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A ONE-DIMENSIONAL DIFFUSION PROCESS
IN A WIENER MEDIUM

By TH. Brox
GRS Garching

We consider a one-dimensional diffusion process in a random medium,
which is itself generated by a Wiener process. The asymptotic behaviour is
investigated, using the self-similarity of the medium process. The results are
analogous to the lattice case.

1. Introduction. In [4] the behaviour of a one-dimensional random walk in
a random medium with independent increments was investigated and it was
shown, among other things, that x(n) is of the order of (log n)?, i.e., the “average
speed” of x(n) is surprisingly slow. In this paper we will treat the same problem
for a one-dimensional diffusion process in a continuous random medium and show
that things will, then, become more transparent. We will take as a medium a
sample path of a Wiener process. An advantage of the continuous framework is
the proper self-similarity of the basic processes. Using this, we can reformulate
the problem to be dealt with in a more familiar form. We remark that the
importance of self-similarity was already conjectured in [2].

In order to avoid unnecessary difficulties (say, explosions) we restrict the set of
possible realizations of media by an extra condition, which is satisfied by almost
all Wiener paths. Let #° be the set of all continuous functions W: R —» R
satisfying W(0) = 0 and

u) Lo o0)(W(2)) d2| > o0 as|x| - o

for each ¢ € R. We denote by (#7, «, ») the Wiener space, where .« is the
o-field generated by all Borel cylinder sets and » is the Wiener measure on
(#", &), i.e., the coordinate process {W(x); x € R} has independent homoge-
neous (Gaussian) increments with respect to ». The Wiener space (¥, <, »)
serves as a model of a random medium, i.e., a sample path W € #~ is considered
as a random potential. A well known property of such a medium is self-similarity
with parameter ;: For each a > 0,

{a"W(a’x); x € R} =, {W(x); x € R},
where =, denotes equality in law. In other words, v is invariant under the
transformation
HWo2Weo Weew,
where W* is defined by
W*(x) = a”"W(a2x).
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We consider a diffusion process X(¢) moving in a random medium given by a
potential W € #7, i.e., we consider a formal stochastic differential equation

dX(t) = dB - 3W/(X(t))dt,  X(0) =0,
where W'’ denotes the formal derivative of W (white noise) and B is a one-dimen-

sional Brownian motion. Rigorously speaking we are considering a Feller-diffu-
sion process X(¢) on R with the generator of Feller’s canonical form

1 d 1 d
2exp{—W(x)} dx | exp{W(x)} dx |
Let B = (B(t)),( be a Brownian motion starting from the origin defined on a
probability space (2, #,(%,), P). Then, thanks to Ito6—~McKean’s construction of
Feller-diffusion processes from a Brownian motion via scale-transformation and
time-change, the diffusion process X(¢) can be explicitly given by

(1.1) X(t) =S"(B(T"X(1))), t=0,
where S is the scale function and T' the time-change function defined by
S(x) = [xew(z)dz, x €R,
0

T(¢t) = Ltexp{ —2W(S~%(B(u)))} du, t=0.

Here S™! (respectively, T~!) denotes the inverse of S (respectively, T') (cf. [1]).
The definition of #” ensures that S is a homeomorphism of R for each W € #".
For a fixed W € #" we may consider X(¢) = X(W, ¢) as a nonadapted functional
of B. Our main result is an analogue of [4].

THEOREM 1.2. There exists a nontrivial measurable function m,;: # - R
such that for any 8§ > 0,

lim fP(|a—2X(W, e®) — m(W*)| < 8)v(dW) = 1.

Using the self-similarity of the medium and the Brownian motion, we can
reformulate the problem. Since

B*(t) = a™?B(a"t) =, B(t),
we obtain, by formula (1.1), the following lemma.

