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ASYMPTOTIC NORMALITY OF TRIMMED SUMS OF ®&-MIXING
RANDOM VARIABLES
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Nacional de La Plata

A Gaussian central limit theorem for trimmed sums of ®-mixing Hilbert-
space-valued random variables is obtained, and implications regarding
Ibragimov’s conjecture are examined.

1. Introduction. In a recent paper [7], a Gaussian central limit theorem was
proved for the partial sums {S,} obtained from an i.i.d. sequence {X}, taking
values in a type 2 Banach space provided the partial sums, suitably normalized,
were tight, weakly stochastically compact and certain maximal terms of the
sample {||X,||,..., || X,||]} were deleted from S,. The purpose of this paper is to
show that a similar result holds in case the sequence { X} is stationary ®-mixing
with values in a Hilbert space and to examine the implications of this result
regarding a conjecture of Ibragimov. We work in the generality of Hilbert space,
rather than Banach spaces, because many inequalities resulting from mixing
assumptions are known to be valid only if there is an inner product available to
give the square of the norm.

The deletion of extreme terms, and then assuming the data are Gaussian or
approximately Gaussian, has been a matter of practice in many applied situa-
tions for some time. The paper of Stigler [16] provides a theoretical basis for this
if one chooses to delete a positive proportion of the sample. What is surprising in
the setting of our results is that one need not delete many terms; only £, 7, at
stage n, where {r,} and {£{,} are sequences going to infinity as slowly as one
might like [see (1.8), (1.9) and (1.10) for specific details]. A similar result for
real-valued i.i.d. sequences {X;} in the domain of attraction of a stable law was
obtained in [3] using an entirely different method of proof, depending on a
Brownian bridge approximation to the uniform empirical process in weighted
supremum norm. It seems unlikely that such a method will apply to the general
setting considered here, but a recent preprint of Pruitt [12] also examines this
question when the number of terms trimmed goes to infinity arbitrarily slowly
using more classical methods. The results of Pruitt and those in [3] differ from
ours in the method of trimming as well. Our approach is to trim values only if
they are among the largest prescribed group and they are also sufficiently large
in magnitude. This makes the procedure insensitive to overtrimming and pro-
.duces more universal results. However, it is less delicate from a mathematical
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point of view, and we recommend Pruitt’s preprint for an interesting discussion
of these matters as well as further references and open problems.

Our proof depends in a critical way on [13], and our main result relates to the
conjecture of Ibragimov cited in [2] or [6, page 393]. Unfortunately, we do not
resolve this conjecture, but we are grateful to R. C. Bradley, Michel Ledoux,
Magda Peligrad and Walter Philipp for the encouragement they provided, urging
us to investigate the implications of our method on this problem. What we
obtain in this area are Theorem 2 and Corollaries 3 and 4.

Throughout, X, X,, X,,... is a strictly stationary sequence with values in the
real separable Hilbert space H. If M, , denotes the o-field generated by the
random variables X, ..., X, and M,  is the o-field generated by X, X, ,,...,
the dependence coefficient is defined by

(0] PENF) P(F):EeM
= —_— - :Ee
(1.1)
Fe Mk+n,oo’ P(E) > 0}
for n=1,2,.... Then ®(1) < 1 and ®(n) is a nonincrea'sing sequence as n goes

to infinity. The sequence {X;} is called ®-mixing if lim,®(n) = 0. There are
analogous concepts for triangular arrays and the terminology of [13] is used
freely throughout.

The norm on H is denoted by || - || and, of course, ||x||* = (x, x) for an inner
product ( -,-). H* denotes the topological dual of H. The law of a random
variable X is denoted by #(X) and #(X|A) signifies the restriction of the
measure to the set A. A sequence of random variables {W,} is said to be tight if
for each & > 0, there is a compact set K, such that inf, (W, € K,) > 1 — &. The
sequence {Z(W,)} converges weakly to £(W), and we write

2W,) -, £(W),

if lim , E( f(W,)) = E( f(W)) for all bounded continuous functions f on the range
space of W,. A random variable is called degenerate if its law is concentrated at
a single point: otherwise, it is said to be nondegenerate. Finally, a sequence of
random variables {W,} is said to be stochastically compact if {W,} is tight and
all weak limits of subsequences of {W,} are nondegenerate. The stochastically
compact laws on R! arising from suitably normalized sums of i.i.d. random
variables were studied by Feller [5]. More recently Pruitt [11] characterized the
subsequential limit laws which arise in that situation.

To make precise the number of terms to be deleted we define for n» > 1 and

1<j<n,
12) F(j) = card{i: | X,|| > || X|[for1<i<n
1.2
or | X,|| = | X for 1 < i <j}.

If F(j)=k set X=X, ie, |X,| is the kth largest element of

Xl ..., I X,lI} when E(j)=k. For any r>0, n>ér, >0, £>0 and



TRIMMED SUMS OF ©-MIXING VARIABLES 1397

positive function d(t¢) defined on the integers define

[£r]
(1.3) ¢ng, =8, - ¥ XVI(IXP| > wd([n/r])).
j=1

Here, [ -] denotes the greatest integer function and S, = X, + --- +X,. Hence,
(nS, denotes the partial sum S, with the [£r] largest terms of the sample
{1 Xqlly- -+, |1 X,||} deleted provided they exceed rd([n/r]) in norm. Also, define

n
(1.4) 8(7,7) = ZIE(XJ-I(HXJ.H < rd([n/r]))).
j=
The main result can now be stated. It is possible to replace the condition
®(1) < 1 in our results by a suitable alternative, but we have not been able to
eliminate the condition ®(1) < 1. We indicate this alternative in the remarks
following Corollary 4. The main implication obtained from this is that Corollary
4 is valid without the assumption ®(1) < 1.

