A STOPPED BROWNIAN MOTION FORMULA WITH TWO SLOPING LINE BOUNDARIES

By L. Barba Escriba

Universidad de Valladolid

We find the moment generating function of the time at which Brownian motion exits from a region bounded by two nonconvergent straight lines, using the martingale stopping theorem.

1. Introduction. Let W(t), $t \ge 0$, be a standard Brownian motion starting at zero. Define $T_1 = \inf(t \ge 0|W(t) \ge a + bt)$, $T_2 = \inf(t \ge 0|W(t) \le m + nt)$, for a > 0 > m and $b \ge n$. In this paper, we determine the moment generating function of $T = \min(T_1, T_2)$. Doob (1949) found the probability that Brownian motion always leaves the two-sided region |x| < a + bt, using an inclusion-exclusion argument. Another method is given in Breiman (1968). Karlin and Taylor (1975) applied the martingale stopping theorem to get the probability that a Brownian motion with drift $\mu \ne 0$ reaches the level a > 0 before hitting m < 0. Darling and Siegert (1953) obtained the Laplace transform for the case of two parallel lines, that is for b = n, and Harrison (1985) derives the same formula, also using the martingale stopping theorem. Anderson (1960), Theorem 4.1, gives the probability that Brownian motion touches an upper straight-line boundary before a lower one, or equivalently, $P(T = T_1 < \infty)$. The following result generalizes the ones mentioned above.

2. Theorem.

$$\begin{split} E \big(\exp[zT]; \ T &= T_1 < \infty \big) \\ &= \sum_{k=1}^{\infty} \exp\Big[2(b-n)m(k-1)^2 - 2(b-n)a(k-1)k - ab \\ &\quad + (b^2 - 2z)^{1/2} (2(m-a)(k-1) - a) \Big] \\ &\quad \times \Big(1 - \exp\Big[2m \big((b-n)(2k-1) + (b^2 - 2z)^{1/2} \big) \big] \big); \\ E \big(\exp[zT]; \ T &= T_2 < \infty \big) \\ &= \sum_{k=1}^{\infty} \exp\Big[2(b-n)m(k-1)k - 2(b-n)a(k-1)^2 - mn \\ &\quad + (n^2 - 2z)^{1/2} (2(m-a)(k-1) + m) \Big] \\ &\quad \times \Big(1 - \exp\Big[-2a \big((b-n)(2k-1) + (n^2 - 2z)^{1/2} \big) \big] \Big), \\ for all \ z \leq 0, \ except \ for \ z = b = n = 0. \end{split}$$

Received August 1986.

AMS 1980 subject classifications. Primary 60G40; secondary 60J65.

Key words and phrases. Brownian motion, stopping time, moment generating function, martingale.

PROOF. Consider, for any real c, the exponential martingale $M_c(t)=\exp[cW(t)-c^2t/2],\ t\geq 0.$ If $c\geq \max(0,2b),\ M_c(T\wedge t)$ can be majorized, uniformly in t, by $\exp(ca)$; similarly, if $c\leq \min(0,2n)$ we have $M_c(T\wedge t)\leq \exp(cm)$ for all $t\geq 0.$ In both cases, the optional stopping theorem can be applied to conclude: $EM_c(0)=E(M_c(T);\ T<\infty)=E(M_c(T);\ T=T_1<\infty)+E(M_c(T);\ T=T_2<\infty).$ Let $G_i(z)=E(\exp(zT);\ T=T_i<\infty),\ i=1,2.$ Then we obtain, when $c\geq \max(0,2b)$ or $c\leq \min(0,2n)$,

(1)
$$1 = \exp(ca)G_1[c(b-c/2)] + \exp(cm)G_2[c(n-c/2)].$$

For fixed $z_1 \le 0$, define c_1 by $c_1 = b + (b^2 - 2z_1)^{1/2}$, so that $c_1(b - c_1/2) = z_1$ and $c_1 \ge \max(0, 2b)$. Then from (1) we get, for $z_2 = c_1(n - c_1/2)$,

(2)
$$1 = \exp(c_1 a)G_1(z_1) + \exp(c_1 m)G_2(z_2).$$

Define now $c_2=2n-c_1$, so that $c_2(n-c_2/2)=z_2$ and $c_2\leq \min(0,2n)$. Again, from (1) we get, for $z_3=c_2(b-c_2/2)$,

(3)
$$1 = \exp(c_2 a)G_1(z_3) + \exp(c_2 m)G_2(z_2).$$

Solving (2) and (3) for $G_1(z_1)$, we obtain

(4)
$$G_1(z_1) = \exp(-c_1a) - \exp(c_1(m-a) - c_2m) + \exp((c_1 - c_2)(m-a))G_1(z_3).$$

