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HOMOGENEITY AND THE STRONG MARKOV PROPERTY'

BY OLAv KALLENBERG

University of Goteborg and University of North Carolina

The strong Markov property of a process X at a stopping time T may be
split into a conditional independence part (CI) and a homogeneity part (H).
However, it turns out that (H) often implies at least some version of (CI). In
the present paper, we shall assume that (H) holds on the set {X, € B}, for all
stopping times 7 such that X, € F a.s., where F is a closed recurrent subset
of the state space S, while B c F. If F = 8§, then (CI) will hold on {X, € B}
for every stopping time , so in this case X is regenerative in B. In the
general case, the same statement is conditionally true in a suitable sense,
given some shift invariant o-field.

1. Introduction. The strong Markov property of a process X at a stopping
time 7,

(SM) P[f,-X e | #]=Q% as,

may be split into a conditional independence part,

(cI) PlgoXe  |#£]=P[0-X€e  |X,] as,
and a homogeneity part,

(H) P[0 -Xe - |X,]=Q% as.

(See Section 2 for notation.) However, it is known that condition (H) alone, for
all extended valued stopping times , implies the strong Markov property (SM)
for all 7 (cf. Blumenthal and Getoor [2], Proposition 8.2).

A related result was obtained as Corollary 2.5 of [5], where it was shown, in
the discrete time case, that recurrence at every state plus the validity of (H) for
every finite stopping time will force X to be a Markov chain (and then
automatically strong Markov). This can easily be seen directly (as pointed out to
me by H. Follmer and M. Jacobsen), but it was originally deduced from a general
result in exchangeability, via a characterization of recurrent and locally homoge-
neous sequences as mixtures of Markov chains. (In this paper, mixing will
always refer to the associated probability measures.) By local homogeneity is
meant that 6, o X and 6, o X should have the same distribution for every pair of
stopping times ¢ and 7 such that X, and X, are nonrandom and equal. Note
that this is the same as condition (H) for all stopping times = with fixed X,.
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Extensions of these results to the continuous time case were attempted in
Section 4 of [5], and a further discussion was given in [6].

The present work emerged from an attempt to find a unified approach to
these results, and to develop a general theory, linking the three conditions (SM),
(CI), and (H), both in discrete and continuous time. As it turns out, an
appropriate hypothesis is to assume that (H) should hold ass. in the set { X, € B},
for every stopping time 7 such that X, € F a.s. Here F is a closed subset of the
state space S, while B is a Borel subset of F, and it is further assumed that X is
recurrent in F, in the sense that

(1.1) sup{t>0; X,e F} = 0 as.

For convenience, the above conditions will be labelled H(F, B).

Note that recurrence holds automatically when F = S. Thus H(S, B) means
simply that (H) should hold a.s. on {X, € B} for every finite stopping time 7. As
a special case of Theorem 2 below, it will be seen that X is a strong Markov
process, whenever H(S, S) is fulfilled, without any further recurrence conditions
on X. This result (mentioned already in [6]) improves the characterizations of
Markov processes and chains given in [5]. More generally, it will be seen that
H(S, B) for an arbitrary B implies regeneracy in B, in the sense that (SM) will
hold as. in {X, € B} for every stopping time 7.

The situation becomes more complex when F is a proper subset of S. In that
case we can only prove that X regenerates in a certain subset B, of B, to be
referred to as the regular part. The regeneracy may fail in the remaining
singular part B,, but Theorem 3 shows that (SM) remains conditionally true in
a suitable sense, given the o-field induced by the shift invariant sets. Indeed, we
shall even prove the stronger statement that X is a mixture of processes
regenerating in B,, and we shall given an explicit expression for the associated
transition kernel.

To get a proper understanding of these results and their proofs, it is necessary
to look at other ways of characterizing the sets B, and B,. The original
definition is analytical, in terms of the kernel @, but Theorem 1 gives alternative
descriptions in terms of the sample path behavior of X. When both F and B
reduce to a single state s, it turns out that B, = B = {s}, so in this case X will
be conditionally regenerative at s. Since the invariant o¢-field is independent of s,
we may conclude, in the context of recurrent processes in countable state spaces,
that X is mixed Markov whenever H({s}, {s}) holds for every state s. This is
essentially the characterization of local homogeneity mentioned above.

It may seem unsatisfactory to have different descriptions of the behavior in
the regular and singular parts of B. In Theorem 4, it will be shown that (SM) is
conditionally true in the entire B, given some suitable invariant o-field. Unfor-
tunately, the associated transition kernel will typically depend on the choice of
conditioning o-field in this case, and there seems to be no natural choice of the
latter. Furthermore, it is no longer clear, in general, whether X can be obtained
as a mixture of regenerative processes.

As for the organization of the paper, precise statements of the four main
results described above will be given in the next section, with the appropriate
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framework duly specified. The proofs will then be given in Sections 3—-7. Finally,
we give in Section 8 a simple example, designed to illustrate the various
complications which may arise.

2. Main results. Throughout the paper, we shall consider a fixed random
process X, defined on some complete probability space (2, #, P). The paths of
X are assumed to lie in the space D = D(R, S) of right-continuous functions w:
R, — S with left-hand limits on (0, o). Here S taken to be a separable metric
space, and for the last two theorems we shall even assume that S is complete.

The o-field in S is taken to be the Borel field ., while D is endowed with the
o-field 2 generated by the one-dimensional projections #,: w — w, from D to S.
The process X is assumed to be adapted to some right-continuous filtration
{#,} € #, such that #, contains all P-null sets of #.

As in Section 1, we shall consider some fixed closed and recurrent set F c S
and some Borel set B C F, and we shall assume that condition H(F, B) is
fulfilled. Here the shift operators 6,, ¢ > 0, on D are defined by

(bw),=w,,,, st=>20, weDb,

and @' is assumed to be a normal probability kernel from S to D, where normal
means that

(2.1) Q{weD:wy=x}=1, x€8.

Note that 6, - X is measurable for every stopping time 7, and that the recur-
rence relation (1.1) defines a measurable event. Standard facts like these will
usually be stated without proofs, if mentioned at all, and we refer to Dellacherie
and Meyer [4] for details.

A basic role in the sequel will be played by the D-set

A= {w:wy,€B}n N {w: w,€ {w} U F},
£>0
consisting of those paths which start in B and whose excursions from the
starting point lie entirely outside F. In terms of A, we may now define the
regular and singular parts of B as

B, = {x € B: QA = 0}, B,= {x € B: @*A = 1}.

Since A° = D\ A belongs to Souslin 2, we have A € 2*, while B,, B, € & *,
where the asterisk indicates universal completion. In particular cases, such as
when F = S, we have A € 9 and hence B,, B, € ¥, which simplifies some of the
arguments below. Note, however, that A € 2 need not be true in general (cf.
Dellacherie [3]).

We proceed to state our first main result, which will play a key role throughout
the paper. Here we show that the set B\ (B, U B,) is thin, in the sense that X,
lies a.s. outside that set for every stopping time 7. The sets where X, hits B, or
B,, respectively, will further be characterized directly in terms of the sample
paths of X, without reference to the kernel Q. Finally, we show that B, is
equivalent, from the point of view of hitting at stopping times, to a Borel set B/,
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and we describe, in terms of the sample paths of X, the random set
M= {t>0; X, B}},
which will play such an important role in the subsequent proofs.
For technical reasons, we shall allow the stopping times to take infinite values.