THEOREM 1. Let X, X, X,,... be a strictly stdtionary H-valued sequence
which is ®-mixing with ®(1) < 1. Let S, = X, + - - - + X,, and assume there are
normalizing constants {d(n)} such that lim ,d(n) = oo,

15) (S./d(n)} is tight,
(1.6) {S,/d(n)} has only nondegenerate limits and
if {q,} is any sequence of integers such that
1.7 limq,/n =0, then .?(Sqn/d(n)) =, 8-
Let {r,} be a sequence of positive integers such that
(1.8) limr, = oo,
n
(1.9) © limn/r, =
n
and
(1.10) limr,®'%(¢t,) = 0,

where t, = [n/r,]. Then, for each > 0 and any sequence {{,} such that
lim ,§, = oo, the sequence

s LTy

yrad(z,)

is tight with only centered Gaussian limits. Further, for all v > 0 sufficiently
large, the limits are all nondegenerate.

REMARK 1. Condition (1.6) is only used to show that the limits of (1.11) are
nondegenerate provided 7 > 0 is sufficiently large. Of course, (1.5) and (1.6)
combined are the condition that {S,/d(n)} is stochastically compact.
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REMARK 2. Since lim,d(n) = oo and ®(n)|0, there are many sequences
{r,} satisfying (1.8), (1.9) and (1.10). Indeed, since {r,,} can be chosen to go to
infinity as slowly as one pleases, condition (1.10) can always be attained.

REMARK 3. If Z(S,/d(n)) -, L(Z), where Z is nondegenerate, then (1.5)
and (1.6) are both satisfied. Further, Theorem 2 in [10] implies that Z is a stable
random variable of index p € (0,2], and in this case that

d(n) = n'/?h(n),
where £ is a slowly varying function on [1, o).

REMARK 4. In case {X}} is an iid. sequence and Z£(S,/d(n)) -, £(2),
where Z is a nondegenerate stable law of index p € (0,2], then the sequence
(1.11) has a unique nondegenerate centered Gaussian limit G, for each 7 > 0.
This was obtained in [7] for B-valued random variables, and a related result
using a different method of trimming was established in [3] for the real-valued
case. The sequence (1.11) will also converge to G, under suitable mixing condi-
tions in the Hilbert space case. For example, the mixing conditions of Theorem
6.2 of [13] suffice in this regard when we assume £(S, /d(n)) =, £(Z) with Z
- a nondegenerate stable law of index p € (0,2]. To show there is a unique
nondegenerate G, for each 7 > 0, it is essential to establish that the sequence
(S, . — ES, .} [see (2.5) for the relevant definitions] is weakly convergent to a
nondegenerate law for each 7 > 0. »

REMARK 5. Condition (1.7) is a special case of property (*) in [13] and is
discussed there on pages 395-396. That is, we have the following

DEFINITION. A rowwise stationary triangular array (X, 1<) <j,; n>1}
is said to satisfy property (*) if for each sequence {q,} with g, <j, and
lim ,q, /j, = 0, we have

qn
g( Z Xn,j) w 80'

j=1

It is easy to see that if the stationary triangular array (X, ; 1 <j <,
n > 1} has property (*), then any subarray
{anj: 1<j<k,;l> 1},

where 1 < k,, < j, also has property (). Further, if {X,, 11 <j<j,;n>1}is
a stationary ®-mixing triangular array with ®(1) < 1 satisfying property (*),
and such that the random variables also satisfy

Sup"Xn,j" < C’

n,j

an’ application of Proposition 3.5 of [13] easily yields
n

Z‘Xn,j

J=1

ImE =0,
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whenever lim g, /j, = 0. Hence, the centered triangular array
{Xn,j —EX, 11<j<j;n2 1}

also has property (*).
If the distribution of

k
EXn,j

J=1

is symmetric for k = 1,..., j,, X, ; = 0, and

Jn
4 Z Xn,j
J=1

converges weakly, then property (*) always holds for a stationary ®-mixing
triangular array of the form {X, ;11 <j <j,; n > 1}. (See [13], Remark 2, page
395.) Further, it is immediate under (1.5) that if

(1.12) limd(q,)/d(n) =0
whenever lim g, /n = 0, then (1.7) holds and the triangular array
{X, j=X/d(n):1<j<n,n>1}

n,J

satisfies property (*). The condition (1.12) follows immediately from the repre-
sentation theorem for slowly varying functions (see, for example, [15]) if d(n) =
n®h(n), where a > 0 and A(n) is slowly varying on [1, o). Hence, by Remark 3
(1.12) and, thus, (1.7) will hold provided #(S,/d(n)) -, £(Z), where Z is
nondegenerate stable of index p € (0,2].

REMARK 6. It is interesting to observe that in the presence of (1.5) and (1.6),
condition (1.7) is actually equivalent to (1.12). We have chosen to use (1.7)
because in certain situations the asymptotic behavior of {d(n)} can be de-
termined by probabilistic considerations (the case of convergence to a stable law
and the remark in [13, page 395] amplify this).

