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A SECOND-ORDER ASYMPTOTIC DISTRIBUTIONAL
REPRESENTATION OF M-ESTIMATORS WITH
DISCONTINUOUS SCORE FUNCTIONS

BY JANA JURECKOVA AND PRANAB KUMAR SEN! A
Charles University and University of North Carolina, Chapel Hill

For a nondecreasing score function having finitely many jump discontinui-
ties, a representation of M-estimators with the second-order asymptotic
distribution is established, and the result is also extended to one-step versions
of M-estimators.

1. Introduction. Let {X;; i > 1} be a sequence of independent and identi-
cally distributed random variables (i.i.d.r.v.) with a distribution function (d.f.)
F(x — 0), where 8 is an unknown location parameter. For a general estimator
T,=Ty(X,..., X,) of 0, an asymptotic representation of the form

n

(11) nY%T,-0)=n"2 Y IC/(X,-0;F)+R,; R,=0,),

i=1
where IC,(-) stands for the influence function of T,, has been studied by a host
of workers [viz., Serfling (1980), Huber (1981), Sen (1981) and the references cited
therein]. For a general M-estimator 9n of 6, we are interested in a representation
of this type, supplemented by a more precise characterization of the remainder
term R,. This estimator (corresponding to a fixed scale of F') is defined as a
solution of the equation

(1.2) M,(t) =0,

~ and is a (weakly) consistent estimator of #; here the estimating function is
n
(1.3) M(t)= Y ¥(X,-t), t€R, n=x>1,
i=1

and ¥: R! —» R! is a function such that
(1.4) A(0) =0, where A(t) = f\I'(x - t)dF(x), teR.
Rl

Generally, if F is symmetric about 0 while ¥ is a skew-symmetric and integrable
function, then A(0) = 0, although for the maximum likelihood estimator (MLE)
neither the symmetry of F nor the skew-symmetry of ¥ is needed for A(0) to be
equal to 0. In the M-estimation of location, however, the symmetry and the
skew-symmetry of ¥ are generally presumed. For nondecreasing ¥, 9n may be
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M-ESTIMATOR: SECOND-ORDER REPRESENTATION 815

written as
(1.5) d, = L(sup{t: M,(¢) >0} + inf{t: M,(¢) <0}).

The existence of 0 in general as well as the boundedness (in probability) of

n'/2|6, — 0| has been studied by a host of workers, and we shall not go into these
details. The representation in (1.1), supplemented by the order of R,, has some
important applications, including the following: (i) asymptotic relations of differ-
ent types of estimators (e.g., L-, M- and R-estimators) up to various orders of
equivalence [viz., Jurefkova (1983,1985a)]; (ii) rate of approximation of an
estimator by its one-step version or by some other form [viz., Jure¢kova (1983),
Juredkova and Sen (1982,1984) and Janssen, Jureckova and Veraverbeke (1985)];
and (iii) general equivalence results in the sequential case [viz., Jureckova and
Sen (1981b, 1982)]. A representation of this type for M-estimators of location was
studied by Carroll (1978) for strongly consistent versions of 9 where ¥ has been
assumed to be “smooth.” Juretkova (1980) derived the exact orders of R, for
smooth as well as discontinuous ¥-functions; this result was extended to the
regression model by JureCkova and Sen (1981a,b). Janssen, Jurefkova and
Veraverbeke (1985) obtained an analogous result for M-estimators of general
parameters (including the MLE and the Pitman estimators).

We may term (1.1) a first-order asymptotic representation. The next natural
step would be to supplement the order of R, by the asymptotic distribution (if
any) of the same. A result of this type was derived by Kiefer (1967) in the
context of the Bahadur (1966) representation of sample quantiles. Asymptotic
representations supplemented by asymptotic distributions of the remainder term
will be referred to as the second-order asymptotic (distributional) representa-
tions (SOADR); typically, the asymptotic distribution of R, will be nonnormal.
For M-estimators of location generated by smooth ¥-functions, SOADR results
have recently been studied by Jureckova (1985b), and we extend these results to
possibly discontinuous ¥-functions. In both the cases, the method used rests on
weak convergence of some related M-processes involving a random change of
time [viz., Billingsley (1968), Section 17].

