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A STOPPED BROWNIAN MOTION FORMULA WITH TWO
SLOPING LINE BOUNDARIES

By L. BArRBA EsCRIBA
Universidad de Valladolid

We find the moment generating function of the time at which Brownian
motion exits from a region bounded by two nonconvergent straight lines,
using the martingale stopping theorem.

1. Introduction. Let W(¢), t > 0, be a standard Brownian motion starting
at zero. Define T, = inf(¢ > 0|W(¢) > a + bt), T, = inf(¢t > O|W(¢) < m + nt),
for a > 0 > m and b > n. In this paper, we determine the moment generating
function of T = min(T}, T,). Doob (1949) found the probability that Brownian
motion always leaves the two-sided region |x| < a + bt, using an inclusion-
exclusion argument. Another method is given in Breiman (1968). Karlin and
Taylor (1975) applied the martingale stopping theorem to get the probability
that a Brownian motion with drift p # 0 reaches the level a > 0 before hitting
m < 0. Darling and Siegert (1953) obtained the Laplace transform for the case of
two parallel lines, that is for b = n, and Harrison (1985) derives the same
formula, also using the martingale stopping theorem. Anderson (1960), Theorem
4.1, gives the probability that Brownian motion touches an upper straight-line
boundary before a lower one, or equivalently, P(T = T, < c0). The following
result generalizes the ones mentioned above.

2. Theorem.
E(exp[2T]; T=T, < )

_ ; expl2(b — n)m(k — 1)* - 2(b — n)a(k — 1)k — ab

+(b? - 22)%2(m - a)(k - 1) - a)
x(l - exp[2m((b -n)(2k—1) + (b - 22)1/2)]);
E(exp[2T]); T=T, < )

= i exp[2(b —n)m(k—-1)k—2(b—-n)a(k —1)>— mn

k=1
+(n2 - 22)%2(m - a)(k - 1) + m)]
x(l - exp[—2a((b -n)(2k—-1) + (n?- 22)1/2)]),
forall z < 0, except forz=b=n=0.
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Proor. Consider, for any real c, the exponential martingale M (t) =
exp[cW(¢) — c2t/2], t > 0. If ¢ > max(0,2b), M(T A t) can be majorized, uni-
formly in ¢, by exp(ca); similarly, if ¢ < min(0,2n) we have M (T A t) < exp(cm)
for all ¢ > 0. In both cases, the optional stopping theorem can be applied to
conclude: EM(0) = E(M(T); T < o) =E(M(T); T=T, < c0) + E(M(T);
T =T, < w). Let G(z) = E(exp(zT); T = T, < ), i = 1,2. Then we obtain,
when ¢ > max(0,2b) or ¢ < min(0,2n),

(1) 1 = exp(ca)G,[c(b — ¢/2)] + exp(cm)G,[e(n — ¢/2)].
For fixed z, < 0, define ¢, by ¢, = b + (b% — 22,)!/2, so that ¢,(b — ¢;/2) = 2,
and ¢, = max(0,2b). Then from (1) we get, for z, = ¢,(n — ¢,/2),
(2) 1 = exp(c,a)G,(2,) + exp(c;m)Gy(2,).
Define now ¢, = 2n — ¢,, so that cy(n — ¢,/2) = 2z, and ¢, < min(0,2n). Again,
from (1) we get, for z; = co(b — c5/2),
(3) 1 = exp(c,a)Gi(23) + exp(c,m)Gy(2;).
Solving (2) and (3) for G,(z,), we obtain
@ G,(z) = exp(—c,a) — exp(c;(m — a) — ¢,m)
+exP((cl = ¢y)(m— a))G1(23)~
Now we have z; < 0, and by the same procedure as before we derive
) G\(2;) = exp(—c;a) — exp(cy(m — a) — ¢,m)
5
+exp((¢; — ¢,)(m — a))G,(25),

where ¢; = b + (b% — 22,)1/2 = 2b — ¢y, ¢, = 2n — ¢3 and z; = ¢, (b — ¢,/2). If
G(z;) is replaced in (4) by its expression (5), we can put G,(2,) in terms of
G,(z5). Thus we have 2z, <0 and we can repeat the procedure, getting an
expression for G,(z;) in terms of G,(z,); then, it is possible to express G,(z;) in
terms of G,(z;) and so on. By carrying this procedure on, we arrive at

(6) G(z) = k};l [exp(_CZk—-la)Qk—-l - exP(_Czka)Qk] + Q,G(22,41)>

for r > 1, where

k
Q = exp (m - a) Z (czi-l - Czi) ’
i=1
if k>1,Q,=1and
(7) Cop—1=2b— Cgp_s, k> 2,
(8) CZk =2n — Cop—1s k = 1,

Zops1 = Cop(b — 92/2), (k=1).

We note that c,,_; > max(0,2b) > min(0,2n) > ¢,, and z4,,, <0 for k> 1.
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Hence, for £ > 1,
exp(—Cg_1@) Qs — exp(—¢y,a)@Q;
= Qk_leXP(“Czk—la)[l — exp((cgp—r — Czk)m)] = 0.
Furthermore, from (7) and (8) we derive
9) Cop1=2Ak—-1)(b—n)+¢c, k=1,
and then

. UREOPHCELL)

= exp[2(m — a)(r(r = 1)(b - n) + r(c, — n))].
So, lim,_ @, =0, except for ¢, =b=n=2,=0. For any z<0 we have
0 < Gy(2) < 1; then lim, , _Q,G,(2,,,,) = 0. From this and (6) we get

G(z,) = kijl Qk—lexp(_c2k—la)(1 - eXP[(czk—l - c2k)m])‘

Using (8)-(10) and substituting ¢, = b + (b2 — 2z,)!/2, we complete the proof
for E(exp[2T]; T = T; < o). The second formula can be obtained in a similar
way, or merely from the first one by replacing a, b, m, n by —m, —n, —a, — b,
respectively. O

3. Remarks. (a) The case z = b = n = 0, excluded in the theorem, reduces
to find P(W(T,,,) = a) and P(W(T,,,) = m), with T,,, being the first time the
process reaches a > 0 or m < 0. The solution is well known.

(b) One may easily extend the former result to a Brownian motion with a
drift parameter p and variance parameter ¢ 2. Using conventional techniques, we
can also compute the moments of the stopping time and other related quantities.

(c) The case b < n cannot be handled in the same way, even though the
stopping time is bounded and (1) holds for any c. The iterative formula (6)
remains valid, but @, does not have limit 0 as r — 0 and the series diverges.
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