For an appropriate interpretation in that case, let us introduce an auxiliary coffin
state 9, and define X, = d and 0, X = 9.

THEOREM 1. For every stopping time , we have

(2.2) {6, XA} =({X,eB,}={X,€ B\B,} a.s.
Moreover, there exists a Borel set B! C B,, such that
(2.3) {t=0:0,oXe€A} ={t>0: X,€ B!} a.s.

Here are some consequences of a technical nature which will be useful below:

COROLLARY. The random set M is optional. Moreover, M is a.s.. right-closed
and either empty or unbounded. Finally, we have for every stopping time

{X,eB}={reM} a.s.

At this point, one might try to simplify the setting by redefining @ on the set
B\ (B, U B!), such as to make @*A = 0 hold for all x € B\ B.. However, this
would lead to new complications, in general, since the altered version of @ may
not be measurable with respect to <.

The next result shows that x is regenerative at visits to B,. If F = S, then X
is a.s. absorbed when it first hits B/, and the regenerative property extends to
the entire B. In the particular case when even B = S, X is then a strong Markov
process. This is the result alluded to in [6], and proved for discrete time already
in [5].

THEOREM 2. Condition (SM) holds a.s. in {X, € B,} for every stopping time
7. If F = 8, the validity extends to { X, € B}.

The second statement will be slightly improved below. However, it is generally
impossible to extend the regeneracy of X to the whole of B, as will be seen from
Example 1 in Section 8.

As noted above, X becomes Markov with transition kernel @, when B = F = -
S. Though the original @ need not satisfy the Chapman-Kolmogorov identity,
as required in the standard axiomatic setup, it can be modified to do so under
broad conditions, as shown by Walsh [7].

For the remaining results, the state space S will be assumed to be complete,
and hence Polish. Then so is D in the Skorohod-Stone topology, which ensures
the existence of regular conditional distributions for X.

Before stating the next main result, we shall need to introduce some further
notation. Let us first define the hitting time for B/

z(w) =inf{t>0; w,€ B!}, weD,
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and put { = z° X. Then { is a stopping time, so X, is a random variable, and we
may define the measure

(2.4) p=P{X,€-,¢{< o)}

and the associated @-mixture

@ = [Qu(dx) = E[@%; § < oo,

where E[-; C] denotes P-integration over the set C. Introducing the shift
invariant o-field # in D, given by

I={Ie2*6;1=11t>0},

we may next define the conditional distribution @*[-|.#] as the @"-a.e. unique
probability kernel from (D, #) to (D, 2), satisfying

fIQ"[-V]dQ"= Q(-nI), Ievs.

Apart from the shift operators 6,, we shall also need the killing operators k,,
given for 0 < ¢ < 0 by

' w s<t
kw ={ s’ ’
(kaw), a, s>t

Note that the mappings %, and =, make sense even when ¢ is a function of w. In
particular,

aw=wez(w), weD.

By o(7,) and o(k,) we shall mean the o-fields in D generated by the mappings
@, and k,, respectively. A relation between o-fields of the form ¥ ¢’ ae. m
means that € lies in the m-completion of ¢’, and similarly, ¥= ¢’ ae. m
means that ¥ and ¥’ have the same m-completion.

The process X is said to be conditionally regenerative in a certain set, if X is
regenerative in the set under almost every conditional law. Since the set of all
stopping times is usually uncountable, this condition is much stronger, at least
formally, than the corresponding property for every fixed stopping time.

We are now ready to give a complete description of the behavior in B,, and to
characterize those o-fields which yield conditional regeneracy there. In particu-
lar, this will enable us to determine precisely when X is regenerative in the
entire B.

THEOREM 3. For every stopping time 1, we have
(25) Pl-Xe %, X ¥ =@ [-|1#]°X as.in{X, € B,)},

and X is a.s. conditionally regenerative in B,, given X~ '#. More generally, a
sub-o-field € C 9* satisfies

(26) P[6,cX € -|%, X '¢] =P[6,oX € -|X;, X"'¢| a.s.in(X,<B,}
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for all stopping times =, iff
(2.7) ScéVva(n)csvo(k,) as. P(Xe€-, t<w}
and in that case the first statement holds with X '€ in place of X~ '#.

COROLLARY. The process X is regenerative in B iff
X Y¥=0(X,) as.on{{<ow},

or, equivalently, iff
F=o0a(m) a.e. Q"

Note that the last condition holds automatically when F = S, since in that
case Q"a.e. sample path is constant. Thus the last assertion of Theorem 2
follows from the above corollary.

Our final aim is to extend the conditional regeneracy relation (2.5) of Theorem
3 from B, to the entire B. We shall then employ the notation

p,=P(X,€ -, 7< 0},

Q" = [@%,(dx) = E[Q¥; 7 < o],
where 7 is an arbitrary stopping time.

THEOREM 4. Let the o-field #' C # be such that £’V o(my) =5 a.e. Q"
Then

(2.8) Pl,-Xe |%, X '] =Q*[ |m, F']°6,X a.s.on{X,< B},

for every stopping time v. If #' is further countably generated, then
Q" [|my, £'] can be chosen to be independent of t. The above statements
remain true with S’ replaced by 5" = o(0, ).

We do not know whether a.s. conditional regeneracy can be proved here, as in
case of Theorem 3. Other difficulties encountered in Theorem 4 are the possible
dependence on £’ of the conditional transition kernel in (2.8), and further the
possible nonexistence of a minimal conditioning o-field #’. The complexity of
the general case is illustrated by Example 1 in Section 8.

We proceed to make some general remarks. First of all, it is easy to check that
the proofs below for continuous time carry over with obvious changes to the
discrete time case. Alternatively, we may derive the results for discrete time from
those in the continuous case by an embedding argument, where we let the
successive transitions between states of the discrete time process occur at times
given by a homogeneous Poisson process. Note, however, that some technical
simplifications are possible when time is discrete. In particular, B, and B, will
automatically become Borel sets, so there is no need to introduce the auxiliary
set B.. Furthermore, the statement of Theorem 4 may now be strengthened to
conditional regeneracy, in the sense discussed above. Apart from this, the two
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cases are completely analogous. For the sake of simplicity, we shall therefore
present the main example of Section 8 in a discrete time version.

For a second remark, it is seen from (2.1) that condition (H) holds a.s. on
{X, € B} for a given stopping time 7, iff

P{g,X e -, X, € B} =EQ*{w: we -, w, € B).

Combining this with Theorem 2, we may conclude that the process X is strong
Markov, iff

P{0,-X € -} = EQ¥X,

for every finite stopping time 7. The latter condition may be easier to verify in
specific situations.

For a final remark, note that the local homogeneity of [5] was defined without
reference to any specific kernel. In the same vein, one may try to replace H(F, B)
by a weaker condition H’(F, B), stating that X is recurrent in F and satisfies

P[d,oX € -|X,cdx]=P[0,-X € |X,€ds], zcBaep,Ap,

for every pair of stopping times ¢ and 7, such that X, X, € Fas. (Herep, A p,
denotes the largest measure dominated by both g, and p,.) In the special case
when F = S, we have the following analog of Theorem 2:

THEOREM 2’. Condition H'(S, B) implies that (CI) holds a.s. on {X, € B}
for every stopping time T.