For M-estimators, the representation (1.1) takes on the form

(1.6) n2(8, - 6) = n"2y"'M,(0) + R,

(under quite general regularity conditions), provided y = y(¥, F) # 0. If ¥ is
smooth [i.e., twice differentiable almost everywhere (a.e)], then R, = O, (n‘l/ %)
while, for ¥ admitting finitely many jump discontinuities, R, = O (n‘l/ Y.
Further, let 7,, be an estimator of # admitting a first-order representatlon ie.,

(1.7) RVT, — 0) = nV2 Y o( X, - 0) + o,(1),

i=1

foi' some suitable ¢, for which

(1.8) leqs(x)dF(x) =0 and 0<o2= le¢2(x)dF(x) < 0.
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Then, for smooth ¥, generating 9,,, Jureckova (1985b) has shown that as n — oo,
(1'9) n(Tn - 0) - na(Tn - 0)2 + Y_I{Mn(Tn) - Mn(a)} 9 gl ) £2’

where y = [p¥D(x)dF(x), a = [p¥P(x)dF(x)/(2y) and &= (£, ¢,) has a
bivariate normal distribution. (1.9) also applies for the M-estimator 9,,, the
least-squares estimator as well as the MLE (in the role of 7)) under general
regularity conditions. However, it breaks down when ¥ is not smooth.

The primary objective of the present study is to focus on such a second-order
representation in the case where ¥ admits of jump discontinuities. A different
normalizing rate (in n) as well as a different type of limiting law arises in this
context, although the result is in correspondence with that of Kiefer (1967).
Specifically, for an estimator 7, satisfying (1.7), we have n'/*(T,, — ) —, £ and

(1'10) n_1/4{n(Tn - 0) - y_I[Mn(Tn) - Mn(a)]} ) g*’
where £ has a normal distribution with 0 mean,
(1.11) gx =I[£> 0]wy (&) + I[£ < 0]W,(4)),

I[ A] stands for the indicator function of the set A, and W,, W, are independent
copies of a Wiener process on [0, c0).

Along with the preliminary notions, the main results are presented in Section
2 and their derivations are considered in Section 3. The method used there is
based on a “random change of time” in certain invariance principles for M-sta-
tistics, studied earlier by Juretkova (1980) and Jureckova and Sen (1981a, b). The
last section deals with the SOADR of one-step versions of M-estimators and, in
this context, illustrates the effect of the choice of an initial estimator.

2. A SOADR theorem. To incorporate jump discontinuities in the score
function ¥, we assume that

(2.1) ¥(x) =¥,(x) + ¥y(x), x€R,

where ¥, is absolutely continuous on any bounded interval in R! and it
possesses first and second derivatives (¥ and ¥{?, respectively) a.e., and ¥, is
a step-function. Specifically, we assume that for some p (> 1), there exist
real numbers B; and open intervals E;=(a; a;.,), j=0,1,..., p, where
—©=@a,<@a < '+ <@a,<a,,; = +o, such that ¥y(x) = B; for x € E,,
0 <j < p; conventionally, we let ¥y(a;) = (B8; + B;+1)/2, j=1,..., p. Also, we
assume that ¥ is nondecreasing and that [m¥(x)dF(x) = 0.

In the SOADR theorem for M-estimators, the key role is played by the
asymptotic behavior of the related M-process: -M, (0 + n~/%t) — M (6) —
E[M, 0+ n~'2t) — M(0)], t € T c R', where M,(-) is defined in (1.3). By
virtue of (2.1), we may decompose this process as the sum of two processes
generated by ¥, and ¥,, respectively. Also, it will be convenient to replace the
expectation by a part of an appropriate Taylor expansion, and this can be done
under quite general regularity conditions on ¥, and ¥, as well as the d.f. F.
Concerning the d.f. F, we assume that F possesses an absolutely continuous and
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symmetric density f having a finite Fisher information
22) I(f)= [ {1"(x)/f(x))*dF(x), where {'(x) = (d/dx)f(x).
Also, we assume that

(2.3) Y, = fl‘I'{')(x) dF(x) exists, forr=1,2,
R

(2.4) Ll{¢§'>(x)}2dF(x) <o, r=1.2,

and, either, ¥, is a constant outside a fixed interval [—k, k], &£ > 0, or, there
exist positive and finite numbers § and K, such that

(2.5) /Rl{w(x +1)) dF(x) <K <o, V<.

