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ON THE RATE AT WHICH THE SAMPLE EXTREMES
BECOME INDEPENDENT

By M. FALK AND W. KOHNE
University of Siegen

In this paper we compute exact rates at which the sample extremes
become independent uniformly over all Borel sets.

Let P be a probability measure on the real line with distribution function
(= df) F. Denote by P" the n-fold independent product of P and by Z;,,, the ith
order statistic according to the sample of size n.

The asymptotic independence of the sample extremes under P" was first
observed by Gumbel (1946) who proved in particular that Z,., and Z,_,, ;..
may be dealt with as independent variables, provided that n is large, £ and m
are small, and that P is a continuous unlimited distribution of exponential type.

This exponential type assumption on P essentially means that P satisfies the
well-known von Mises (1936) condition on a distribution to belong to the domain
of attraction of exp(—e™*) (see, e.g., Chapter 2.7 of the book by Galambos
(1978)). Consequently, Gumbel’s (1946) proof runs via the approximation of the df
of (Z,.,, Z,,_,.+1.n) by the product of the according limiting extreme value df’s.

For such distributions which belong to the domain of attraction of an extreme
value distribution, the following general result can be proved (see Theorem 2.9.1
of Galambos (1978)): If the asymptotic (nondegenerate) distribution of each of
Z,,and Z, . .. exists (m and k fixed), when suitably normalized, then, with
the same normalization, the joint distribution of Z,., and Z,_,, . ,., tends weakly
to the product of the marginal limiting distributions.

However, since not every probability measure P belongs to the domain of
attraction of an extreme value distribution (take for example F(x)=1 —
1/log(x), x > e), the question still remained, under which conditions on P the
sample extremes become independent as the sample size increases.

Concerning the maximum distance of the respective df’s, a complete answer
was given by Rossberg (1965, Satz 1; 1967) (see also page 270 of the book by
David (1981)), which implies that

sup IP"{Zk:n <x, Zn—m+1:n < y} - Pn{Zk:n =< x}Pn{anm+1:n < y}l -0

x, yER n— oo

for any distribution P if (k + m)/n - ,_, 0.

For the case that F has a density f, Ikeda and Matsunawa (1970) proved that,
if (k+m)/n— 0

n—oo™?

AP(n’ k’ m) = sup an *(Zl:n’ e Zk:n’ Zn*m+1:n’ tec Zn:n)(B)
(1) Be&*tm

(P4 (Ze)ies) X (P (2) ) (B)| = 0,
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1340 M. FALK AND W. KOHNE

where #¢ denotes the Borel o-algebra of R?, P, X P, the independent product of
P, and P, and P * g the measure induced by P and a measurable function g (see
also Tkeda (1963)).

Now, the equality P = @ * F~!, where @ denotes the uniform distribution on
(0,1) and F~! the generalized inverse of F, implies Ap(n, k, m) < Ay(n, k, m)
for any distribution P and thus, the above result by Ikeda and Matsunawa (1970)
holds for arbitrary P.

In the following result we can even show that the value of A, (n, k, m) does
not depend on P if F is continuous and therefore, the exact rates of convergence
of Ag(n, k, m) to zero which we will compute in the following are also exact for
any nonatomic probability measure P.

PROPOSITION 2. Fork,m € {1,...,[n/2]}, n €N,
(i) Ap(n,k,m) = Ay(n, k,m) if Fis continuous,
(ii) Ap(n,k,m) < Ay(n,k,m) forarbitraryF.

PrROOF. The assertions follow immediately from the equalities P Q*F1
and, for continuous F, @ = P* F. O

Notice that Ap(n, k&, m) = 0 if P is concentrated on a single point.

Denote by p, the Lebesgue density of the negative gamma distribution with
parameter k, ie., py(x):=(—x)*"‘exp(x)/(k —1)!, x <0, k€ N. Then our
main result is the following one: (x A y :*= min(x, y) and x V y := max(x, y)).

THEOREM 3. Let k = k(n), m = m(n) € {1,..., n}, satisfy
(B+m)/n—-,cn0.