To prove this, one needs to go through the proofs of Theorem 2 and of the
first half of Theorem 1, to make sure that the stopping times required to prove
the assertions for a fixed * may be (randomly) selected from some countable
family {7;}. One may then construct a kernel @ such that (H) holds as. in B for
each 7, and then proceed as before. The details of the argument are omitted
here.

In the same way, one may prove an analog of Theorem 2 for arbitrary F,
though the definition of B, will now depend on 7, in general. As for the last two
main results, a stumbling block seems to be the second half of Theorem 1, whose
proof uses stopping times depending in a nonconstructive manner on the kernel
Q. We do not know how to get around this difficulty.

3. Proof of Theorem 1. Qur plan is to prove (2.2), first for stopping times 7
with X, € F as. and then in general. We shall next discuss the existence of B/,
and prove from (2.2) that the two sets in (2.3) are indistinguishable. From this
the corollary will follow easily.

Proor oF (2.2). Fix an arbitrary stopping time 7 with X, € F as. Our first
aim is to prove that
(3.1) {X,eB}c{6,-XeA}c{X, €B\B,} as.
To see this, conclude from (H) on {X, € B} and from the definitions of B, and
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B, that
P{0,cX €A, X,€B)}=E[Q¥A; X, B| =E[Q¥A; @*A=0] =0
and '
P{6,-X ¢ A, X, € B} = E[Q¥A"; X, € B,] = E[@Q¥A% @¥A =1] = 0.

The a.s. inclusions in (3.1) follow immediately from these relations and from the
definition of A.
Suppose that we can prove the reverse relation

(3.2) {(X,eB,} D {0, X€A} as.
Using (H), (2.1), and the definitions of A and B,, we then obtain
E[Q*A; Q%A < 1] = E[Q*A; X, € B\ B,]
=P{6,-X €A, X, € B\ B}
<P{X,eB, X,€ B\ B,} =0,
which shows that %A = 0 a.s. on {@*-A < 1}. By the definitions of B, and B
we get
{(X,eB\ B} c{X,eB} as,
or for the corresponding differences from {X, € B},
{X,eB}>{X,eB\B]} as.
Thus the three events in (3.1) are a.s. equal, and (2.2) follows.
To complete the proof of (2.2) when X, € F a.s,, it remains to prove (3.2). Let

us denote the metric in S by p, and fix an arbitrary ¢ > 0. We shall first need to
show that

(83) P(6,-X¢ A, X, €B, sup{p(X,,X,);t€[r,0], X,eF} <8} <e,
for sufficiently small constants & > 0 and large stopping times o > 7 with
X, € F as. To this aim, note that
sup{p(X,, X,); t>7,X,€F} >0 on{f,°X &A, X, € B},

by the definition of A, and conclude that

P6,-X ¢ A, X, €B, sup{p(X,,X,);t€[r,71Vvs], X,e F} <8} <¢,
for all sufficiently large s > 0 and small § > 0. Formula (3.3) follows from this if
we replace s by the stopping time o = inf{¢ > 7 V s: X, € F}, and it remains to
verify that X, € F as. But this is obvious by the recurrence of F and the facts
that F is closed while X is right-continuous.

Returning to the proof of (3.2), we shall introduce a countable collection of
auxiliary stopping times ;, as follows. First we partition B into countably many

disjoint Borel sets B; w1th diameters |B;| < 8, which is possible by the separabil-
ity of S. We then deﬁne, for every 1ndex J, an associated stopping time

_ {mf{t €[r,e]; o(X,,X,) 28, X,€ F}, whenX, €B;,
T, otherwise.
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(Here and below, the infimum of an empty subset of [ 7, ] is taken to be 0.) Note
that X,j € F as. Since |B| < 8 while X is right-continuous, it is easy to check
that

(34) {X,eB)}c{X,eB, suw(p(X,X,);te[r,0], X,eF} <8}
From the definitions of 7; and A, we further get the relations

(3.5) {6,cXcA)c (g, -XecA} as,

(3.6) {cXeA X, eByc (X, =X,=X,} as.

Applying (H) to the stopping times 7, and using formulas (3.3)-(3.6), we
obtain

E[Q¥A% 8- X e Al = YE[QYA% 6,0 X €A, X, € B)]
J
< YE[Q%:4%; X, < B}
J
=YP6-X¢A, X, B
J

<YP{f-X¢A, X €B,
J

sup{p(X,, X,); t€[r,0], X,e F} <8)
=P{6,-X ¢ A, X, € B,
sup{p(X,, X,); te[r,0], X,e F} <8} <.
Since ¢ was arbitrary, the left-hand side must be zero, so we get
{0, X € A} c {@%A°=0} = (X, € B,} as,

which is relation (3.2). This completes the proof of (2.2) under the condition
X, € F as.

To extend (2.2) to arbitrary stopping times, let us first assume that  is a.s.
finite. Then (2.2) applies to the stopping time o = inf{¢t > 1 X, € F} since
X, € F as,, and it will then follow for 7 if we intersect by {X, € F} = {7 = ¢}.
If = is allowed to be infinite, we may apply (2.4) to the truncated stopping time
T A n and then intersect by {7 < n} = {7 = 7 A n} to obtain

{0, Xe€A,r<n}={X,eB,,r<n}={X,€B\B,,7<n} as.
From this we obtain (2.2) by letting n — . O
We proceed to prove the second statement of Theorem 1. Since this part will

not be needed for Theorem 2, the reader may skip the proof for the moment, and
return to it in connection with Theorem 3.
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As a first step, we shall prove the existence of a Borel set B, C B,, such that
(2.2) remains true with B, replaced by B/, i.e., such that
(3.7) {6, X €A} ={X, B} as.
for every stopping time .

PROOF OF EXISTENCE OF B!. Our proof will make use of the measure p
introduced in (2.4). However, that definition uses the set B/, so we shall need a

direct way of construction. For each n € N we then introduce the stopping time
7, = inf{t > n: X, € F}, and define a measure u, on S by

(3.8) pC=P6,-Xe€A X, eC}, Ce¥.

The sequence {p,} is increasing and bounded, since the events on the right of
(3.8) are increasing in n, by the definition of A and the recurrence of F. The
measure ¢ may now be defined by

pC = supp,C, Ces.
n
Let us now consider an arbitrary stopping time 7, and conclude as above that,
forallne Nand C € &,
{0,oX€A, X, €C,r<nycff-Xe€A X eC} as.
Hence
Pg,-Xe€A, X, €C,r<n} <pLC=<pC.
Letting n — oo and using (2.2), we get
(3.9) P{X, e B,nC}=P{6,-X€A, X €C} <pC.

Since B, € & *, there exists some Borel set B, C B, satisfying u(B;\ B;) = 0.
Applying (3.9) with C = B¢, we obtain
P(X, € B,\ B]} < u(B,\ B)) =0,
and (3.7) follows by combination with (2.2). O

To complete the proof of Theorem 1, we have to strengthen (3.7) by proving
that the two random sets

M ={t>0:0,XcA}, M,={t>0:X,e€B]}

are indistinguishable. If M, were known at the outset to be optional, then this
would follow directly from the optional section theorem. But the optionality of
M, is in fact a rather surprising consequence of our theorem.

PROOF OF (2.3). Write D, and D, for the debuts of the two sets M, and M,.
We shall first show that M, and M, are indistinguishable within the random
interval (D,, o). Let us then fix an arbitrary number r > 0, and introduce the
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stopping time 7 = inf{¢ > r: X, € F}. By the definition of A, we have
r=inf{t>r:6,oX €A} on{D, <r}.