Ibragimov conjectured that if { X} is a strictly stationary ®-mixing sequence
of real-valued random variables with EX;=0 and EX?=1, and if o}
E(S?) > o0, as n - o, then S, can be normahzed to approach a nondegenerate
Gaussian limit (see [2] for a nice discussion of this and related matters). Our
Theorem 2 shows that once the maximal terms of the sample {|X|,...,|X,|} are
deleted, the only possible nondegenerate limits must be centered Gaussian
provided ®(1) < 1. Corollaries 3 and 4 then apply more directly to Ibragimov’s
conjecture, but still leave much to be determined.

THEOREM 2. Let X, X, X,,... be a strictly stationary real-valued sequence
which is ®-mixing with ®(1) < 1. LetS, = X, + --- + X, and assume E(X;) =
and E(X?) =1 forj>1. Letaz(n)—E(Sz)—-» o as n — o and let {r, }bea
sequence of integers satisfying (1.8), (1.9) and (1.10) with t, = [n/r,]. Then, for
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each v > 0 and any sequence {£,} such that lim £, = oo, the sequence

¢S, — nE(XI(X| < 10(t,)))
yrao(t,)
is tight with only centered Gaussian limits. Further, if
(1.14) £(8,,/0,) =uw A

where \ is nondegenerate, then along the same subsequence {n,} for all T
sufficiently large

(1.13)

(1.15) {(f"”'"at)sn,, - n,E( XI(1X| < 10(t,,))) }

yr,0(t,)

has only nondegenerate Gaussian limits.
The following corollary is now easy to establish.

CorOLLARY 3. Let X, X,, X,,... be a strictly stationary real-valued se-
quence which is ®-mixing with ®(1) < 1, and assume EX = 0, EX? = 1. Fur-
ther, assume o%(n) = E(S?) > o0 as n - oo, where S, = X, + -+ +X,,. Then
the following are equivalent:

(1.16) limnP(|X| > t0(n)) =0 for some (all) 7> 0.

(1.17) {S,/0(n)} is tight with only centered Gaussian limits.

REMARK 7. Assuming the conditions of Corollary 3 and (1.16), it is easy to
see that the following are equivalent:

(1.18) £(S,/0(n)) -, N(0,1),
(1.19) {SZ%/0%(n)} is uniformly integrable.

The equivalence of (1.18) and (1.19) under only strong mixing [without (1.16)]
was proved earlier by Manfred Denker (unpublished).

REMARK 8. If o(n) > c/n for some c € (0, ), then-the condition (1.16)
follows immediately from Markov’s inequality for all 7 > 0, since E(X?) < oo.
Hence, in this situation, the conditions of Corollary 3 imply (1.17) immediately,
and if (1.19) also holds, then

£[8,/0(n)] -, N(0,1)
.as Ibragimov conjectured. This last fact and some further reaching related
results owing to Peligrad are in [9]. Of course, if E|X|?*? < oo for some § > 0,
then (1.16) always holds since o(n) = Vnh (n) for h slowly varying.

Since the condition (1.16) is necessary for convergence to a normal distribu-
tion (provided ®(1) < 1), this is assumed in the next corollary.
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COROLLARY 4. Assume the conditions of Corollary 3 together with (1.16) for
some 1 > 0. Then, either
(1.20) 8, is a subsequential limit of S, /o(n),
or
(1.21) there is a sequence {6(n)} such that for some ¢ >1,1/c < ‘
é(n)/o(n) < cforalln > 1 and

£(8,/6(n)) =, N(O,1).

REMARK 9 [An alternative for ®(1) < 1]. The results in [14] can be used to
replace the hypothesis ®(1) < 1 in Theorems 1 and 2 by weaker, but perhaps less
easily verifiable hypotheses. Specifically, let p(n) = d(n) in Theorem 1 and o(n)
in Theorem 2. Then ®(1) < 1 in these two theorems can be replaced by the
condition:

for some 7, > 0, the sequence {n.Z(X/ p(n))|B;} is relatively
(H) compact, where B, = {x € H: ||x|| < 7} and B is its comple-
ment.

The resulting theorems, to be denoted by Theorems 1* and 2*, have the same
conclusions with the exception that the tightness implication in (1.11) and (1.13)
holds for 7 > 7, rather than = > 0. Section 6 contains the necessary details for
the proofs.

REMARK 10. Theorem 2* of Remark 9 now allows ®(1) <1 to be deleted
from a portion of Corollary 3. We denote the result as Corollary 3*. More
precisely, assume the notation of Corollary 3, but not necessarily that ®(1) < 1.
Then, Corollary 3* can be stated:

(a) if for some 7 > 0,
(1.16*) limnP(|X| > t0(n)) = 0,
n
then it follows that {S,/o(n)} is tight, and

(1.17%) {S,/0(n)} has only centered Gaussian limits;
(b) if ®(1) < 1 and (1.17*) holds, then (1.16*) is satisfied for all 7 > 0.

The main implication of Corollary 3* is that Corollary 4 is valid without the
assumption ®(1) < 1.

2. Proof of Theorem 1. Let B, = {x € H: ||x|| < v} and B/ its comple-

ment. From Theorem 3.4 of [13] we easily see that (1.5) and (1.7) imply that for
each 7 > 0, the sequence

(2.1) { > 2( Xj/d(n)|Bf)} is relatively compact.
j=1
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Letting
(2.2) S;= X XI(I1X;| > rd(n))/d(n),

j=1
Lemma 2.4 of [4] and (2.1) imply that for each v > 0, the sequence

(2.3) {S;} is relatively compact.

