T) =1 a.s,
where
I(T)= inf sup |W(t+s)— W(e)|
0<t<T-ar g<s<ay
and
8(log(T/ay) + loglog T ) \/?
8y = — .
If we also have
log(T/ar)
(i) loglog T
then
(11) Tli_{r:OSTI(T) =1 a.s.

In this paper we study the small increments of the local time. More precisely
we investigate the lower classes of
(12) R(T,a;) = inf T(L(O, t) - L(0,t—ay))
ar<t<
in terms of certain integral tests.
This problem also suggests study of the joint behaviour of L(¢) and U(¢),
where U(t), the last excursion, is defined by

(13) U(T) =T — sup{s: W(s) =0,0 <s < T}.

In Section 2 we give the analogue of Theorem B for the increments

(14) Q(T) = . ian sup (L(x,t+ a,) — L(x,t)).
stsT-ar —p<x<ow

This implies the case when a, = T, ie.,, QT) = L*T)=sup__ ., . L(x,T).
For L*(T), Kesten (1965) proved

(15) lim inf (log log T/T)’LXT) =y as.,
-0
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where j,/2 <y < V3j22j2— 4)"'/2, and j, is the first positive root of the
Bessel function Jy(x), but the exact value of y is unknown.

By using a recent result of Borodin (1982) concerning the Laplace transform of
the distribution of L*(T'), we are able to give an expression for the exact and
asymptotic distributions of L*(T'). As a consequence, the exact value of y in (15)
turns out to be equal to j,v2.

1. The increments of L(¢). In this section we consider the local time of the
Wiener process at zero.

Let L(0, ¢t) = L(t). Moreover denote by J(¢) the length of the longest excur-
sion of W(t) (longest zero-free interval) up to the point ¢.

A theorem of Chung and Erdos (1952) (originally formulated for the time
spent by the simple symmetric random walk on the positive side) reads as
follows.

THEOREM C. Let f,(x) be a nondecreasing function for which

lim f,(x) = + o0,
x/f,(x) is nondecreasing and lim, _,  x/f,(x) = + 0, and let

o dx
(1.1) Il(f1)=fl e

If I,(f,) = oo, then with probability 1 there exists a random sequence T, <
T,< -+« <T,< -+ — oo such that

1
JT,) =T\l - —< |, i=1,2,....
@ =1 7o)
If I,( f,) < oo then with probability 1 there exists a random T, such that
1
J(T) <T|1- orT > T,.

We remark that Theorem C remains true if we replace J(¢) by U(t), where
U(t) denotes the length of the last excursion up to the point ¢ defined by (13).

Another result of Chung and Hunt (1949) deals with the local time L(¢) (again
originally formulated for simple symmetric random walk).

THEOREM D. Let f,(y) be a nonincreasing function and \/; fo( ¥) be nonde-
creasing for which limy_,m\/;fz(y) = +oo,lim,,  fy(y) =0, and

(12) 12( f2) = _/;w%y) dy.

IfI,( f,) = oo, then with probability 1 there exists a random sequence T, < T, <
<o <T, -+ — oo such that for all i

L(T,) < T, f(T}).
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If I(f,) < oo then with probability 1 there exists a random T, such that
L(T) > VT {,(T) forT> T,.

Clearly
inf (L(t)—-L(t—ap))=0

ap<t<T

if a; is shorter than J(T).

This suggests that the problem, how small are the increments of L(¢), should
be formulated in the following manner:

Let the function a, be defined by

1
(1.3) ar = T(l — fl(T))
and put
(1.4) R(T,ar) = inf (L(¢) - L(¢~ ar)).

How can we characterize the small values of R(T, a,) with the behaviour of the
integrals I, and I,? As an answer we prove the following result:

THEOREM 1.1. Let f(x) be a nondecreasing function for which x/f,(x) is
also nondecreasing and lim, _, _x/f(x) = +o0, lim,_,  f/(x) = + o0, and put

W - [
R x/f1(x) '
Let f)(y) be a nonincreasing function for which lim ,_, fx(y) =0, f fo(y) is
nondecreasing, and lim, _, w‘/> fo(y) = + o0 and put

L = [

Set a and R(T, ar) as above.