LEMMA 1.3. Foreach a>0and We ¥,
{X(aW®, t); t 2 0} =, {a 2X(W, a’t); t > 0}.
The proof is tedious but can be carried out straightforwardly. If we define

x%(t) to be the r.h.s. of Lemma 1.3, then heuristically Lemma 1.3 can be seen as
follows:

dx® = dB* — La®W'(ax®) dt
=dp — LaW*(x*) dt
because of W*(x) = aW’(ax) and B> =, B.
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Since the measure » is invariant under the transformation W —» W* we can
view the problem in another way: For W € #" and «a > 0 consider the process
X* defined by

XY (W,t)=X(aW,t), t=0.
Then, by the formula (1.1),

X4(W, t) = S;Y(B(T;(2))),

where

S(x) = S(aW, x) = foxe"‘w(z)dz,
T(t) = T(aW, t) = /O‘exp{ —2aW(S; Y(B(u))))} du

THEOREM 14. Let a = h(a), a > 0, be a real function such that h(a) — 1
as a = oo. Then for v-a.a. We #,
lim P(|X*(W, e**®) — m(W)| < 8) =

a— o0

for each & > 0.

Replacing ¢ by a™“* in Lemma 1.3, we obtain Theorem 1.2 as an immediate
corollary of Theorem 1.4, Lemma 1.3, and the invariance of ». Theorem 1.4 will
be proved in Sections 3 and 4 after some preparations on media in Section 2.
With a little bit more work we can also obtain the precise analogue of [4]. For
a > 0 and m, n natural numbers let

Po, (W) = P(|a"2X(W, &%) — m,(W*)| < 1/m),
Pa,n(W) = inf P|X%(W,a%®) ~ my(W)| < 1/m).

Then, by Theorem 14, p, ,, — 1»-as for each m. Because of Egoroff’s theorem,
for any n > 0 there exists C™ c #" with measure greater than 1 — 12~™ such
that p, , converges uniformly on C‘™. Let C be the intersection of all C‘™,
m > 1, and let C, be the set of all W such that W'/* € C. By the invariance of
v, C, has measure greater than 1 — 7. Because of Lemma 1.3, and by interchang-
ing the infima,

infp, ,, = inf infp, .

c a>n C,
Thus, for each m, the r.h.s. of the last equation tends to 1 as n — co.

In the preceding discussions we restricted the process to start from the origin.

In order to start the process from an arbitrary point x € R we may shift the
medium, i.e., we consider W, € #~ defined by

W(z) = W(x + z) — W(x).
Then we define the process X, by
X.W,t)=x+X(W_,t), t=>0,
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and X accordingly. For fixed W € #~ and arbitrary x € R consider the measure
Q. = P X! on C([0, o0), R) endowed with the usual Borel filtration. It is well
known that {@,; x € R} is a strong Markovian family (cf. [1]).

REMARK. As the transformation formulas show, the continuity of the medium
is not needed to construct the related diffusion process. Furthermore, the connec-
tion between Theorems 1.2 and 1.4 via Lemma 1.3 relies only on the self-similar-
ity of the medium and of Brownian motion. A very interesting case is that of a
stable symmetric medium process of exponent k, 0 < k < 2. If Theorem 1.4
remains true in this case, we obtain X(e®) ~ a*. On the other hand, a stationary
ergodic medium corresponds formally to self-similarity with parameter 0. Assum-
ing for example boundedness, it is not hard to show that in this case the law of
a 1X(a?t) converges weakly for W-a.a. to an unnormalized Brownian motion
with diffusion coeflicient given by

<eW(O)>—l<e—W(O)>—1.

For a more detailed treatment of these and related problems, cf. [3].

2. Depressions of the medium. In this section we introduce the basic
notion of a depression. The aim is to ensure the existence of suitable depressions
for almost all realizations of the medium. It should be mentioned that the
definition here is more restrictive than in [4], cf. the Remark at the end of this
section.

For W € # and two points x, z € R we define

H, .= max [W(x+ &v)— W(x + Av)],

* 2 0<A<é<1

where v = z — x. Roughly speaking, H, , is the maximal ascent which one must
surmount if one wanders along the path W from x to z. Note that in general H, ,
is not equal to H, ,. A triple of real numbers

A=(a,m,b), a<m<ab,
is called a depression for W € #~ if
W(a) > W(x) > W(m) forx € (a, m),
W(m) < W(x) < W(b) forx € (m,b),
and
H, , <H,,, H, ,<H,,.
The depth of a depression A = (a, m, b) is defined by
D=D(A)=H, ,AH,,,
and the inner directed ascent is defined by
A=A(A)=H,,VH,,.
As an immediate consequence of the definitions we obtain for a depression
A(A) < D(A).
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Note that W must have a strict local minimum at site m of depth at least D.
Especially if AV, A® are two depressions of W such that m® < m®, then we
obtain for i = 1.2:

(2.1) max{W(x) - W(m®): m® < x < m®} > DO A DO,

The problem is now whether we have good chances to find, for given r > 0, a
depression A of a sample W such that ¢ < 0, b > 0 and

A<r<D.
Given W € # and r > 0 we define the subset M, = M (W) of R by

M, = {m: there exists a depression A = (a, m, b) of W such that D(A) > r}.

Since W is continuous and because of (2.1), M, consists of isolated points without
finite cluster point. We need the following facts about Wiener measure.

LEMMA 2.2. Let # be the subset of all W € # satisfying
(i) limsup W(x) = o0 as x = oo, limsup W(x) = o0 as x = —o0; .
(ii) for any open interval G C R,

card{x € G: W(x) = sup W} <1,
G

card{x eG: W(x) = u&fW} <1
(iii) W has no local maximum at site 0. Then »(¥') = 1.

The proof is routine, and is omitted. If W € #°, M, is not empty because of
(i) and (ii). Furthermore, (ii) ensures that there exists a unique maximum of W
between two neighbours of M,, i.e., two points of M, such that there is no other
point of M, between them. Hence for each W € # there exists exactly one point
m, € M (W) such that a, < 0 and b, > 0, where a, (respectively b,) is uniquely
determined as the site of the maximum of W between m, and its left (respec-
tively right) neighbour in M (W'). Furthermore,

A(W)=(a,,m,b)
is a depression satisfying
A =A(A) <r, D.=D(A,)=>r.

To check the latter note that (2.1) ensures D, > r. If we assume H(a,, m,) > r,
we can find by (ii) a depression contained in [a,, m,) with depth at least r, but
this contradicts the construction. The same holds for b,, accordingly.

LEMMA 2.3. For each W € # the map
r>A(W)=(a,,m,b)eER?, r>0,
has the following properties:

(i) it is left continuous and changes only by finitely many jumps in each
bounded strictly positive interval,
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(ii) it is monotone in the sense that
(ar’ br) c (au’ bu) if 0<r< u,

and if in addition m, and m, have the same sign, then |m,| < |m,|;
(iii) A, < r < D, if r is not a jump point, and r is a jump point if and only if
A, =r.

ProorF. We have already shown that M, is locally finite for each r > 0.
Obviously r — M, is decreasing, i.e., M, 2 M, if r < u. But then the set of
intermediate maxima is also locally finite for each r > 0 and decreasing in r.
Furthermore, for each r > 0, M, and the set of intermediate maxima generate a
proper partition of W in depressions with depth at least r, A, is the one who
contains the origin. From these facts we can easily conclude (i), (ii), and the first
part of (iii). If r is a jump point, then A, , is greater than or equal to the depth of
a depression just swallowed by A, ,, hence A,, > r. But A, <r for any r > 0.
This completes the proof. O

It should be noted that for a fixed W € #  the range of A, consists of
countably many different depressions which are, by construction, maximal in the
following sense: If (a, m, b) is a depression of W such that a < 0 and b > 0,
then, for an appropriate r > 0, m = m, and (a, b) is contained in (e,, b,).
Conversely, {A,} is the smallest system satisfying this condition. _

By a simple geometric consideration we obtain for each W € #7,

A (W) =a A, (W), r>0,a>0.

If we set A, =0 on #°\ #°, we may consider (A,),. o as a stochastic process
defined on (#°, «, »). Then, since v is invariant, we obtain for each a > 0,

{a™®A,,; 7> 0} =,{A,; r>0}.

.
ar?’

LeEmMA 2.4. For each fixed r > 0,
v(A,<r<D,)=1.

Proor. It is sufficient to prove, by Lemma 2.3, that almost surely r is not a
jump point. By the scaling property of (A,),

p = »(r is a jump point)
does not depend on r. Because of Lemma 2.3, the jump points are locally finite in
each strict positive interval with probability 1. Hence we conclude p = 0. O

REMARK. The definition of a depression in [4] permits A > D, but then
Lemma 3.1 of the next section would fail.