Further, we assume that f’ is bounded and continuous in a neighborhood of a;,
Jj=1,..., p. We denote by

p
(2.6) Yor = 2 (Bj - Bj—l)rf(aj), r=12, y =Y+ Ya»
j=1

@D v (B B)ife) md ve= (v + )/,

where 8, = B,,, = 0 and we assume that
(2.8) Yy#0, Yy #0 and vy, >0.

Then, we have the following:

THEOREM 2.1. For ¥, + 0 and any (T} satisfying (1.7), under the assumed
regularity conditions, the r.v.

29y 7o {r MAT) — M(0)] + (T, = 0) = ny*(T, - 6)')
g9 ‘f*’

where

(2.10) g* = k{I(£ > O)W,(1€]) + I(¢ < O)W,(1é]))

and W,, W, are independent copies of a standard Wiener process on [0, c0) and
¢ has a standard normal distribution, independently of W,, W,, and where

(2.11) « = (o) "y

Thus, Z, has the asymptotic distribution

(2.12) P(g* <x) =2[ ®(x(xt?) ) d@(2), x€ R,
0

where ® is the standard normal d.f. If, however, in (2.1), ¥, =0, then (1.9)
holds.
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In passing, we may note that on letting ¥, = 0 and ¥,(x) =p — I[x < 0]
for some p € (0,1), we have [¥(x — ¢t)dF(x) =0 for ¢ = F~(p). Replacing
then ¥(x) by ¥*(x) = ¥(x — F(p)), we have v, = f(FY(p)) = vpp = .
Hence, denoting the sample order statistics by X,,. ;, i = 1,..., n, and letting
04, = p(1 — p), we get the following corollary of Theorem 2. 1 which c01nc1d%
with the Kiefer (1967) result

COROLLARY. Suppose that F is twice differentiable at F~Y(p) and
f(F~Yp)) > 0. Then

nl/z(Xn: [np] — F_l(p))

F e ) E (0= s ) 4 R
and

lim P(n'/*f(F~}(p))R,(p) < x}
(2.14) .

= zj:o(b(x{tzp(l -p)} _1/4) do(t).

REMARKs. (i) For (1.9) to hold, we need that ¥, = 0 although, for (2.9)—(2.12)
to hold, it is not necessary to assume that ¥, = 0.

(ii)) For T, = 0 (the M-estimator based on the same score function), we have
of = v %¢ w1th of = [p¥*%(x)dF(x), so that (2.9)-(2.12) hold with & =

(0pY22/ 73)1/ 2
(i) The quadratic term in (2.9) may be omitted as n%*%(T, — 6)? =

O,(n™*) = 0,(1).

3. The proof of Theorem 2.1. As has been mentioned in Section 2, we
proceed to the proof through some related M-processes. Towards this, we
consider the process

) RO = M0+ )~ M(0)] + e = yne?),

1
where y and y* are defined as in Section 2. By (2.9), e
(3.2) Z, = W(nX(T, - 9)).
Also, consider the process W,* = (W,*(¢), —K <t < K}, K > 0, where
(3.3) Wx(t) = v - v5*W(¢t), forte[-K,K],
and let W* = {W*(¢), t € [- K, K]} be a Gaussian process with EW *(¢t) =
V ¢, and
(3 4) EW*(s)W*(¢t) = |s| A |, if st> 0and O otherwise.