Now,

(2.4) S./d(n) =8, .+,

where

(2.5) S.,.= L XI(I1X)]| < rd(n))/d(n).
j=1

Since {S,/d(n)} is assumed to be tight, it follows easily that the sequence {S, ,}
is tight for each 7 > 0. Further, for each 7 > 0, the sequence {S, ,} also satisfies
1.7), ie, L(S, ,) =, 8, whenever lim,g,/n = 0. This is obvious from (2.4)
and the three equations )

P(|IS,,, Il > ) < P(|IS,,/d(n)|| > &) + q,P(IX|| > rd(n)),

]i'rtnP("Sq" /d(n)||>¢) =0 (by(1.7))

and
limg,P(]| X|| > 7d(n)) = lim gnﬁnP("Xll > td(n)) =0.
n n

The latter follows from (2.1) and lim,q,/n = 0. In addition, since we know
{S,, .} is tight and (1.7) holds for each 7 > 0, Proposition 3.5 of [13] implies
(2.6) sup E (exp{A[lS, .II}) < oo
for some A > 0. Given a subsequence of integers, let (n,) be a subsequence along
which Z(S,, ,) converges weakly to a limit, say £(W,). Utilizing (2.6),
(2.7) imE(S,, ) = E(W,),
and as a result

#(8,,.. ~ ES,,,.) >0 L(W, - EW,).

Thus, every subsequence of {S, , — ES, ,} has a weakly convergent subsequence
and, therefore, for each > 0, the sequence

(2.8) {S,,.— ES, ,} is tight. -
For each integer n > 1 consider the decomposition
'S, =U,+V,
where

Un=zujv Vn=ZUj

J=1 Jj=1
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and forl <j<n,
u; = u,(n) = SI(I1 X, < 7d(2,)),
v, =0v(n)=X;,-u,.

Then EU, = §,(r, r,) and we have the identity

XS
29 &g — 8. (r,1,) = (U, - EU,) + [V, — ¥ XDI(| X > =d(t,))
: j=1

= A(7,n) + B(t, n).
With these preliminaries, the proof naturally divides into four steps which
separately consider B(rt, n)/ \/;; d(t,), tightness and Gaussian limits of
A(r,n)/ \/Z d(t,) and the nondegeneracy of subsequential limits.

StEP 1. B(7,n)/ \r,d(t,) = proy O-
Since lim n\/a d(t,) = oo, this assertion is verified by the next lemma.

LEMMA 2.1. For any integer sequence {r,} satisfying (1.8), = >0, and
sequence {£,} such that lim ,§, = oo, the quantity

[£.7]
(2.10) V,— ¥ XPI(1 XD > 7d(2,)) = prop O-
Jj=1

Proor. Let p, = P(||X| > 7d(t,)). Theorem 3.4 of [13] implies that
C(7) = supnP(||X|| > rd(n)) <
n

for each 7 > 0. Hence, by stationarity of { X},

[gnrn]
P||V,— X XPI(1XD| > md(2,)) >0)
J=1

= P(at least ([£,7,] + 1) X;’s (1 <j < n) are greater than 7d(t,))

E(I( zn) 101X, > 7d(t,)) = [£,r.] + 1))

Jj=1

< E( éI(IIXjII > Td(ifn)))/([énrn] +1)

< nP(|| X|| > rd(2,))/¢,7
< ((t, + 1)/£,)P(I1X)| > rd(t,))
< (C(r) +1)/%,
-0 asn - oo.
Hence, Lemma 2.1 is proved. O
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By Step 1, the first part of the theorem is equivalent to the assertion that for
each 7 > 0, the sequence

U, - EU,
“ o)

is tight with only centered Gaussian limits, provided lim ,§, = 0.
STEP 2. The sequence (2.11) is tight.

Define I, = n — r,t,. Then foreach n > 1,wehave 0 < [, < n — r(n/r, — 1)
= r,. Next, define

Ij,n={k:(j—l)tn-i-(j—l)<ksjtn+j}, 1<j5<1,

and
L,={k:(j-Dt,+1,<k<jt,+1}, L, +1<j<r,.
Now, set
Zn,j,r = Z (uk(n) - Euk(n))/d(tn)’ 1 Sj ST,
kel; ,

Then,
U,- EU, i Z, .
\/Zd(tn) J=1 T, ’

so (2.11) is tight if

(2.12) { gﬁlzn, /T }

is tight. Whenever [, > 1, {Z, , .} differs from a subsequence of {S, , — ES, ,}
by one term of the form
“t,,+1(n) - Eut,,+1(n)
d(t,)
Consequently, {Z, , .} is tight. This implies that for each & > 0 there is a finite

dimensional subspace F' of H such that if @, is the projection onto the
orthogonal complement of F, then

(2.13) sup E|QrZ, 1, .II* <.
n

If not, there is an ¢ > 0, an increasing sequence of finite dimensional subspaces
{F,} such that U, ,,F, is dense in H and a sequence {n,} such that

(2.14) E\QrZ,, 1, 2> e

Choose a subsequence {m,;} of {n,} such that #(Z, ,,) -, Z(W). Then for
every finite dimensional subspace F,

-?(QFZm,,,l,r) 2w g(QFW)
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and, by Proposition 3.5 of [13],

(2.15) lim B|QrZp, 1, |1 = EIQWI < 0.

k>
To apply Proposition 3.5 of [13], the triangular array

must be shown to satisfy property (*) [see Remark 5]. Since we have shown
{S,, .} satisfies (1.7) for each 7 > 0 and the related triangular array

{Yn,j = XjI(||Xj|| <rd(n))/d(n):1<j<n;n> 1}

is uniformly bounded, the comments of Remark 5 imply that the centered
triangular array,

(2.17) {Y, ,—EY, :1<j<n;nx>1},

also satisfies property (*). Now {Xk, ;}» as described in (2.16), is a subarray of
(2.17) except for the term X, 17 which converges to zero in probability in L!
as k — oo, and hence (2.16) satisfies property (*). Hence, (2.15) holds as claimed.