Since the right-continuity of X implies that M, is right-closed, (for a detailed
argument, see the proof of the Corollary below), we may conclude that §, - X € A
on {D; < r}. But then (3.7) yields X, € B/ as. on {D, < r}, and it follows by
the definition of A that M, and M, are indistinguishable in the random interval
[, 00) X {D, < r}. Since both sets vanish in [r, 7) by the definition of , they
must in fact agree as. in [r,00) X {D, <r}. Hence they agree as. in the
countable union

Lé ([r,0) x {D, <1}) = (D, 0),

as asserted.
To extend this result to [D,, ), note that D, € M, U {0}, since M, is
right-closed. Using the definition of A, we obtain

X, =Xp, te M, n (D,,»),
and since M, and M, agree a.s. on (D,, ), we may conclude that
Xp, €B; as.on{M; N (D,,0) + @}.
But here the set on the right is equivalent to {D, < o}, by the recurrence of F,
and it follows that D, € M, U {00} as. Thus M, and M, are indeed in-

distinguishable on [ D,, ).
It remains to prove that D, > D, a.s. To this aim, let

ME=M20[D2,D2+8), 8>0,

and note that M, is optional for each e. The optional section theorem (cf. [4])
then applies and yields the existence, for each 8 > 0, of a stopping time 7
satisfying ‘

[r]cMm, P{r= 00, D, < 0} <8.
By (3.7) and the definition of M,, we get a.s.
{r<w}={X,€B!, r<D,+¢}
={0,cXe€A,7r<Dy+e} Cc{D <D, +e< o},
and hence
P(Dy,< oo} <P{r<o}+8<P{D <Dy+e<o0} +38.
Since 8 was arbitrary, it follows that
{D,< o0} c{D <D, +¢} as,
and since even ¢ was arbitrary, we get D, < D, a.s. on {D, < oo}. It remains to
notice that D, < D, is trivially true on {D, = o0}. O

PRrROOF OF THE COROLLARY. The set M is optional, since X is right-continu-
ous while B! is Borel. The last assertion follows immediately from (2.2) and (2.3).
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It remains to prove that M is a.s. right-closed and either empty or unbounded.
By (2.3), it is equivalent to prove these assertions for the set M’ = {t > 0;
0,0 X € A}

Let us then fix an w € Q, and let ¢, ¢,,... € M’ = M'(w) with ¢, ] ¢t. Then
X, = X, = .-+ = X, by the definition of A and the right-continuity of X, and
this is the only state in F which is visited after ¢. Thus 6, X € A,so t € M".
This proves that M’ is right-closed.

Let us next fix an w € Q, such that M’ # @ while F is recurrent. It ¢, € M’,
then X, € B, and this is the only state in F visited after ¢,. Thus X, must be
visited agam for arbltranly large ¢, and any such ¢ lies in M’ by deﬁmtlon This
proves that M’ is unbounded. O

4. Proof of Theorem 2. Here we shall first prove the strong Markov
property (SM) in B,, when F is an arbitrary closed subset of S. As before, it will
then be useful to consider the case of stopping times 7 with X, € F as., before
we turn to the general case. Next we shall assume that F = S, and prove in this
case that (SM) remains true in B,. In view of Theorem 1, this will yield the
desired extension to B.

Proor oF (SM) IN B,. Assume first that 7 is a stopping time with X, € F
a.s. It is required to show that

(4.1) P[6,-X e -;C] = E[@*;C],

for any set C € % N {X, € B,}. For convenience, we shall prove instead that
(4.1) holds for any C € &, with

(4.2) {X,e B\B,} c Cc {X, € B}.

This will prove the original statement, since any set C € #, N {X, € B,} may be
written as a difference

= (CU {X, € B\B}))\ {X, € B\B,)

between sets in the latter class.

As in the preceding proof, we shall apply condition (H) to a sequence of
auxiliary stopping times 7;. As before, we fix an arbitrary ¢ > 0, and choose § > 0
and o > 7 such that (3.3) is fulfilled. We shall also need a countable partition of
B into disjoint Borel sets B; with |B;| < 8. The stopping times required in the
present proof are then given by

inf{t € [r,0]: p(X,, X,) 26, X,€ F} onC°n {X,e B},
7. onCU {X, € B;}.

Recalling the definition of ¢ and the convention about empty sets, it is seen that
X,j € F as., so (H) applies to each 7. Note also that, instead of (3.4),

(43) {X,eB}\Cc(X,eB, sup{p(X,,X,);te[r,0], X,eF} <38}
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We may now conclude from (H), (3.3), (4.2), (4.3), and the definition of 7; that
|P[6,> X € ;€] - E[Q*; C]|
< Y|E[1{6,-X € -} - @%; X, € B, C]|
J

= L|E[1{8,°X € -} - @*; X, e B, C||
J

=Y |E[1{,-X -} - @%; X, € B, C7]
J

< LP[X, € B;C
J

<Y P{8,-X ¢ A, X, € B, sup{p(X,, X,);
J ‘

te[r,0], X,e F} <8}
=P{6,-X ¢ A, X, € B,sup{p(X,, X,);
te[r,06], X,eF} <8} <e.

Since & was arbitrary, the difference on the left must vanish, as asserted in (4.1).
This proves (SM) in B, for stopping times 7 with X, € F as.

We next consider an arbitrary finite stopping time 7, and a set C € # N
{X, € B,}. Putting ¢ = inf{t > 71 X, € F} as before, we get X, € F a.s., and it
is further seen that

(4.4) ce#n{r=9,X,€B]}.
Thus (4.1) holds with ¢ in place of 7, and we get in view of (4.4)
P[g,-X e -;C]=P[4,-X -;C] =E[Q*; C] = E[@*;C],

as desired.
For general 7, let again C € # N {X, € B,}, and note that

Cn{r<n}=Cn{r=1An} e#,,
(cf. [4]), and that moreover
Cn{r<n)c{X,€B,r<n}c (X, €B).
Hence (4.1) applies with = and C replaced by 7 A n and C N {7 < n}, and we get
Pl[0oXe - ,r<n;C]=P[6,,,oX€ -, 7<n;C]=E[Q¥%; r<n,C]
= E[Q%; r<n,C].
Since 7 is finite on C, we obtain (4.1) from this by letting n — oo0. Our proof is

then complete. O

Proor oF (SM) IN B, WHEN F = S. If F = S, then
A={ww,=w,€B} = {w=c,: x €B},
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where c,(t) = x, so by Theorem 1 we get for every stopping time 7
0,oX =cy as.on{X, €Bj}.
Hence, as. on {X, € B,},
Pl6,oX € -|#] = Pley, € |#]| =1{ex, € -} =P[b,-X € |X,],

as desired. O

5. Some auxiliary results. In this section we shall collect some auxiliary
results, needed for the proofs of the last two main theorems. We shall also
introduce the stopping times 7,5, 7,,... and the associated excursions Y,,Y,,...,
which will later play a basic role. The only result in this section which may be of
some independent interest is Lemma 5.6 on exchangeable sequences.

Our first aim is to restate the homogeneity condition (H) for visits to B/ in
terms of the mixture @*. In the proof, we shall make use of the optional set
M = {t > 0; X, € B/}, introduced in Section 2. .