(1) If I,(f,) = o or I f,) = oo then with probability 1 there exists a random
sequence T, < T, < -+ <T,< --- = oo such that for all i

(i) If I,(f,) < o0 and I f,) < oo then with probability 1 there exists a
random T, such that

R(T,a;) > VT f)(T) for T > T,.
An important tool for the proof of Theorem 1.1 is

> LEMMA 1.1. For any positive U, V, and u

(15) P(L(U+V)-L({U) <wV) < \/ f \/ )
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Proor oF LEMMA 1.1. Using the exact distribution of the local time due to
Lévy, and a simple conditioning argument,

P(L(U+V)-L(U) <w/V)
s " —1- / P{L(U+ V) - L(U) > w/VIW(U) =z} dP(W(U) : z)
d;b(i

=12 [1‘ vl eel )

Now we have from the Taylor expansion that for some 0 < u* < u
of 5 +o) = ol ol ool )7
W WA T 2
<ol )+ ol )
W
(1.6) and (1.7) and simple calculation lead to
P(L(U+ V) - L(U) <w/V)

1—zf_°°[1—‘1’(ﬂ)_"’(ivl) 2977
S

2
=P(L(U+ - L =0) + - .
(LU +V) - L) =0) + ) =\ 5
For the first probability we have (see Lévy (1948) Theorem 44.4) that

(1.7)

IA

2
(1.9) P(L(U+V)—L(U)=0)=;arcs1n iV <o Tiv- D

PrOOF OF THEOREM 1.1. Part (i) is a simple consequence of Theorems C
and D.

Proof of (ii). Suppose now that I;( fl) < o0, and Iy f,) < co. Start with the
following observation:

(1.10) L(aT) - L(T - aT) S R(T, aT).
First we show, that it is enough to prove, that for some sequence T, < T, <
- <T,< --- - oo the following inequality holds with probability 1:

(1.11) L(aT,,) - L(Tk+1 - aTkH) > m&(Tkﬂ) ‘fork > ko (= ko(w)).

To, see this, observe that from the condition of the theorem for f,(-) the functions
T, ar, and T — a; are all nondecreasing. Consequently for any T, < T < T},
we have

T-ar<Th,, —arp,,, ap<ar;
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hence by (1.10)
(1.12) L(ag,) — L(Tysy — ag,,,) < L(az) — L(T — ay) < R(T, ay).

Thus if £ > k&, then from (1.11), (1.12), and the nondecreasingness of Vx fo(x) for
any T, < T < Ty,

(113) VT 1T) < {Tyi1 £(Thrr) < L(ay,) = L(Tpiy — ag,, ) < R(T,ap),

i.e., our statement follows from (1.11).
To see (1.11), let T, = p* with p > 1 and estimate the probability of

A, = {L(aTk) — L(Ty, — aT,H,) < YThiq f2(Tk+l)}

from our Lemma 1.1. (We may suppose that ar > T,,, — ap,  otherwise
P(A,) =0)

P(A ) < — Tk+1 T,?,,I / f2(Tk+1)VTk+l
k
V \/aT Tk+l - aTk+,)

T a
(1.14) x\/ LB .T**‘

Tk+l k+]
\/ e \/ e

Observe that as f,(x) — oo, there exist an integer £, and a 0 < a < 1 such that
for & > &,

1

P(Ak) < %\/ f—l(;lmj : \/g + \/gfg(pk“)\/g.