Now, choose F = F, ; k, sufficiently large, so that
E|QsW|? < &/2.

This contradicts both (2.14) and (2.15). Hence, (2.13) must hold. Using stationar-
ity of the summands involved in.Z, ; . and the fact that for j > [, there is a
single extra term which converges to zero in probability, (2.13) implies

(2.13) limsup E||QrZ, ; ||I> < e forall j.
n
Now,
. 2
E| Y Qr(Z,,;.)/\r|
j=1
7‘" 9 ' Y
= l/rn{ Z EIIQF(Zn,j,‘r)
Jj=1
(2.18) ) e
) +2 3 LZ E(QpZ,, ;. QrZn k) t+ E<QFZn,j,f’QFZn,j—1,f>]}
j=2Lk=1
r,. 2
< (l/rn) Z E"QF(Zn,j,'r) + 8n
j=1
o 1/2 1/2
+2/1,) ¥ (EIQrZ,, ;,.1%) " (EllQrZ,, j—1,.12)
j=2 :
where

Tn

j-2
8n = (2/rn Z Z E<QFZn,j,-r’ QFZn, k,‘r>'

j=2 k=1
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Hence, Lemma 1 of [1, page 170], adapted to the Hilbert space inner product,
and (2.13) together imply that

4 ™ Jj—2
limsupi8,) < limsup - ¥ T 0VA((~ k= 1))
n n _] 2k=1

(EuQF s ell?)” (EuQFZ a2

< limsup (1)1/2(tn)£ Z (j-2)
n ]=2

= limsup2r,®'/%(t,)e = 0 [by (1.10)].

(2.19)

Thus, by (2.13') and (2.18),

. 2
(2.20) lim sup £ E Qr(Z,,j,.)/\r| < 3e.
Jj=1
Further, since ¢ > 0 is arbitrary, this implies (2.12) is tight because the same
argument applied to the norm (simply set F' = {0}, so Qz(x) = x) yields that
the sequence (2.12) is bounded in probability.
Thus (2.11) is tight, thereby completing Step 2.

STEP 3. The sequence (2.11) has only centered Gaussian subsequential limits.

It suffices to verify that the triangular array
(2.21) A={X, i1<j<n;nx>1},
where
satisfies property (*). Then, since (2.11) is tight with
lu,(n) = Eu(n)l/(fr,d(t,)) < 27/1, -0,

Theorem 4.1 of [13] implies that the only possible limits are Gaussian. Further-
more, by Proposition 3.5 of [13],

(2.22) sup E|(U, — EU,) /{r,d(t,)||* < co.

Therefore, the convergence

U, —EU,
(rd )* #(@)

implies

0=
Jim E = E(G).

- EU,,
ﬁ: d(t,,)
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Preliminary to proving that A satisfies property (*), two lemmas are required.
The first lemma concerns arbitrary triangular arrays.

LEMMA 22. Let (X, : 1<j<j, n=1} be an arbitrary ®-mixing sta-
tionary triangular array which satisfies property (*). If

ol £

is tight, then the family of probability measures

L
ZXn,j):lslsjn;nzl}
Jj=1

(2.23) {.,9,”
is also tight.

PRrOOF. If the family in (2.23) is not tight, there is a subsequence {r,} such
that

b,
(2.24) {g( )y Xnk,,)}

has no weakly convergent subsequences for some sequence [, such that 1 <
l,, <J,, Choose a further subsequence, if necessary, so that

(2.25) (% - 1) =, V.

Hence, Theorem 3.3 of [13] applied to the stationary ®-mixing triangular array,
(X, ;1<j<j,; k=21},

RpyJ

implies that

l
{.?(ank,j):lslsjnk;kzl}

J=1

is tight, and this contradicts the fact that (2.24) has no weakly convergent
subsequences. Hence, (2.23) must be tight, and the lemma is proved. O

The second lemma provides specific implications for the terms arising in
2.17).

LeEMMA 2.3. Let (W, ;=Y, ;— EY, 2 1<j<n; nx1} denote the trian-
gular array in (2.17). Then, for-each ¢ > 0 and any positive sequence {a,} such
that lim ,a, = oo,

!

LW,

J=1

(2.26) im sup P

n 1<i<n

>ea,| =0.
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Proor. Fix &€ >0 and take {a,} to be a positive sequence such that
lim,a, = c. Using (2.8), (2.17) and the definition of the triangular array {W, :
1 <j < n, n > 1}, we see that it has the following properties:

(i) (W, ;:1<j<n;n=>1}is ® — mixing, stationary,

(2.27) (i) { zn: W, in> 1} is tight, and

j=1
(iii) it has property (*).
By Lemma 2.2 it follows that the family of probability measures

(2.28) {f(im,j):ISISn;nzl}

is also tight. Hence, for each § > 0 there is a compact set K such that

4
sup P| ) W, ;¢ K| <3,
lsésln J=1 '

and, thus, since {a,} — oo, we have

l
LW,

J=1

limsup sup P
n 1<i<n

l
< limsup sup ( YW, ¢K

n 1<i<n| j=1

(2.29)

<.