3. Exit times from depressions. In this section we evaluate the time that
X* needs to leave a depression. Suppose we have for some W € #” a depression
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A = (a, m, b) with depth D. For a starting point x € (a, b) let
T, o = inf{t > 0: X(W,t) & (a, d)},

ie., 7, , is the first exit time from the depression.

LEMMA 3.1. For each closed interval I C (a, b) and any é > 0,
lim inf P(|a 'log{r, .} — D|<8)=1.

a—o00 x€]

ProoF. To simplify the notation we omit W in the argument of X7, etc.
First we investigate how exit times are expressible in terms of the Brownian
motion B. Let {L(¢, y); t >0, y € R} be the local time of B. For y, <0, 3, >0
we set

L(y, ¥, ¥) = L(7(y3, %), ¥), YER,

where 7(y,, ¥,) is the first exit time of B from the interval (y,, 5,). From
self-similarity of Brownian motion we obtain for each A > 0,

(3.2) (AL(31, %, %); ¥ € R} =4 {L(Ay;, A3, Ay); y ER)}.

For x, < 0, x, > 0 let 7(x, x5; X*) be the first exit time of X from (x,, x,).
The exit time is then given by

(21, 295 X*) = To(7(Su(1), Sul%2)))

_ ff(s.,(xl), s"‘(xz»exp{ _2aw(S;1(B(u)))} du.
0

Using the local time, this is equal to

[ exo{ —2aW(8; () }L(S,(x.), S,(2), ) dy.
Since S, = exp{aW}, we finally obtain

(38)  r(x, 2 X°) = [ exp(~aW(2))L(S,(x,), Si(x2), Si(2)) .

In order to prove the lemma we define for a starting point x € (a, b) the
interval A by
(a,m) ifx<m,
A= .
(m,b) ifx>m.
Since I is a closed subset of (a, d),

sup W <supW
ANI A

for both possible intervals A. Let
o, , = inf{t > 0: X(t) & A},

o] , = inf{t > 0: X2(¢) = m},
T, o = inf{t > 0: X;"(o;,u +t) & (a,b)},
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where we set 7/, , = oo if o/ ,= co. As an immediate consequence of these
definitions,
j— ’ —_ ’
Tx,a - ox,a + Tm,al{ox,a - x,a}‘

For an arbitrary x € I set §(z) = S(W,, z — x). Then
P(o, ,# 0, ,) = P(B hits S,(a) or S,(b) before S,(m))

/meaW(z)dz'/

<(b- a)exp{a sup W}/

f eaW(z)dz‘
A

f eaW(z)dz\'
A

INA

Hence we obtain for any x € I,
a log P(7, ., #0, .+ 7, o) <sup{W} —sup{W} + o(1),
' ' ' InA A :
where o(1) tends to zero not depending on I, x.
By a simple calculation we get
log{ox,a + Tr;t,a} = [10g ox,a] \4 [log Tr;t,a] + 0(1),

where |O(1)| < log2. Then, since A < D and because of the strong Markov
property, the proof is complete if we can show the following:
(i) for each x € (a, b) and any § > 0,

P(a"'logo, ,> A + 8 + 2a""log(b — a)) < p, s,

where p, ; depends only on @, 8 and p, ; > 0 as a = oo;
(ii) a"'log, ,—~ D

in distribution, as a — 0.

To prove (i) we can assume, by shifting and reflection, that x = 0 and a < 0,
m > 0. Let be n € [0, m] such that

W(n) = may w.
Then, by (3.3),

0o, = IV + IQ,
where

19 = [ IL(S,(a), 8,(m), S,(2) dz,

a

I§2) - fme—aW(Z)L(Sa(a), Sa(m)’ Sa(Z)) dz.
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Setting s (z) = S(z)/S(m), we obtain by (3.2),
IO =, 8,(m) ["e=™OL(s,(a), 1, 5,(2)) dz