LEMMA 5.1. Let T be a stopping time satisfying X, € B! a.s. on {§ < oo}.
Then

(5.1) P{f,oX e ,{<owo} =@
and
(5.2) Pl oXe X ¥] =@ [-|1#]eX a.s.on{{< o).

PRrROOF. To prove (5.1), let us introduce the auxiliary stopping times
r,=inf{t>7An: X,eF}, neN,
and note that X, € F as. for each n. Hence (H) applies to each 7, and we get
(5.3) P(6,Xe -, X, € B} =E[@%; X, €B!].
Now both X, € B and X, € B/ imply { < oo, and on the same set 7, = 7 for
all sufficiently large n. Letting n — oo in (5.3), we thus obtain
P{f,oXe -, {<ow}=P,-Xe-, X €B]}
= E[Q%; X, € B] = E[@%; { < »].

Next conclude from (2.3) that 6, X € A ass. on {{ < o}, and that moreover
¢ = inf{¢ > 0: 6,0 X € A} as. Since the latter set is right-closed, it follows that
even .o X € A as. on {{ < o}. Using the definition of A we thus obtain
X, = X; as. on {{ < o0}, and so, by the definition of p

(5.4)

E[Q%; ¢ < o] = E[Q%; ¢ < w] = [Qu(dx) = @~

Combining this with (5.4) yields (5.1).



HOMOGENEITY AND THE MARKOV PROPERTY 227

To prove (5.2), note that {{ < o} a.s. equals {M unbounded} € X~'#. For
any I € # with {X € I} c {M unbounded}, we get by (5.1)

P Xe -, Xel} =P(6,cXe -NI{< o}
=Q(:n1)= [Q-1r]dQ*

= [@[-pldPxt= [ @-|#]-XdP,
I (Xel}
as desired. O ’

We proceed to discuss some properties of the random set M. Recall from the
corollary to Theorem 1 that M is a.s. right-closed and either empty or un-
bounded. We shall also need some information about the gaps of M. By a gap we
mean an open interval (a, b), such that (a, b) N M = & while a, b € M, where
M denotes the closure of M. Note that the gaps of M are disjoint.

LEMMA 5.2. For any fixed h > 0, the random set M has a.s. either no or
infinitely many gaps > h.

PROOF. Applying Lemma 5.1 to the stopping times
r,=inf{t>n:teM}, neZ,
we get
P{M has gaps > h} = P{M hasgaps > hin[n, )}

=P () {Mhasgaps > hin[n, )}
n=0
= P{M has infinitely many gaps > h}.
Since the event on the right implies the one on the left, the two must be a.s.
equal. Thus the possibility of finitely many gaps > A is a.s. excluded. O

Combining this result with Theorem 1, it is seen that with probability one
either M = [{, o) for some { € [0, 0], or M has infinitely many gaps greater
than some A > 0. It is convenient to state a corresponding fact in terms of
suitable invariant sets in D. Let us then introduce the set-valued function

m(w) = {¢20; w,€ B/}, weD,
and define the £sets
I;=U{weD:meobw=1[0,00)},
>0

I;= N {weD: mobwhasgaps >h}, h>0,
>0
L=Rurn, k>0 I=UI,.
h>0
In this notation, we have with probability one either M = & or X € I,.
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An important role in the sequel will be played by the stopping times 7y, 7, ...
and processes Y;, Y,, ..., defined for fixed A > 0 by

=8 meinf(tzn_ +hiteM), nel,

X(t+m,_,), 0<t<m,
Y"(t)={3 l t>r

Note that the sample paths of Y;,Y,,... lie in the space D, = D(R, S,), where
S, is obtained from S by attaching d as an isolated point.

Let us write Y for the random element (Y}, Y;, ...) of Ds°. In the latter space,
the discrete shift operators 8, are given by

o(yl’ y2"”)=(y2’ y3”")’ 0n=0n'

We shall need to construct universally measurable mappings ¢ and 4, satisfying
poX =Yand y oY =6;°X, and commuting in a suitable sense with the shift
operators on D and Dj°.

Let us then define the functions ¢, ;,... and ¢, ¢,,... on D, in the same

n € N.

way as 7, 7;,... and Y,,Y,,... were defined in terms of X. More precisely, let
ty=2=infm, d=inf{s>h;sem},

(5.5) t,=t,_,+de6, , neN,

(5.6) ¢, =0, °k, =¢,°0, , neN,

and put ¢ = (¢;, ¢y, -..). All these functions are clearly 2 *-measurable.
To construct a mapping in the opposite direction, let

d'(w) =inf{t>0: w,= 9}, weED,,
and define for y = (y,, ¥5,...) € D§°
rn(y)=d/(yl)+ +d,(yn)’ nez,,

_ yn(t_rn—l)’ rn—ISt<rn’ nEN’
W= (% S

LEMMA 5.3. The above functions are universally measurable and satisfy
(57) (P°0t"=0n°(P, nez,,

(5:8) yobop=(6°9)op=6,, nez,.

Moreover, there exist universally measurable functions n,,n}: I} - Z,, t >0,
such that

(5.9) b,,°o0=0,°9°0,0nl,,t>0.

Proor. For every ¢ > 0 we have
t+dob,=t+inf{s>h:s€mob,} =inf{s+t>h+t:s+t€m}
=inf{s>h+t: s em},
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)
200, 4.9,=0, t>0.
Putting ¢t = ¢,_,, we get in particular
200, =0 ontheset {t, < oo}.
More generally, it is seen by induction that
(5.10) tyol, +t,=t,., kneZ,.
Indeed, assuming (5.10) to be true with 2 — 1 instead of %k, we get by (5.5)
tyol, +t,=(t,_,+dob,_ )b, +t,

=1lp_° at,, +t,+do otk_loo,n+t,,

=t yntdob, | =t
as desired. Combining (5.10) with (5.6) yields

Prob, = @;° 0‘k—1°0tn° b6, = ¢1° otk_1°0,n+tn =910, = Prin

and (5.7) follows.
To prove (5.8), note that

t,,t+dog,=t, ne€ N,
and conclude by summation that
(5.11) r,eo=t,—z on{z<w}, nez,.
Assuming that z < oo and ¢ + z € [¢,_,, £,), We get
(Vo@)i=gt—r_io9) =gt +2—t,)) =w(t+z2)=20,2),
)
(5.12) Yyop=40,

at least when z < co0. But then (5.12) must be generally true, since it reduces to a
triviality when z = c0. Combining (5.12) with (5.7) and (5.10) yields

4’ °0n°(p = 4’ °(p°0t,, = 0zo0,ﬂ°0t,, = azo0tn+t,, = ot,,’

which proves the equality between the extreme members of (5.8). On the other
hand, we may use (5.11) and (5.12) to obtain for z < oo

(arno1p)oq) = ar,,o(po‘)bo‘p = at,,—zooz = ot,,’

which again extends immediately to arbitrary z. Thus the right equality in (5.8)
is also true, and so the proof of (5.8) is complete.

To prove (5.9) for suitable n, and n}, let us first assume that w € I}, and
define

T(w) = inf{s > 0: [s,5s + k] n m(w) #+ 2},
n(w)=inf{neZ,:t,>T-0,+¢t}, ¢t=0.
Note that T and n, are finite and 2 *-measurable functions of w on I. We shall
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show that

(5.13) tysr=t+ tyog+r°0, kEZ,, t20.