Since 8 > 0 is arbitrary, (2.29) implies (2.26) and Lemma 2.3 is proved. O
Finally, the assertion made in (2.21) can be verified.
LEMMA 2.4. A satisfies property (*).

Proor. Let (g,) be a sequence such that lim (g, /n) = 0. Choose ¢ > 0 and
let n,, be an integer such that 0 < g, — 1,,¢, < t,,. Then

qn Nnln
P X, ,|l>¢|<P[| XX, >s/2)
Jj=1 Jj=1
(2.30)
n
+P Y X, il >¢/2].
J=npt,+1
Now, by stationarity,
qn ln
(2.31) Pll ¥ X,,l>e2|=P||X X, ;| >e2|
J=npty+1 J=1
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where 0 < [, = g, — 1,¢, < t,. Lemma 2.3, with the accompanying fact that
X, =, ;~ EY, )/ |r,, yields

I, 1,
(2.32) P|| XX, |>e2|=P Y (Y,m,.— EY,mj) > (8/2)\/5) =0.
Jj=1 j=1
Thus, (2.31) and (2.32) imply that
qn
(2.33) lim sup P Y X,;|>e2]=0.
n J=npt,+1

Now, by arguing as in (2.18) and (2.19), we have

"ntn 4 nntn 2
P ZXn,j >€/2 S?E ZXn,J
Jj=1 Jj=1
4 Nn M. J—2
(2.34) = { Y E|BI*+2} Y E(B;,B,)
&1\ j=1 J=2k=1
N,
+2 Z E<Bj, Bj—1> )
j=2
where

It,

B,= Y (u(n) - Euj(n))/d(t,) forl<l<n,.

J=(-1t,

Combining stationarity and an application of Proposition 3.5 of [13] [since (2.8)
and (2.17) hold],
supE||B)||* = E||B,||* < supE||S, , — ES, .|

(2.35) . ! n ’ K
=(C < o0. -
Hence, by Lemma 1 of [1, page 170], adapted to the Hilbert space inner product,

N, J—2 M, J—2
z Z E<Bj: Bk> <2C Z Z q)l/2((j k- l)tn)
(2.36) j=2 k=1 j=2 k=1

< COY%(t,)n;.
Now, g, > n,t, = n,(n/r, — 1) and, hence,
q,/nZN,/T, = Np/1.
Thus,
Mn/Tn < @p/N + M, /N < 2q,/0
and, since lim ,q,,/n = 0, we have lim 3, /r, = 0. Thus, a combination of (1.10),
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lim,n,/r, = 0, (2.34), (2.35) and (2.36) yields

ZX

(2.37) lim P > 8/2)

Combining (2.30), (2.31) and (2.37) establishes

n

ZXn,j

Jj=1

lim P

>£)=O,

hence, A satisfies property (*). O
Step 3 is now complete.

STEP 4. The limit laws are all nondegenerate provided 7 is chosen suffi-
ciently large.

This will be accomplished by showing that for each 7 sufficiently large there is
an h € H* such that

(2.38) liminf E( k2| (U, - EU,)/(r.d(t,)]) = o2 > 0.

Once (2.38) is established for some 7 > 0, then by Theorem 4.2 of [13] applied
with 8 > 7, the covariance function of any limiting Gaussian law must be
nondegenerate and, hence, the Gaussian law itself is nondegenerate. Thus, it
suffices to verify (2.38) for each 7 > 0 sufficiently large and some h € H*.

If (2.38) fails, then there is a sequence {r;} such that lim;r; = + o0 and for
each h € H*, 7 € {1}, we have o2 = 0. H separable implies H : is separable, so
choose a countable dense set {h;: i > 1} in H*. Since (2.22) holds, failure of
(2.38) for all A in {h;} and 7 € {7;}, implies failure of (2.38) for all » € H* and
the same set of 7. Hence, assume (2.38) fails for all 4 in {A;} and 7 € {7;}, where
lim;7; = 0o0. Then there is a subsequence {n,} such that for all 7 € {7},

(2.39) hm AN

U, - EU,
” =0, i=12,....
J—d )

Let {a,} be a sequence of integers such that lim,a, = o and
lim ,d(a,)/d(t,) = 0. Such a sequence is easy to construct since lim ,d(n) = o
and t, = [n/r,], where lim ¢, = oo. Define {Z,, j, 7}, 1 <j <r,, as prior to
(2. 12), and set

zZ =7 . +Z

NgyJ>T Ngy J>T gy J,T?

where Z:n,,, j, - denotes the sum of the last a,, terms in the block of terms used to
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define Z, ;.. Then, for each h € H*,
. — EU, X7t 2, s,n
(2.40) h(_i_._ﬁ) = p| ==L et
\/’_'n:d(tn,,) rn,,
_ h Ejn:lznk,j,'r + h z;&lznk JsT

rn k v rn k

Arguing as in (2.18) and (2.19) for each A € H* and 7 > 0,

li;nr E| h? ng :n,, X
- lilrenr':kl{jglEhz(Z:"mJ, ) * 2:2:2E( ( P /s T)h(Z: e =1, ’))
Tne J—2 -
23 3 B(n(2,.; )h(zz))}
since "

(@) lim,d(a,,)/d(t,,) = 0,
(ii) lim 7, ®%(¢,,,) = 0 by (1.10), and

(iii) im sup, _ ;. . ERX(Z,, ; )d*(t,,)/d*(a,,) < oo,

by stationarity and (2.13’) applied when @ is the identity map. Hence, from
(2.40) for all h;, i =1,2,...,and 7 € {1}

U, - EU,
0= hmE h| =——
Frrdliny)
E nk».’s
= hmE =
rnk

and, again by the ideas in (2.18) and (2.19) along with lim,®'/%(a,) =0, it
follows that

hmE h?