Then, from Jureckova (1980) (see the corollary on page 69), it follows that W *
converges weakly to W* in the Skorokhod «J;-topology on D[—K, K], for any
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K > 0, as n — 0. Hence, to prove Theorem 2.1, we may make use of a random
change of time [i.e., ¢ > n*/*(T, — 6)] and use (3.2), (3.3) and (3.4). Towards this,
we consider the weak convergence of {W2(¢), n'/%(T, — 0), t € [— K, K ]}. Note
that by (1.7) and (1.8),

n
(8.5) AT, - 0) = ¥ U, + 0,(1),
i=1
where
U, =n""%(X,-0),
EU,,=0 and EUZ=n"%}, i=1,...,n.

First, we consider the case of ¥ = ¥,. Then, by the definition of ¥, and (1.3),

(3.6)

(37) P VA8 + /%) - M(9)) = ¥ U(),
where -

() = L (8- 5-)
(3.8)

x({I[t< O]I[aj+ nVit<X,-0< aj]
—I[t>0]I[ajin—05aj+n‘l/zt]}), i=1,...,n,

are i.i.d.r.v. and n is so large that a;,, — a; > n”'/2K, for j = 0,1,..., p. Then

(3.9) Var(Un?(t)) = |t|n" yp + o(n71),

Cov(U,;, UX(t)) = E(U,Ux(t)) = o(|tin=%*), i=1,...,n.
Hence,
(3.10) Cov(n~V4[M,(0 + n~'/%t) — M,(0)], n"/%(T, — 8)) = |¢| - 0o(1) > O,
asn - .

The convergence of the finite-dimensional distributions of {W,?, n'/%(T, — 6)} to
those of {(y 'yy?W*, £°)) (where £°~ 470, 0?)) follows readily from
(3.5)—(3.10). Also, n'/%(T, — ) is relatively compact, while the weak convergence
of W,* in (3.3) insures the relative compactness of W,? as well. Hence, as n — o,

(3.11) (nV/3(T, - ), W2} —a (£ 7 Y?W*).

Since, for any n > 0, there exists a K (0 < K < ), such that P(|¢°| < K) >
1—m, we may use (3.11) and apply the random change of time: ¢ —
[n%(T, — 6)]¥ (where [Y]X = Y if |Y| < K and is equal to 0, otherwise). Thus,
using the results in Section 17 [cf. (17.5)—(17.9)] of Billingsley (1968), we obtain
that as n — o0,

(8.12) Z,= W’no(nl/z(Tn - 0)) 9 Y_1Y2152W*(§0) = (°¢Y22)1/2Y—1W*(§),
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where ¢ = £°/0, ~ A(0,1). It is easy to show that
(3.13) W(t) =I[t>0]W,(t)) + I[t <0]W,(¢)), ¢teR',

where the W, are defined as in the theorem. This completes the proof for
V¥ = ¥,. The proof for ¥ = ¥, is contained in Jureckova (1985).
If ¥ = ¥, + ¥, where none of the components vanishes, we may define

W3(2) = n" V4t Y [y X, — 0 — tn™ /%) — g (X, - 0)]
(3.14) i=1
+n'? = (vp/2v)t?, tER,

as the component of WQ(¢) corresponding to ¥,, and using Lemma 3.1 of
Jureckova (1985b), we obtain

(3.15) sup{lW,,‘{(t)|: |t < K} = 0,(n"*), asn - o.
Thus the weak convergence of {n'/*(T, — 6), W,?} follows from (3.11) and (3.15),
and this completes the proof of the theorem. O

4. SOADR for one-step versions of M-estimators. By Remark (ii) in
Section 2, for T, = 6, (the M-estimator), we have

(4.1) n‘R, = n'l/“{n(@n - 0) - y_an(B)} -4 &F,
where R, is the remainder term in the representation in (1.6) and
(4.2) & = x*{I[¢ > o]W,(1¢1) + I[£ < O]W,(1¢1)},
where W,, W, and £ are defined as in Theorem 2.1 and

(4.3) K* = (ooyzz‘y_3)1/2.