Now L P(A,) < o clearly follows from the assumption that both of the integrals
L(f,) and I f,) are convergent, due to the following well-known:

Hence

REMARK. For any nonincreasing function g(x) for which lim, _, _g(x) =0

(1.16) Zg (p*) and f ~&lx )dx (p>1)

are equiconvergent.
This implies the result via Borel-Cantelli Lemma. O

Our next theorem treats a somewhat related problem, the joint behaviour of
L(¢) and U(¢) (defined by (13)).
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THEOREM 1.2. Let f,(x) and f,(x) be functions satisfying the conditions of
Theorem 1.1.
If

1 )dx
fl(x) ’

then with probability 1 there exists a random T, such that

I3( fl’ fz) = _/;oomin( fZ(x)’

X

1
L(t) < f(¢)Wt, U(t) = (1 0 )t

do not hold simultaneously for any t > T,,.
If I(f,, fy) = oo then with probability 1 there exists a random sequence
T,<Ty< -+ <T,< +-+ — oo such that

1
L(T,) < H(T)/T,  UT,) > (1 . ‘f(r))T

PrOOF OF THEOREM 1.2. The proof will be sketched briefly; the details of the

calculations are omitted.
The joint distribution of L(¢) and U(t) can be obtained from Lévy (1939,
1948):

1

1—-2z 2
1.17) P(L(t) <uw/t,U(t) = zt) = 1-—e %/2) ——8un-—— da,
(1.17) P(L(¢) <yt ()Z)fo( )m/a(l——a)
. from which the following estimations are easily obtained:
eymin(u,V1 — 2) < P(L(t) < w/t,U(t) > 2t)

<comin(u,y1—2z) (0<u,0<z<1)

(1.18)

with positive constants ¢, and c,.
Now let ¢, = p*, k =1,2,..., p > 1, and define the events A, and B, by

4, = {L(m < (66 U(t) > (1 - f—(lt—))t}

B, = {L(tk) < f2(tk+1)\/Zk+—I!U(tk) = (1 - —tk-ﬂ—_)tk}-

.tk fl(tk+ 1)

If I,(f,, fs) < oo, then by the remark at the end of the proof of Theorem 1.1,
using the inequality (1.18), it can be seen that ¥,P(B,) < oo, which in turn
implies the first part of Theorem 1.2.
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To show the second part, first observe that I(f,, f,) = o and (1.18) imply
X,P(A,) = o and this together with
' Yr_rr P(A,A
(1.19) lim ing S P4 2‘)
neo (TR P(Ay))
is a sufficient condition of P(A, i.0.) =1 (see Erdos-Rényi (1959) or Rényi
(1962), etc.).

To verify (1.19), by simple but somewhat tedious calculation we have for
k<l

P(AA) < P(L(tk) <u,Vt,, U(t,) > zpt,, L(t,— t,,) < uylt,, U(t) = z,t,)

ey Kl i PPN wp,\\ 1 1yl
a=0 b y=—o0 2a V2ma V2m

=t
y? ) 1 1

2Aty—a)| (t,-a)”” 2n(b-t,)

Xexp(—

2 , 2
X {ex -y —e); _L B +u f
Pl 72— ¢,) P72\ eos TV ooy,
2 dydbda —2 ’t 2 da
x————y +/tk(l k)l—exp(—ukk) ,
V27 (t,— b) 0 2a \/277(tl— a) V27a

where u, = fy(¢,), 2, =1 — 1/f,(t,), and from this we obtain for ¢ > 0 and % big
enough,

(1.20) P(A4A;) < P(A)((1 + e)P(A,)) + cp™¢h/2)

provided that I > [y(k, £) = max({l: t,/¢((1 + &)® — 1)}.
On the other hand,

(1.21) IZ P(A,A,)) < cP(A,).
=k

Now (1.19) follows from (1.20) and (1.21); hence the second part of Theorem 1.2.
O

2. The increments sup,(L(x,t) — L(x,t — a,)). Our results in this section
are heavily based on a result of Borodin (1982) concerning the Laplace transform
of the distribution of L*(¢) = sup, L(x, ). Borodin’s result states

422X e?? 1 (2N /2)
(e/?r — 1)°I(z/A/2)’

(21) Afooe‘“P(L*(t)' >z)dt=
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where I, and I, are modified Bessel functions defined by

o= ¥ (5],

o (k1)1 2
oc 1 X 2k+1
Ii(x) = k{:o kI(k + 1)! (5) ‘

From the scale change of the Wiener process it follows that ¢~ !/2L*(¢) has the
same distribution as L*(1) and by putting z = 1, (2.1) is easily seen to be
equivalent to

* o Mp( (1) < _ 12 L(y\/2)
(2.2) foe P(L*(1) < 1/Ve)dt = \/:IO(‘/X/_z)(sh‘/W)Q'

Our first result in this section concerns the inversion of (2.2) and its asymptotics.