Jj=1 Jj=1

5 ,,,,,))/r = lim 3. ERY(Z,;..)/7,,

Since
lim sup EhZ(Z )=0

Ny Jb T
ISJsr

for all A € H*, the previous three equations yield that for all A;, i =1,2,...,
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and 7 € {7;}
d( )
(2.41)
Bz,
= hm z E ( Ivl: ).
J=1 o

Now (2.41), stationarity and our definition of [, prior to (2.12) implies for all A;
(i > 1) and 7 € {7;} that

(2.42) 0= liril{ln E(h¥H(Zy,1,.)) + (1, = 1) E(RH(Znyr,y. )}/ o

Now Z,, , , differs from Z, Yo , be at most one term of the form

( (nk) Euj(nk))/d( n,,)

and, since

(2.43) lim El|uy(n,) — Eus(ny)I1%/d%(2,,) =0,
stationarity implies that for each A € H*,

(2.44) . hmlE (#*(Zu.1.+)) - E(B¥(Z,,,,,,..))| = 0
Combining (2.42) and (2.44) yields for each A; (i > 1) and 7 € {7;} that
(2.45) limEh?(Z,,, 1r) =0.

The sequence {Z, , ,} was previously shown to be tlght with (2.13) bounded
when F = {0}. Therefore, (2.45) and denseness of {&;} in H* imply that

(2.46) 2(Z,, 1.) 2w

Now, extract a further subsequence {m,} of {n,}, such that both
(2.47) 2(8,,..) 2w LW,), forre (r)

and

(2.48) (8, /d(tn,)) = 2(2),

with Z nondegenerate. This latter is possible by assumption (1.6). Of course, by
previous remarks,

(2.49) li}enE(S,mk,,) - EW,.

Since (2.43) holds, the definition of Z, , , and stationarity, together with (2.47)
and (2.49), imply that for each 7 € {;}, both

(2.50) (S, ..~ ES,,..) ~ud
apd .
(2.51) 2(S,,..— ES,,..) >u L(W,— EW,).

Combining (2.50) and (2.51) yields
Z(W, - EW,) = §,
so L(W,) = 8gy, for each 7 € {7;}.
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We conclude with two lemmas. The first, in conjunction with (2.47) and (2.52)
will establish that for any & > 0, there exists 7(¢) so that for 7 > 7(¢), 7 € {7;},
the Prohorov distance between gy, and £(Z) is less than e. The final lemma
will then imply that .#(Z) must be degenerate, contradicting (2.48). Hence, the
assumption that (2.38) fails leads to a contradiction, thereby, verifying Step 4.
Thus, the proof of Theorem 1 is complete modulo the proofs of the final two
lemmas.

Recall the following definitions which are required for the lemmas. If (S, d) is
a metric space, for x € S and any set A C S, define

d(x, A) = inf d(x, y),
yEA
and
A= {x: d(A, x) <¢}, theeball about A.

For any Borel probability measures p and » on (S, d), the Prohorov metric p is
defined by

p(r,») = inf{e > 0: p(A) < »(A®) + & for all closed sets A}.
LEMMA 2.5. For each ¢ > 0, there is a 7(¢) > 0 such that for v > 7(¢) and
TE {Ti)’
(2.52) limsupp(£(S,, .), £(2)) <e,
k

e T

where £(Z) is the nondegenerate law of (2.48).

Proor. For any closed set F in H we have
P(s, .€F)<P(S, €F,S =0)+P(S; +0)

(2.53) < P(S, /d(t,,) F)+ f) P(I1X;| > 1d(t,,))
J=1

< P(Z € F%) + ¢ + t,, P(I1X]| > 1d(t,,,)),
where ‘
&> o( 2(8,, /d(tn,)), £(2))

and, hence by (2.48), it is possible to have lim ¢, = 0. Further, by Theorem 3.4 of
[13], the sequence of measures

{n2(X,/d(n)B}))
is tight, so there is a 7,(¢) sufficiently large so that for 7 > 7,(e),
supnP(|| X|| > 7d(n)) < e/2.
n
Thus, for 7 > 7,(¢) and 7 in {7;}, (2.53) implies that
p(.Z’(StM,,), .Sf’(Z)) < e+ /2.
Taking limits completes the proof of the lemma. O
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LEMMA 2.6. Let (S,d) be a complete separable metric space. Let p be a
nondegenerate Borel probability on S. Then

inf p(8,, p) > 0.
x€S

Proor. This is an elementary consequence of Lemma 6.1 in [8, page 42] and
that (S, d) is a complete metric space. O

3. Proof of Theorem 2. Let d(n) = o(n). That (1.13) has only mean zero
Gaussian limits now follows immediately from Theorem 1 and its proof. That is,
it is trivial to show

(3.1) {S,/0(n)} is tight
and, by [6, Theorem 18.2.3],
(3.2) o(n) = n*?h(n),

where h(t) is slowly varying on [1, o). Therefore, by Remark 5, condition (1.12)
is satisfied, so (1.7) holds for {S,/a(n)}. Since (1.6) is used only to prove the
second part of Theorem 1, we can conclude that the only limits of (1.13) are
centered Gaussian.