To see this, conclude from the definitions that

=inf(sem:s>To0,+t}, t=0.

Hence

of,=inf{s€mof, s> Tob,}
=inf{s>0:s+tem,s+t>To0,+t}
=inf{fuem:u>Teb,+t}) —t=t, — ¢

which proves (5.13) for £ = 0. Combining this special case with (5.10), we obtain
more generally

no°0,

tupsh =t + 400, =t+ ¢

ngo6,

°f,+ t)° 0t+t,,o.gt

—t+tn o0, 0t+ tkootno°0°0t=t+ tn0°0,+k°0t"
t

as desired. Using (5.13), we get for k € N
Pringo0, ° at = 0!((' + tk+noo0,—l) A tk+no°0,)

= w(( + tk+n,—1) A tk+n,) = @Prin,»
so (5.9) holds with
ni(w) = ny(0w), ¢=0.
It remains to consider the case when w € I§. Let us then define
T'(w) = inf{s > 0: w,€ B, fw = ¢, },
N(w) =inf{k € Z_: t,(w) > T’(w)},

and note that N is finite and 2 *-measurable. Moreover, w, = w,, for s > ty
while (bw), = w,, for s > ty.g,° 0, so we get

PN+k = Pnog+r°0 kREN, t20.
Thus (5.9) holds in this case with
n (w)=N(w), ni(w)=N(6w), ¢t=0. m]
It is convenient to restate (5.7) and (5.8) in terms of X and Y:
COROLLARY 5.4. For each n € Z , we have identically
(5.14) @ol o X =0,°Y,
(5.15) yo6,°Y=4, oX.
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Our next aim is to relate the shift invariant ¢-fields in D and Dj° through the
mapping ¢. In D;°, the invariant o-field is given by

F={J€2*: 07U =J).

To stress the dependence of ¢, Y,... on A, we shall sometimes write ¢,,Y,,... .

LEMMA 5.5. For each h > 0 we have

(5.16) INnI,Corlg.
Moreover, there exists some set J,, € ¢, such that

Proor. Let I € #N I, be arbitrary, and put
J=N U6y
m=1n=m .
Then clearly J € _¢. Using Lemma 5.3, the invariance of I and the finiteness of
t,, ty, - -+ on I, it is further seen that
{q) S 0,,“1,(:‘11} = {yob,cpel}= {0t" el}=1,
S0

{ped} = ﬁ G {peb; N T} =1L

m=1n=m
This proves (5.16).
From (5.16) it follows in particular that I, = ¢ ~%J, for some oJ,, € _£. To prove
(5.17), it remains to show that

(p_l(fﬁ Jh) Cfﬁ Ih'

Let us then consider an arbitrary set J €,¢N¢J,, and put I = ¢~ J. Then
I c I, so we need only prove that I € #. Using Lemma 5.3 and the invariance of
J, we get for any ¢ > 0 and for n, and n} as in (5.9)

6,1 =06 "9 ={pob,eJ} = {0n5°‘P°0tEJ}
={0,coed}={ped} =0 =1,
as desired. O

We conclude this section with a general result about conditionally ii.d.
random sequences in an arbitrary state space S. Let us then write 6 for the shift
operator on S® and # for the associated o-field of shift invariant measurable
sets in S*.

LEMMA 5.6. Let § = (§,£,,...) be a random sequence such that 6§ is
conditionally i.i.d. and independent of §,, given some o-field 9. Then this



232 0. KALLENBERG

remains true with 9 replaced by ¢ '€, iff
(5.18) - Fc 6c oV a(m) a.s. PEL
Note that this statement contains a number of known results in exchangeabil-
ity theory (cf. Aldous [1]).
ProoOF. By hypothesis,
(5.19) Plgote -|¢,9] = (P[¢, € - 19]) =»>.
Hence, by the law of large numbers,
1 n
lim — ) 1{¢,,€ B} =»B as,
n—oo N j=1
s0 o(») C £719717 as., and therefore
Ploote |4, 6707 = (P[¢, € -Jgo, 707 #])
= (P[&, e -16707Y])".

Thus (5.19) remains true for ¥ = ¢~ !¢, with any o-field ¥ satisfying (5.18).
Suppose conversely that (5.19) holds with ¥ = ¢! for some o-field ¢. By
Kolmogorov’s 0-1 law, we obtain for any I € S

Plootent'¢] = (P[¢, e -1¢7¢])"I=00r1 as,
and it follows easily that, a.s.,
(6otel)={Plo-tenti¥] =1) e¢l%.

Thus §79"FCc ¢ 1% as., s0 079 C € as. PEL

To derive the upper bound in (5.18), note that (5.19) remains true with
g =0(£,) V £ '¥. Applying the law of large numbers to successive blocks of n
components, we get a.s.

P[(£1,---s84) € “l60, §7'€] = P[(£y,.., £,) € -160, §707 5],
and hence also
Plgge -, (b1ees £n) € “lho, 7€) = Pég € -, (1,0, &) € [0, 707 7].
By a monotone class argument, this extends to
Plée -l 7€) = Pt -1, £77077],
and we get in particular, for any C € %,
1{{ € C)} = P[t € Cl¢,, t €] = P[t € Cl&,, £707F] €0(&,) VvV E9 5.

Thus £ 1€ C o(§,) V § 1077 as,s0 ¥C o(m) VO~ ¥ as. P£71. 0O

6. Proof of Theorem 3. The main idea of the proof is to show by means of

Theorem 2.1 in [5] that the sequence of excursions Y}, Y,, ... is exchangeable and
hence conditionally i.i.d. This yields the conditional form of the strong Markov
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property at the random times 7,, 7;,... . Since an arbitrary stopping time in M
can be approximated by times ,, the general result follows from this by a
continuity argument. Similar arguments were used on several occasions already
in [5].

We proceed to the detailed argument, and begin with (2.5). Here it will be
convenient to consider a special case first.

PROOF OF (2.5) WHEN X € I, As. Let ¢ be the discrete filtration associated
with the stopping times 7y, 7;,... above, ie., 9, =%, forn € Z,, and note that
Y is adapted to 9. If ¢ is a finite ¢ stopping time, then 7, is an ¥ stopping
time, and moreover X, € B a.s. since M is right-closed. Hence

P{g e} =@
by Lemma 5.1, so by Corollary 5.4 we have
P{f,cY€ -} =Ppob,cX€ -} =@y,
independently of ¢. We may then conclude from Theorem 2.1 in [5] that Y is
exchangeable, and that indeed
Pl6,cYe -|9,,v]=v*=P[Y€E -|r] as,

for some random probability measure » on D,. This extends by a standard
argument to

P[6,cY€E -|9,,v] =P[Y€E -]p] as,
for finite ¢ stopping times o. Noting that
o(v) =Y =X as. ,
by Lemmas 5.5 and 5.6, and using Lemma 5.1 and Corollary 5.4, we hence obtain
Pl6,cXe \#,X VY| =P[y-0,0Ye |9, »]=P[yoYe ]
=P[goX e 1X"¥] =@ -}#]-X.
This proves (2.5) for stopping times  of the form 7.
To extend this to arbitrary stopping times = with X, € B! a.s., put
m=inf{r,>mneZ },

and note that 7, is a.s. of the form 7, for some ¥ stopping time ¢. Thus (2.5)
holds with 7, in place of 7, and since %, C Z, , we get

Plo,oXe 1%, X V]| =@ [1f]-X as.