THEOREM 2.1. The following relations hold for 0 < z:

i Ck 2k2‘772
+ b, + — - ,
(b 5o - 57

o0 252
(2.3) P(L*(1) <z)= X anexp(— %

= k=1
where 0 < j, < j, < --+ are the positive zeros of the Bessel function Jy(x) =
I (ix),
i 1,2
n - Sin2jn (n_ y 4y )’
J(k Jy(k)\?
b a1 O [0
kady( k) Jo(km)
162 e )
c, = WJO(kw) =12...),
1 .
Jy(x) = 711(zx).
Furthermore |
2
(2.4) P(L*(1) <z) ~ alexp{— ?} asz — 0.

PrROOF OF THEOREM 2.1. From the identity (Abramowitz and Stegun (1970),
9.5.10) .

(2.5) M@=ﬁb—%)
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we get by logarithmic derivation that

Ji(2) i and

C2dy(z) 22 -2
(2.6) ° -

1 I(z2) * 2

2 I(z) [ 2% +52
On the other hand, from the partial fraction expansion of cot z (Abramowitz and
Stegun (1970), 4.3.91),

e}

1
2.7 cotz=— +2 53
27) z zk; 2% — k?r?

By simple differentiation it follows that
1 x 1 x 1

(2.8) ,1 == -2) 55— +42% )

2 2.2 2°
sin“z z hoq 20+ kEw r=1 (22 + k%)

Applying (2.6) and (2.8) we easily get from (2.2)

SN .YE)

A _ — _
=X VR L) @)
1 00 1
29) "y A 2;'3)

62

— 1 -
}\+2k2 N+ 2k%2 i1 (A + 2k272)?

s k22
+4Z 7 )

b

Taking into account that (Watson (1966), 15.51)

© 1 1
(2.10) ===,
ngl -]r? 4

we arrive at

1 o 1
F(A) = nzl Ji(A+ 22 )+4(,,§,>\+2j3)

(2.11) )
4 ~16Y ——— .
( Z }\+2k2 2 ,El (>\+2k2772)2)

Observe that f(A) is analytie on the complex plane except for A = —2 J2
(n =1,2...) which are simple poles, and A\ = —2k272 (k =1,2...) which are
poles of order two. Moreover the four series in (2.11) are umformly absolute
convergent for Re A > 0 (where (2.10) is used again).
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Hence f(A) might be written in the form of partial fractions:

1 1
}\ = -
( ) nz an>\+2 2 kglbkx+2k2,”2

(2.12) .

1

+ Y g————
g (A + 2k272)%

where clearly

a, = liml()\+2] )F(A),

n

Ao 22
b,= lim (A+2k2r%)f(N),
A— —2k272
and
— 2.2
¢ = lim sz(O‘ + 2k%r2)* f(N)).
By simple but tedious calculation using that (Watson (1966))

I(2)

Ij(z) = I(z) and I{(z) = Iy(2) -

we get that a,, b,, and c, are the coefficients given in our theorem. Now we get
the inverse transform of f(A) by termwise inversion (see Doetsch (1950), Theo-
rem 2, page 305). O

CoROLLARY 2.1. Let u(t) >0 be a nonincreasing function such that
lim,_, u(t) = 0, u(¢)t'/? is nondecreasing, and lim,_,  u(t)t'/? = co. Let fur-
thermore

0 1 2]1
2.13 I= —
(219 ﬁtwufx( %o)
If I = oo, then with probability 1 there exists a random sequence T, < T, <
- <T,< -+ — oo such that