Then,
k+nt/? m+nl/?
Bo(n, kym) = o f"“ e+ kipa(x) dx [Ty 4 i, () dy
k+m
ol { 2 )* )
n
where this expansion holds uniformly for all sequences k, m.
Notice that
OA(—k+nt/?) 3 — kexp(—k)
f—k—n1/2 lx + k| py(x) dx = 2k &=
(k4 SRk )
@) (B—1)!
exp(—k + n'/?)
—(0V (k= n’2))*
exp(—k
— ot SPER) e

(k- 1)!
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and, if 2 — oo,

2kkexp(—k) B (2

1/2

- | — kl /2 + kl /2 ,
(k- 1) a ) o )
yielding the following consequences to the above theorem.

COROLLARY 5.
nlEI:o Ag(n,k,m) =0 if (k+ m)/nnij.

COROLLARY 6. For k and m fixed we have
Ao(n, k,m) = C(k,m)n"" + O(n™?),
where
exp(—m — k)
(k- Di(m-1))°

COROLLARY 7. If k, m = O(n?®) both tend to infinity as n increases, then

C(k, m) == 2k*Fm™

Ao(n,k,m) - =71

(km)'” neoo

Corollary 6 can in particular be utilized to determine approximately the least
sample size n, ,(8) such that Ag(n, k, m) < 4, 8 € (0,1).

For the case k = m = 1 and Ay(n, k, m) replaced by the maximum difference
of the respective df’s, this problem was investigated by Walsh (1970), who also
computed the exact smallest sample sizes for § ranging between 0.007 and 0.0902.

Corollary 6 immediately implies that for 2 and m fixed

n, m(s)
8 lim ——=>~ =1
®) 520 (C(k, m)/8)
and hence, n, ,(8) is given approximately by C(k, m)/$, at least if & is small.
In particular for £ = m = 1 we get

©) () - 2222

yielding approximations for n, ,(8) if 8 € (0.007,0.0902) which are nearly exactly
twice the minimum sample sizes according to the maximum difference of the
respective df’s given in the table on page 861 of Walsh (1970).

Furthermore, we note that if one is interested only in the case of single order
statistics, i.e., in

Ap(n, k,m) = sup |P"*(Zy.., Z,_ms1:n)(B)
(10) Be %?
_(P"*Zk:n) X (P"*Zn—m+1:n)(B)|’
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then it is easy to see that again
(11) A%(n, k,m) = A(n, k, m) if F is continuous,

Moreover, one can prove the following result along the lines of the proof of
Theorem 3. (For an analogous result concerning asymptotic expansions of ex-
treme order statistics we refer to Theorem 3.2 of Reiss (1981)).

A%(n, k,m) < AY(n, k,m) for arbitrary F.

THEOREM 12. Let k, m satisfy (k + m)/n — , 0. Then,

k+m)
IAQ(n,k, m) — AY(n, k, m)|= 0] (———m)-),

n2

where this bound holds uniformly for all sequences k, m.

Consequently, the preceding results from Theorem 3 up to (9) remain valid
with Ag(n, k, m) replaced by A(n, k, m).

For the sake of completeness we finally mention that independence results
also including central order statistics or sample means were established by Tiago
de Oliveira (1961), Rosengard (1962), Rossberg (1965), and Tkeda and Matsunawa
(1970), among others, and the case where the observations come from different
underlying probability measures was dealt with by Walsh (1969). We remark
that the following proof of Theorem 3 might be extended to cover these cases as
well. For the sake of a clear presentation, however, we concentrate on the
extremes only.

PrROOF oF THEOREM 3. First observe that with

A, = {(u,v) €(~n, 0" ™ u > o >y, 0, < o0 <o, u,+ v > —n}
and
B, = {(u,v) e(-n,0" ™ u > oo >y, < - < v,,,}
we have (see formula 2.2.3 of David (1981))
Aog(n,k,m) = sup |Q"*(-nZ,,...,—nZ,"(Zy_ppi1.n—1),...,
BEQk'H"

n(Zn:n - 1))(B)
_(Q" *(‘@i:n)fﬂ) ) (Qn *(n(zjtn - ]‘))_’;=n—m+1)(B)‘

(12) =2 [ (n"‘”’(n’i!m —&)) (1 - )n_m_kl“‘n(x’y)
n!?
(" (n - k)(n - m)!)
X (1 + %)n_k(l + %)n_mlgn(x,y) d(x,y)
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L (n=m— k)"
=2 fnhm (n! (n"(n—m — &)} )
Xp+ oy +mA+ R\
(B e
2 n—k (n—m)n_m
- (n! (n—k) {(n*(n - k)!(n — m)!) )

1+xk+k ”‘kl y1+mn-m1 J
X +
e 2] [+ 222 )| )

n—

where 1, denotes the indicator function of a set A.