This clearly remains true for every sufficiently small A > 0.
Now 7, = 7 a.s. as h — 0 by construction, so we get

P[X(r,+t) > X(r+ t)|#, X ¥ =1 as, =0,

by the right-continuity of paths. Hence the finite-dimensional distributions of
0,h o X converge weakly to those of 6, o X, a.s. with respect to P[-|#,, X~1#]. On
the other hand, these distributions are a.s. given by @*[ - |# ] X. Thus both sides
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of (2.5) have the same finite-dimensional distributions, and since the latter
determine the whole distribution, (2.5) is generally true.

Let us next consider the case when 7 is an arbitrary finite stopping time. We
then define o = inf{t > m: X, € B/}, and note that o is a stopping time with
X, € B! as., since M is a.s. right-closed. Hence (2.5) holds with 7 replaced by o,
and since Z N {0 = 7} = % N {0 = 7}, the original relation must be a.s. true on
{0 = 7}. It remains to notice that {X, € B/} C {¢ = 7} by the definition of o.

We finally assume that 7 is an arbitrary stopping time. Then (2.5) holds
with 7 replaced by 7 A n for any fixed n € N, and since &%, ,,N {r<n} =
&. N {7 < n}, the original relation is then a.s. true on {X, € B;, 7 < n}. The
assertion for T now follows by letting n — c0. O

PROOF OF (2.5) IN THE GENERAL CASE. From the assertions in Lemma 5.1,
we get immediately the corresponding statements for the conditional probabili-
ties P[-|X € I,] and Q"[-|I,] = @“(- N I,)/Q"I}, provided that P{X € I,} > 0.
Proceeding as in the special case above, it is then seen that

Plb,oXe \%, X ¥, Xel,] =@ [\, L,]-X
as.on {X, € B/, X € I,,},

which is equivalent to (2.5) on the set {X € I,,}. Since A is arbitrary, this extends
immediately to {X € I,}. It remains to notice that {X, € B/} c {X € I} as,
by Lemma 5.2. O

PROOF OF THE CONDITIONAL REGENERACY IN B,. We shall prove the stronger
statement that, for almost every conditional distribution P’ = P[-|X~1#], there
exists some probability measure @’ on D, such that

(6.1) P[g-Xe-|#]=Q on{X,e B!} as. P,

for every stopping time 7. By (2.5), this holds with @” = Q*[-|.#]° X for every
fixed stopping time 7. The point is that the exceptional P-null set where (6.1)
may fail can be taken to be independent of 7.

To see this, note that (6.1) holds simultaneously for the countable collection of
stopping times 7, , = { and

Tn’k=inf{t21'n_1’k+k‘1,tEM}, n,keN,

outside a fixed P-null set. For any P’ and @’ with this property, we may now
proceed as above to extend (6.1) in steps, first to stopping times of the form 7, ,
with o random, then to stopping times r with X, € B/ a.s. P’, next to all finite
stopping times, and finally to the general case. O

From (2.5) follows the same relation with X~ !¢ in place of X~ ', for
arbitrary € satisfying (2.7), and (2.6) then follows by applying (2.5) to the
stopping times 7 and . To complete the proof of Theorem 3, it thus remains to
show that (2.6) for all stopping times 7 implies (2.7).
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PROOF OF (2.7) FROM (2.6). Fix & > 0, define Y = (Y, Y,,...) as before, and
put Y, = k; o X. From (2.6) it is seen that Y}, Y,,... are conditionally i.i.d. and
independent of Y,, a.s. on {{ < o0} and given the o-field X '¢V o(X;). By
Lemma 5.6, this implies
(6.2) Y c X9V e(X,) c Y ¥V o(Y,) as.on{{<o}.

In particular we may take ¥ = .#, and then we get in conjunction with Lemma
5.5 and Theorem 1

X YcYy YcXx ¥y o(X;) =X as.on {{ < w]}.
Thus Y™If= X~ as. on {{ < o0}, and (2.7) follows by substituting X ¥ for
Y ¥ in (6.2).0

PROOF OF THE COROLLARY. From Theorems 2 and 3 it is seen that X is
regenerative in B iff

(6.3) fco(m)csVvoe(k,) as.P(XeE -, ¢<ow)}.
Now m, is clearly shift invariant on the set where §, € A while m is unbounded,
and the latter set has full measure, since
P{6,o X € A, M is unbounded} = P{{ < o0},
by Theorem 1 and its corollary. Thus
o(m,)cf as.P(Xe-,{<ow]},
so (6.3) reduces to
SF=o(m,) as.P(Xe€ ,{<ow}.
Using the definition of .#, we may rewrite this in the form
JI=o(m) as. P{fieX€ ,{<o}=@q" O

7. Proof of Theorem 4. Our plan is first to derive (2.8) from the three
preceding theorems. Our next step is to construct a r-independent version of
Q" [+|my, #'] from a product measurable version of @’[-|.#’], where the latter is
known to exist when #’ is countably generated. To prove the final assertion, we
shall show that £ is equivalent to some o-field satisfying the previous
requirements, in the sense of yielding the same conditional distributions in (2.8).

Proor oF (2.8). Our first aim is to prove that (2.8) holds a.s. on {X, € B,}
for any stopping time 7. To see this, fix a stopping time 7, let I € #’ and
C € * N B, be arbitrary, and conclude from the invariance of I and the
definitions of @*+ and Q*[:|m,, #’] that

PfcXe:,Xel, X,eC) =P, X -nInmn'C}
=@(-nInm'C)
= fQ”'[‘lﬂo’j/]l(Inﬂo_lC) dQ*
=E[Q"[ |m, F']°6.-X; X1, X, C].
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Hence
Pl[foXe ., Xel|X,]=E[Q"[-|n, #£']°0,°X; X € I|X,]
as.on {X, € B}.
Since (SM) holds in B, by Theorem 2, it follows that
Pl6,oXe -, Xe#]=E[Q"[ |n, F']°0,° X; X € I\F]
as.on {X, € B}.
Thus we get, a.s. on {X, € B},
Plo,cX e |7, X7\8'] = E[Q“[-|m, £']° 0, X|7;, X"\5"]
= Q"[+|m, £7]0 6, X,

as asserted.
By Theorem 1 it remains to prove (2.8) a.s. on {X, € B,}, and by Theorem 3 it
then suffices to show that

(7.1) Q" [ |7y, F']00,oX=@Q"[-|#]°X as.on{X, €B,)}.

To see this, note that X, = X, as. on {X, € B;}. Hence p, < p on B,, and
therefore Q" < @* on m; 'B,. Thus we get, by the hypothesis on #’

Q*[-1m, #'] = @[-Im, #'] = @[-1#] ae. @ onmy'B,
and (7.1) follows by the definitions of # and @*-. O

For the next step of our proof, we shall need the following standard result
(cf. [4]):

LEMMA 7.1. Let P? be a probability kernel from a measurable space (S, &)
into some Polish space (T, #), and let £’ be a countably generated sub-o-field
of F. Then P°[-|#'](t) has a regular and ¥ X F’-measurable version.

We may now prove the second statement of the theorem.