<8, (m) exp{ « mln W}LnL(—w,l, 5.(2)) dz

< mexp{aW(n) - a[mm W}(n —a)supL(—o0,1, y)

y<1

<(b-a)’e*supL(-,1, y).
y<1

In a similar way,

I¢52) =d Sa(m)fme_aW(Z)L(sa(a)’l’ su(z)) dz

< sa(m)/n"'e-«wm(— 0,1,1 - §,(2)) dz,
where
5(2) =1-s,(2) = jz"'eawm dx /S,(m).
Let R(-) be a two-dimensional Bessel process starting from the origin (cf. [1],

Section 2.8, problem 6, page 75). Then the last expression of the estimate is equal
in distribution to

Sm) [" e MR 3,(2)) de

Using the well known transformation time — 1/time of Brownian motion, the
latter expression is equal in distribution to

Sm)} [ (o705, (2))82)R¥(1/5(2)) .

This expression is smaller than or equal to
{ max [ “W(z)f “W(x)dx] 1 "% (2)R¥(1/5,(2)) dz

n<z<m

<(b- a)exp{a max [ wW(z) + max w }

n<z<m
x4 ["5,(2)R*(1/5,(2)) dz
< (b~ a) e} ["5,(2)R*(1/5,(2)) de/(m = n).
Denote the last integral by I, then
E[(L)] < ["E[83(2)RY1/5,(2))] de/(m - n) = 12.
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Putting this all together and using Chebyshev’s inequality,
P(a"llogo, , > A + & + 2a " 'log(b — a))
< P(supL(—oo,l, y) = %e“s) + 12e¢7299,
y<1

To prove (ii) we can assume, by shifting, that m = 0, i.e., we consider a
depression (a,0, b) with depth D. Moreover, by reflection, we can assume
W(b) > W(a), especially D is equal to W(b) — W(0). Setting now s (z) =
S(z)/S,(b), we obtain by (3.2) and (3.3),

70,0 =a Su(b) [*e"POL(5,(a),1, 5,(2)) dz
) b
< S,(b) exp{—a[rll’l?] W}L L(—00,1,5,(2)) dz

< (b — a)’exp{a|W(b) — W(0)]} sup{L(- 0,1, y): y < 1}.
Hence we obtain for each § > 0, .
P(a'log Toa <D +8) - 1.

For0<n<1let

a’ = sup{x < 0: W(x) — W(0) = 9D},

b’ = inf{x > 0: W(x) — W(0) = nD}.
Obviously, a’ > a and b’ < b. Let ¢, be the minimum of |S(a)|, S,(b). Then,
setting now §(2) = S(2)/c,,

To0=aCaf € VOL(5,(a), 5,(b), 5,(2)) de

a

> cafb,e-aW(z)L(—l,l’ 5(2)) d

a
> cexp{ —a[W(0) + 9D] } (¥ - a’)
xinf{L(-1,1, y): §,(a’) <y < §,(¥)}.
Then, by Laplace’s method,
a 'logec, - W(b),
a”'log|5,(a’)| > —(1 —n)D,

and the same holds for 4’. Since local time is continuous and because L(—1,1,0) >
0 with probability 1,

PlaYogm ,>(1—1)D-8) -1
foreach § > 0, n > 0.0
4. Localization. In this section we investigate the distribution of X* for

times of the order of e®”, r > 0. Suppose we have for some W € #” a depression
A = (a, m, b) such that a < 0, b > 0.
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PROPOSITION 4.1. Let ry, r, be real numbers such that
A(A) <r, <r,<D(h),
and let K be the closed interval [r,, r,]. Then for each § > 0,
lim inf P(|X%(W,e*) - m|<§) = 1.
a— o0 rek

Proor. To simplify the notation we omit W in the argument of X*°. First we
construct a stationary Markov process Z* on the state space [a, b] which solves

{dZ"‘ =dB — taW'(Z*)dt in(a,b),
reflection at a, b.

The invariant measure should then be given by

po(dx) =e V= dx//be_“w(z) dz.

For an arbitrary starting point x € [a, b] define the process Z* by

A,

Z:(t) = S;Y(B, (T 4(t)), ¢t=0,
where Ba, . 18 a one-dimensional Brownian motion starting from S,(x) and
reflected at S(a), Sy(b). Here T, is defined accordingly replacing B by B, ,. Let

Q; the probability measure on C([0, ), [a, b]) induced by Z2; then we may
realise Z* as the coordinate process with respect to the probability measure

) "o dx)Qe.