After the preceding standardization, our proof will be analogous to the proof of
the asymptotic expansion of Q™ *(n(Z,_,. ., — 1)) established in Theorem 2.6
of Reiss (1981). For some details we will therefore refer to this article.

Define now

C, = {ue(—n,O)k: u, > - >uk,|uk+k|<n1/2}
x{ve(-n,0" 0, < - < 0, |0, + m| < n*/%}.
Then C, C A, (C B,) if n is large and thus, by (13),
) Xp+ oy +m+ kP
Agln, kym) =27 f ( {nM(n-m - k)'})( T om—k )
_ !2 —k n—k
(n (n—#) {n*™(n — k)!(n - m)!}

x, + k\"k + m\n-m
x(1+ k ) (1+y1 ) d(x,y) + R,
n—k n—m

-2- f"“‘ ’“"w’f"” ’”:"1/2) H(%) P ¥)

—m—n

(n—m—-k)" ™"
X (n! {n"(n —m - k)'} )

(14)

x+y+m+k\"mk
n—m-—k

X exp(—x — y)(l +

2 _ n—k (n _ m)n—m
— (n! (n—k) {nzn(n_k)!(n—m)!})

P by PR ALl L PR S
X exp(—x y)( n—k) ( n—m) v e
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Now, it is easy to see that
(k+m)®
(15) R,=0|—5—

(use, for example, Lemma 1 in Wellner (1977)).
Furthermore, we will utilize the following inequalities (see formula (21.10) of
Krickeberg and Ziezold (1977)):

(2m)'*nm Pexp(~n)esp - |

12n + 1
(16) "
1
1 /2 n+1/2 _ I
<n!<(27)""n exp( n)exp( 12n)’ neN,
leading to
an 27 og(27) + (n + %)log(n) — n + (12n) ' — (12n(12n + 1)) "

< log(n!) < 27 '0g(27) + (n + 1)log(n) — n + (12n)_1,

and the expansions

( x+y+m+k x+y+m+k
log|1 + =
n—-m-—=~k ) n—-m-—=k
(18) (x+y+m+Ek) (x+y+m+k)°
2(n—m—k)° n? ’
|x + k| < n'2, |y + m| < n'/2,
x+k\ x+k (x+k) (x + k)
log{1 + )= - s +O|———|,
(19) n—k n—k 2(n-k) n

|x + k| < nl/2,
Employing (17)—(19) in (13) we derive

0 Bt nl/2 1/2)
Ag(n, k,m) =2 f/\( o )IOA( " () Pl )
n

/2

X exp{m *k +(12n) ' - (12(n-m—-k))!
(x+y+m+k) (x+y+m+k)° (m+E)
" 2An-m-k) ( n? Y )}

Z o (6r) = (12(n — k)

k+
(20) -eXP{
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B (x + k) _ (y+m)
20n—k) 2(n—-m-k)

O((x+k)3+(y+m)3+ (k+m)2)} dedy

ol ),

- (12(n-m))"

n n
n

Using the expansion exp(x) =1+ x + O(x?), |x| < C, and the bound
[1x + k|'py(x) dx < i'k'/? (see formula (2.3) in Reiss (1981)), it is now easy to see
that (20) yields

Bolm, bym) =272 1 CHED [ONCREp (2)pa(9)

—m—n?

(x+y+m+k) (x + k) (y + m)?

Sn—m—k) 2An—k) 2An-m)| T
(21) 0 (_’”T;”_)i)

=2 fw k+nl/2)f0A( " () Dl ¥l +

+m E+m)
241 o ou]

n—m-—=&k

which completes the proof. O
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