PROOF OF THE 7-INDEPENDENCE. If #’ is countably generated, then Lemma
7.1 yields the existence of a regular and product measurable version of the
conditional probabilities @[ |.#’]. Given any such version, we shall prove that

(7.2) Q“[-|m, £ J(w) = Q[- 17" ](w) ae. Q",

for every stopping time . Since the right-hand side is o(7,) V #’-measurable, a
7-independent version of @*-[-|.#’] may then be defined by the equality in (7.2).

To prove (7.2), note first that E(¢(f) = (E£)f for any random measure ¢ and
measurable function f > 0 on the same space. Using this fact, along with the
definitions of @*- and @ [-|#’] and the normality of @', we get for arbitrary
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Ies andCe¥
Q“(-NnInm'C)=EQX(-nInm'C)=E[Q%(-n1I); X, eC]

= E[[er[-w] dQ%; X, € C
I

=Ef _ @u[-}r'])(w)Q*(dw)
Inm 'C

INmg

= [ QLN (w)Q(dw),
as desired. O

To prove the last statement of the theorem, let us introduce the space M(D;)
of probability measures on D,, and let .# be the o¢-field in M(D,) generated by
the mappings m —» mC, m € M(D,), for arbitrary C € 9, = 2 Vv {d}. We shall
need another standard fact:

LEMMA 7.2. The o-field # in M(D,) is countably generated.

Proor. Note that 2, is the Borel o-field in D, generated by the
Skorohod-Stone topology. Similarly, . is the Borel o-field in M(D,) generated
by the topology of weak convergence for probability measures on D,. Since S, is
Polish, so is D, and hence also M(D;). In particular, .# is then generated by any
countable base in M(D;). O

PROOF OF THE LAST STATEMENT. Fix positive numbers %, | 0, and write
J1=Ihl; Jn=Ihn\Ihn_1’ n=2,3,...,

where the sets I, h > 0, are defined as in Section 5. Let -», be the random
probability measure » of Section 6 corresponding to A = A, and conclude from
the law of large numbers that », hasa Y, ! . measurable version. Since moreover
Y, #=X"# on {X€J,) by Lemma 5.5, there exists an ./#-measurable
mapping m,: J, = M(D), such that v,=m,o X as. on {X € J,}. Let £’ be
the o-field in D generated by the mappings m,, m,,... .

By construction we have £’ c #”, and from Lemma 7.2 it follows that .#’ is
countably generated. By Lemma 5.6 it is further seen that X ¢’/ = X~ ¢ on
each set {X € J,}, so we get

(783) (8,°X)'F' =X =X"¥=(6X)"'F as.on{{ < o},

and hence £’ =4 ae. Q*. Thus #’ fulfills the hypotheses of the theorem, so
(2.8) must hold with some 7-independent version of @*[-|m,, £'].
To complete the proof, it suffices to show that

PlcXe \%,X ¥'|=Pl4-Xe %, X "] as.
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and
Q*[-|my, £']1 = Q*[|m, £”] ae. Q" onmy 'S,

in the sense that any version on the right is also a version on the left. Since
£ C £, it is then enough to show that

(7.4) XY =X as.
and
(7.5) F'=5" ae. Q" onm’S.

Here (7.4) follows from (7.3) and from the fact that {{ = oo} is a.s. an atom of
both o-fields. Given (7.4), we get as before

(6, X) 'S =X =X"¥"=(0,0X)""#” as.on{r< oo},
which implies (7.5). O

8. Examples. The main purpose of the present section is to illustrate the
results of Section 2 by a simple example, exhibiting most of the features of the
general case. Here we choose the time scale to be discrete, for convenience, but it
is easy to construct an analogous example in continuous time, by letting the
transitions between states occur at times given by a homogeneous Poisson
process.

ExampLE 1. Let S={0,1,...,8}, and let @ consist of the following six
“paths” from Z  to S:

w, = 0171717...,  w;=0383838...,  w;=0555...,
wy = 0272727..., w,=0484848...,  w;=0666....

Let # be the discrete o-field on Q, and let %, #,,... be the filtration generated
by the identity map X = (X,, X,,...) on Q. Note that %, = {&,2} while
F,=F,= --- =%.0n Q we introduce the probability measure P, assigning
the same probability 1/6 to all paths.

Using the fact that stopping times with respect to {#,} are either identically
zero or strictly positive, one can easily show that H(F, B) is true with F =
{0,5,6,7,8)} and B = {0,7,8}. Here Q° = P, while Q" assigns probability 1/2 to
each one of 6,0, and 6,w,, and similarly for @%. Thus B, = {0} while B, = {7, 8},
and it is easily seen that X regenerates in B, but not in B,. This illustrates the
statements of Theorems 1 and 2.

Turning to the statements of Theorem 3, note that @* gives mass 1/4 to each
of the paths 0,0, ..., f,w,. Since these are separated by invariant sets, it follows
that @[ |#](w;) degenerates at f,w; for j = 1,...,4. Since moreover X “lg=F
in the present case, it is seen that P[-|X '#)(w;) degenerates at «; for j =
1,...,4. Thus (2.5) holds as asserted. However, the two equivalent conditions of
the corollary fail in the present case, since o(X;) N {{ < o0} is the o-field
generated by the partition ({,, @y}, {w3, @ }), while X~ N {{ < o0} is the one
generated by ({w,},..., {w})
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Most interesting in the present example is perhaps to look at the statements
of Theorem 4. Since S is finite, we can always choose

QF'[°|770’ jl](w) = Qw"[’lf’](w), w= (01,-..,036,02(01,...,02004,

regardless of the nature of #’. In particular, (2.8) holds with @ as above for
F' =4, but also for £’ equal to, say,

S = 0(113: I24) or Sy = °(I14: I),

where I;; denotes the set of paths visiting the set {z, J} infinitely often. For the
latter, Q’[ |#’] and QS[ |#’] are a.s. degenerate as before, but Q°[- M1
is nondegenerate for j = 1,2, and differs for the two cases. In fact, it is
easily verified that Qo[wiLﬁ{](wj) =1/2 for i, j€ {1,3} or i, j € {2,4}, and
similarly for #; with 3 and 4 interchanged. Note also that both 4/ and %
and locally minimal, in the sense that, whenever a o-field #’ € #/ is such that
F'V o(my) = F ae Q" then ' =7/ ae Q" This illustrates the nonunique-
ness of kernel and nonexistence of a mmlmal conditioning o-field in the state-
ment of Theorem 4.

We conclude this section by correcting an error in [5] related to the present
work. As part of Theorem 4.5 in [5], it was claimed that a real valued,
continuous, recurrent, and locally homogeneous process X on P, is conditionally
strong Markov. However, the proof in [5] is false in general, unless we exclude
the possibility of paths with constant pieces. (Our mistake was to add up
uncountably many null-sets, corresponding to the possible states of constancy.)
The following counterexample shows that the difficulties are intrinsic rather
than merely technical.

ExAMPLE 2. Consider a Brownian motion B, and an independent homoge-

neous Poisson process with jumps at 7, <7, < -+ . Put 7y = 0, and define
o0
X,= ¥ B(((t=k) V) Ameyn) — B(m), 20
k=0

Thus X consists of diffusion parts of independent exponential lengths, alternat-
ing with constant parts of length 1.

Since the levels of constancy B(r,), B(t,),... have diffuse distributions, it is
easily seen that X regenerates at every fixed state. But X is not Markov or
conditionally Markov, even in the weak sense, since every fixed time £>0 -
belongs with positive probability to some interval of constancy (7, + k& — 1,
T, + k).
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