Now we have $z_3 \le 0$, and by the same procedure as before we derive

(5)
$$G_1(z_3) = \exp(-c_3a) - \exp(c_3(m-a) - c_4m) + \exp((c_3 - c_4)(m-a))G_1(z_5),$$

where $c_3 = b + (b^2 - 2z_3)^{1/2} = 2b - c_2$, $c_4 = 2n - c_3$ and $z_5 = c_4(b - c_4/2)$. If $G_1(z_3)$ is replaced in (4) by its expression (5), we can put $G_1(z_1)$ in terms of $G_1(z_5)$. Thus we have $z_5 \le 0$ and we can repeat the procedure, getting an expression for $G_1(z_5)$ in terms of $G_1(z_7)$; then, it is possible to express $G_1(z_1)$ in terms of $G_1(z_7)$ and so on. By carrying this procedure on, we arrive at

(6)
$$G_1(z_1) = \sum_{k=1}^r \left[\exp(-c_{2k-1}a)Q_{k-1} - \exp(-c_{2k}a)Q_k \right] + Q_rG_1(z_{2r+1}),$$

for $r \geq 1$, where

$$Q_k = \exp \left[(m-a) \sum_{i=1}^k (c_{2i-1} - c_{2i}) \right],$$

if $k \ge 1$, $Q_0 = 1$ and

$$(7) c_{2k-1} = 2b - c_{2k-2}, k \ge 2,$$

(8)
$$c_{2k} = 2n - c_{2k-1}, \qquad k \ge 1,$$

$$z_{2k+1} = c_{2k}(b - c_{2k}/2), \qquad (k \ge 1).$$

We note that $c_{2k-1} \ge \max(0, 2b) \ge \min(0, 2n) \ge c_{2k}$ and $z_{2k+1} \le 0$ for $k \ge 1$.

Hence, for $k \geq 1$,

$$\begin{split} \exp(-c_{2k-1}a)Q_{k-1} - \exp(-c_{2k}a)Q_k \\ &= Q_{k-1} \text{exp}(-c_{2k-1}a)\big[1 - \exp((c_{2k-1} - c_{2k})m)\big] \geq 0. \end{split}$$

Furthermore, from (7) and (8) we derive

(9)
$$c_{2k-1} = 2(k-1)(b-n) + c_1, \quad k \ge 1,$$

and then

(10)
$$Q_r = \exp\left[\left(m-a\right) \sum_{i=1}^r \left(2c_{2i-1}-2n\right)\right] \\ = \exp\left[2(m-a)\left(r(r-1)(b-n)+r(c_1-n)\right)\right].$$

So, $\lim_{r\to\infty}Q_r=0$, except for $c_1=b=n=z_1=0$. For any $z\leq 0$ we have $0\leq G_1(z)\leq 1$; then $\lim_{r\to\infty}Q_rG_1(z_{2r+1})=0$. From this and (6) we get

$$G_1(z_1) = \sum_{k=1}^{\infty} Q_{k-1} \exp(-c_{2k-1}a) (1 - \exp[(c_{2k-1} - c_{2k})m]).$$

Using (8)–(10) and substituting $c_1 = b + (b^2 - 2z_1)^{1/2}$, we complete the proof for $E(\exp[zT]; T = T_1 < \infty)$. The second formula can be obtained in a similar way, or merely from the first one by replacing a, b, m, n by -m, -n, -a, -b, respectively. \square

- **3. Remarks.** (a) The case z = b = n = 0, excluded in the theorem, reduces to find $P(W(T_{am}) = a)$ and $P(W(T_{am}) = m)$, with T_{am} being the first time the process reaches a > 0 or m < 0. The solution is well known.
- (b) One may easily extend the former result to a Brownian motion with a drift parameter μ and variance parameter σ^2 . Using conventional techniques, we can also compute the moments of the stopping time and other related quantities.
- (c) The case b < n cannot be handled in the same way, even though the stopping time is bounded and (1) holds for any c. The iterative formula (6) remains valid, but Q_r does not have limit 0 as $r \to 0$ and the series diverges.

REFERENCES

Anderson, T. W. (1960). A modification of the sequential probability ratio test to reduce the sample size. *Ann. Math. Statist.* 31 165-197.

Breiman, L. (1968). Probability. Addison-Wesley, Reading, Mass.

DARLING, D. and SIEGERT, A. J. F. (1953). The first passage problem for a continuous Markov process. Ann. Math. Statist. 24 624-639.

Doob, J. L. (1949). Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 20 393-403.

HARRISON, J. M. (1985). Brownian Motion and Stochastic Flow Systems. Wiley, New York.

KARLIN, S. and TAYLOR, H. M. (1975). A First Course in Stochastic Processes. Academic, New York.

> DEPARTAMENTO DE ESTADISTICA FACULTAD DE CIENCIAS UNIVERSIDAD DE VALLADOLID 47005 VALLADOLID SPAIN