LA(T) < T2u(T),  i=12,....
If I < o0, then with probability 1 there exists a random T, such that
L*T) > TV?u(T) forT > T,.
PROOF. The proof of Corollary 2.1 is standard, therefore we give a brief

outline only. As usual, without loss of generality, it may be assumed that

C**
— < u®(t) <
loglog ¢ u(2) loglog ¢

C*

(2.14)

with certain conveniently small enough positive ¢* and big enough c¢** constants.
Now put ¢, = 1, ¢, = exp{k/log k} (k = 2,3,...). Then it is readily seen that the



544 E. CSAKI AND A. FOLDES

integral I given by (2.13) and the sum X,exp{—2j2/u?} converge or diverge
together, where u, = u(¢,). Define the events A, and B, by

(2.15) A, = {L*(t)) < 6w},

(2.16) B, = {L*(tk) < t;2/+2luk+l}’

Then I < oo implies X, P(B,) < oo which in turn implies the second part of
Corollary 2.1 by Borel-Cantelli lemma.

On the other hand, I = co implies ¥,P(A,) = oo. To verify (1.19), we note
that L*(¢;, ¢) = sup_ , <, <oo(L(%, ¢;) — L(x,t,)) (k<1!) is independent of
L*(t,) and has the same distribution as L*(¢, — ¢,). Since L*(¢) is nondecreasing,
we have
(2.17) P(A,A) < P(A,)P(L*(t, - t,) < t%u,).

Now for fixed k, split the indices  (k < / < n) into three parts:
L ={l:0<l-Fk<logl},
(2.18) Ly,={l:logl <1—k <log?},
Ly={l:log®>l <1—k}.
Then from (2.3) and (2.4) one can verify that for any ¢ > 0 and & large enough
2j; t, - tk}

l 1

where C is a suitable constant for /€ L, or/ € L, and C = a,(1 + ¢)for/ € L,.
By using the inequality

log—- >
8% < 2logl

if & is large enough, one can obtain the estimations

272t —t
DAk s e(l-k), el
u t
! I
277 t,— ¢,
7 ; > c2logl, le L2,
! I
252 ¢
Tt e, LeLy,
ui 4y

with some constants ¢; and ¢, and all ¢ > 0, and hence one can verify that

(2.20) Y P(A,A) <cP(4,) (i=1,2)
: leL,

and
(2.21) P(A,A) < (1 +¢e)P(A,)P(A)), leL,.
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Now (1.19) follows and this proves the first part of Corollary 2.1 by the already
mentioned sufficient condition of P(A, i.0.) = 1 (see the proof of Theorem 1.2).

The technique of this proof has a long history. It goes back to the well-known
Kolmogorov-Erdos—Feller—Petrovski integral test and was developed further in
many papers and books. The interested reader may find a detailed version of this
technique, e.g., in Csaki, Erdos, and Révész (1985). )

It follows that y = j,y2 in Kesten’s law of the iterated logarithm (see (15) in
the Introduction). We can also give the analogues of Theorems 1.6.1 and 1.7.1 in
Csorgb and Révész (1981). O

COROLLARY 2.2.

) . log h™!
(2.22) lim inf sup |L(x,s +h) — L(x,s)| =1a.s.

h=00<s<1-% _ o <x<oo 2h

COROLLARY 2.3. Let ay be a nondecreasing function of T for which

(i) 0<ap<T,
(ii) _ arp/T is nonincreasing.
Then
(2.23) liminfp,Q(T) =1 a.s,
T— o0
where
(2.24) Q(T)= inf sup (L(x,t+ ap)— L(x,t))
0<t<T-ar —p<x<oo

and

log(T/a;) + loglog T'\'*
(2.25) oy = g(T/ar) g 108 '

2j12aT

If we also have

log(T/ar)
+ T
(iii) loglogT | T (T7 )
then A
(2.26) Tlim pr@(T) =1 a.s.

The proofs of Corollaries 2.2 and 2.3 are the same as those given by Csorg6 and
Révész (1981) with the slight modification that (2.4) should be used in place of
their Lemma 1.6.1, and their Theorem 1.2.1 should be replaced by Theorem 3
from Csaki, Csorg6, Foldes, and Révész (1983). Therefore we omit the proofs.
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