It is often convenient to approximate 9;; by its one-step version 9,,* of the
following form: Starting with an initial estimator T, satisfying n*/*(T, — 0) =
0,(1), we put

T,,
T+ (n9,) 'M(T,),  if4,#0,
where 9, is a consistent estimator of y, and may be taken as
(45) 9, =(n2(t, - t,)) (M(T, + n2t,) — M(T, + n"/2t,)},

where ¢, t, (¢, < ;) are some arbitrary real numbers; often, welet ¢, = —¢, = ¢
(> 0). The one-step estimators were first considered-by Bickel (1975) and later on
studied by Jureckova (1983) [see also Janssen, Jureckova and Veraverbeke (1985)
for a more general setup]: It was shown that whenever ¥, # 0,

(@8) WY -1=0n) and b7 - 1= O,

for any n'/?-consistent initial estimator T,,. Hence, the asymptotic distribution
of 6 coincides with that of 6, and the effect of the choice of T, may appear

(4.4) o> 5 =0,
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only in the second-order asymptotic properties. Hence, parallel to (4.1), we are
interested in the limit distribution (if any) of

(4.7) zx=n""n(bx - 0) — v M,(0)}.

Towards this, we have the following theorem where the Gaussian process W * is
defined as in (3.4) and the constants k and ¢, as in (2.11) and (1.8), respectively.

_ THEOREM 4.1. Assume that the conditions of Theorem 2.1 are satisfied. Let
0% be the one-step version of 0, defined in (4.4) with ¥, in (4.5) and assume that
T, satisfies (1.7) and (1.8). Then

Z¥ > &8 = (6= 1) k[W*(¢ + ty/0,) = W*(§ + ty/0,)]
x [£0, = ¥ %000
= k[W*(£) = (t,— ) {W*(£+ t,/0,) = W*(£ + ty/0,))
x (g0, = v %000},

where (§, &,) has the bivariate normal distribution with null mean vector and
dispersion matrix ; ‘l’ with

(4.8)

49) o= ([ ¥ @) [{ [ #0) arto [ 90y ario))

Proor. It follows from (3.1) and (4.5) that
Vo =n"43,~-7)
(4.10) — A [nA(WE(r (T, - 6) + 1) — WO(r/A(T, - 6) + 1))
+yn3(ty, — )| n "2ty — 1) = v} + 0,(1).
Also, by the Slutsky theorem,
(4.11) V= nl/“(y?,,“l - 1) = —y"W, + O,(n"*).
Further, by (3.1) and (4.4), we have
Zt = /R, + v (v = )n 2 [M(T,) - M,(8,)] + 0,(1)
= W(nX(T, - 6)) + VX{nVX(T, - 8,)} + 0,(1)
= W',,O(n1/2(Tn - 0)) —(t, - tl)—l{nl/z(T,, - 0)}
x [W2(n/(T, = 8) + ;) = W(n'/(T, = 8) + t)] + 0,(1).
Moreover, utilizing (1.6) and (1.7), we obtain that the limiting distribution of
(413) nv*(T,-48,) = o¢(n1/2(Tn - 0)/o¢) -y %o0(n7%(8, - 8)y/0,)

coincides with that of {0, — ¥y~ 400, where ¢ and £, are defined as before in
4.9).

(4.12)
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It follows from the proof of Theorem 2.1 (in Section 3) that the joint
(trivariate) distribution of

W (n'/X(T, = 0)), W (n/*(T, = 0) + t,), W (n'*(T, - 6) + t,)

converges to that of
(4.14) y'l'y;{z(W*(&q,), W*(£o¢ + tl), W*($o¢ + t2)).
Moreover, following the lines of the proof of (3.11), we obtain
{nV*(T, - 0),n"*(6, - 0),{(W2(t), te [-K,K]}}

_)9(§9 £09 'Y¢IY2_21/2W*),

where W * is defined as before in (3.4). Combining (4.12), (4.13), (4.14) and (4.15),
we arrive at (4.8). O

(4.15)

REMARK. (4.8) shows the effect of the choice of the initial estimator T, as
well as of §, in (4.5) (more precisely, of ¢, and ¢,). It follows from (4.8) that the
limiting distribution of Z;* coincides with that of n“R (ie. 0 * coincides with
0 up to the second-order term), if and only if T, is asymptotlcally equivalent to

6, (in the first order), and this happens when ¢o, — v~ '¢40, = 0 with probability
lorpin (4.9)is equal to 1, ie., ¢ = V.
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