It is easy to see that p, is invariant because Z* was obtained by a scale
transformation from a diffusion process governed by the generator

exp{2aW(y)} d?/dy® in(S,(a),S,(d)),
reflection at S,(a), S,(b).

Note that for each neighbourhood U of m,
uu’a(U) - 1'

We know that {Q;‘; x € [a, b]}, as well as {Q%; x € R}, is a strong Markovian
family (cf. [1]). Thus, on the interval [a, b], we can couple the processes X¢, Z*:
They move independently up to the first collision; then they move together up to
the next exit from (a, b); here we stop the coupled process. The coupling can be
realised on a product space with factors according X¢, Z*. The product measure,
as well as other matters related to the coupling, is indicated by a bar. As we shall
see later on,

o, = inf{t > 0: X*(¢) = Z*(¢)}



DIFFUSION IN A WIENER MEDIUM 1217

is at most of the order of e*4 with high probability, as « — 0. Let
7, = inf{t > 0: Z%(t) ¢ (a, b)},
7, =inf{t > a,: Z°(¢t) ¢ (a, b)}.
Obviously, 7, < 7,. Because of Lemma 3.1, for each § > 0,

a = 'a°

prob(jalog 7, = D| < 8) = [“u,(dx)P(la""log

X, a

-D|<8)->1.

Therefore
p,=P(G,<e, e <7) - 1.
Hence we obtain for any r € K and each neighbourhood U of m,
P(X(e*) € U) = P(5, < e*",Z%e*") € U,e*» < 7,)
2P+ po(U) -1 1.

Since the latter estimate does not depend on r, we obtain the desired result.

It remains to show that the first collision time of independent processes X*, Z*
is at most of the order of e*4. The idea is that we let X cross properly over m.
First we consider the case m # 0, i.e., the starting point of X, by definition the
origin, is located in (a, m) or (m, b). Then, by reflection, we can assume that
a<0,m>0.Forn>0,9<D—Alet

b’ = inf{x > m: W(x) — W(m) = A + n}.

Obviously &’ < b, W(a) > W(b’), and H(b’, m) is at most equal to A. Hence
(a, m, b’) is a depression with depth A + 5. Similar to the proof of Lemma 3.1
let g, be the first exit time of X* from (a, b’), and let o be the first entrance
time of X* to the point 4’. By a natural scale argument as in the proof of Lemma
3.1, and because of Lemma 3.1,

lima~'log P(o, # ¢}) <0,

a"'logo, >4 A + .
Since X ¢, Z* are independent,
Z(0}) =4 Pas
and therefore
P(5, <o) = P(2%0) € [0, b], Z%(o}) € [a, ¥'])
>p,f0,0] +pfa, ] -1-1.
Thus, in the case m # 0, we obtain for each n > 0,
P(a'ogg, <A +279) - 0.
For the case m = 0 consider
a” = sup{x < 0: W(x) — W(0) = A/2},
b” = inf{x > 0: W(x) — W(0) = A/2}.
Then a” > a, b”” < b, and (a”,0, b”) is a depression with depth A /2. Because of
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Lemma 3.1,
P(a ogo) <A) > 1,

where ¢/’ is the first exit time of X* from (a’, b”). Since the conditional
distribution of Z*(¢)’) given X“%(¢}’) is equal to p, and because of the strong
Markov property, we can now use the result for the case m # 0. Hence we obtain
for arbitrary small 5 > 0,

lim P(a"logd, <A +3y) =1

a—> 0

whenever a < 0, b > 0.0

PROOF OF THEOREM 1.4. Because of Lemma 2.4, A (W) is a depression
satisfying A, <1, D, > 1 for v-a.a. W. Since we assumed A(a) — 1, we can
apply Proposition 4.1. O

REMARK. As an immediate consequence of Lemma 2.2, Lemma 2.3, and
Proposition 4.1, we obtain for v-a.a. W e #7,

X(W,e") > ,m (W) asa— o0

for any r > 0 up to jump points of A, (W). But the sample paths oscillate more
and more rapidly in the according depressions as a« — co0. Hence we cannot expect
more than convergence of the finite-dimensional distributions.
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