Condition (1.14) provides the analogue of (1.6) on the subsequence {n,}, so by
using the argument in the second half of the proof of Theorem 1, with the
subsequence {n,} replacing {n}, it is evident that (1.15) has only nondegenerate
limits for all = sufficiently large. Thus, Theorem 2 holds as claimed. O

4. Proof of Corollary 3. Let d(n) = o(n) and assume (1.16) holds for some
7> 0. In view of Theorem 2,
S, — nE( XI(|X| < ra(t,
w (om0 < »)
o(n)
is tight with only centered Gaussian limits, if for some {£,} such that lim ., = o
and some sequence {r,} satisfying (1.8), (1.9) and (1.10) with (¢, = [n/r,]), both

(4.2) (@8, = S,) /(Y o(t)) = pron 0,
and
(4.3) ﬁ?o(n)/({ao(t,,)) =1.

To prove (4.2) choose a 7 > 0 satisfying (1.16). Hence, for each & > 0,
P(|&s, - 8,| > ¢)
[£n7]
=P|| ¥ XVI(X| > ro(t, ) >e
J=1
(4.4) lénra]
< Y P(xVI(X$| > ro(t,)) > 0)
J=1

< ¢,r,nP(X| > 0(t,))
ri(t, + 1 P(X| > ro(2,)).
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Now, (1.16) implies for our 7 > 0 (fixed) that
(4.5) I;lanP(|X| > 10(k)) = &(n),
=n

where lim ,e(n) = 0 and, hence, (4.4) yields (4. 2) if
(4.6) 11m§ rle(t,) =
Choose {£,) such that lim £, = oo and (r,) satisfies (1.8), (1.9) and (1.10) with
t,=[n/r,] = n/logn, and
(4.7) limé¢,r2e(n/logn) =0
Since {&(n)} as defined in (4.5) is decreasing, this choice of {£,} and {r,} yields
(4.6) and, hence, (4.2) is verified.

To prove (4.3), recall o(n) = n*/2h(n), where h(t) is slowly varying on [1, o)

[6, Theorem 18.2.3]. Hence, by the representation theorem for slowly varying
functions [15, page 2]

(4.8) h(t)—exp{n(t)+ = (s) }

where lim, _, (%) = ¢ with |¢| < oo and &(s) is continuous with lim _, . &(s) = 0.
Hence, for {r,} satisfying (1.8), (1.9) and (1.10),

h(t,) )
. 0(t,)/o(n
(4.9) > exp{ -/ «(s) ds}
n/r, S
< exp{ sup |e(s)|log rn}.
n/r,<s<n
Choosing {r,} to satisfy (1.8), (1.9), (1.0), (4.6) and also the conditions
(4.10) t,=[n/r,] = n/logn,
and
(4.11) lim sup e(s)logr,=0,

" n/logn<s<n

it follows from (4.9) that (4.3) holds.

Since (4.2) and (4.3) hold, Theorem 2 implies (4.1) is tight with only centered
Gaussian limits. Further, since {S,/o(n)} is tight with E(S’/0%(n)) =1, it
follows that all limits of S,/0(n) are also mean zero limits. Subtracting, we
easily see the sequence {(nE(XI(|X| > 70(t,)))/o(n)} is relatively compact and
by the convergence of types theorem, it easily follows that

(4.12) lirllnnE(XI(1X| > 10(t,)))/o(n) =

Hence, by combining (4.12) and (4.1), (1.17) is established. Thus (1.16) implies
(1.17) as required.

For the proof that (1.17) implies (1.16) observe that as in the proof of Theorem
2 it follows that {S,/o(n)} is tight and the related triangular array satisfies
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property(*). Hence, an immediate application of Theorem 4.1 in [13] (applied to
subsequences if necessary) yields (1.16) for all > 0. Thus, Corollary 3 is proved.
m}

5. Proof of Corollary 4. If {S,/o(n)} is not stochastically compact, there
are degenerate limits §,. By an application of Corollary 3, 8, is centered
Gaussian and, hence, a = 0. Thus, (1.20) holds.

Otherwise, {S,/o(n)} is stochastically compact and, hence, (2.38) holds with
h(x) = x and {U,} derived from {X,}. Further,

2

(5.1) Ii E v~ BU,
. | < 0.
msup Fd(n/m) 00
By choosing {r,,} and {£,} as in the proof of Corollary 3, that argument indicates
that
(5.2) limp| 2| 22— EU | o[ S)) _ g
' w O\ ) [T e ) T
where p denotes the Prohorov distance. Now, define
(5.3) é(n) = a(n)c(n),
where
U,-EU, |
cA(n)=E|—=——"|.
frad(n/r,)

Since {c(n)} is bounded above and below by a positive constant,

{ U, - EU, }
Jr.d(n/r,)e(n)

is still tight with only centered Gaussian limits. Proposition 3.5 of [13] (since
Lemma 2.4 holds) implies the uniform integrability of the sequence in (5.4)
squared, which in turn necessitates that all Gaussian limits have variance 1.
Consequently, the limit is independent of the subsequence, so the subsequence
principle implies

(5.4)

U,- EU
(5.5) 3( “ £

Jr.d(n/r,)e(n)
Combining (5.2), (5.3) and (5.5),

2(8,/(n)) =, N(0,1).
MS completes-the proof of Corollary 4. O

) o NOLY).

6. Proof of Theorems 1* and 2* and Corollary 3*. To verify Remark 9
and to obtain the proof of Theorem 1* from that of Theorem 1, the following
modifications are relevant.
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(a) By the remark following Lemma 2.3 of [14], Proposition 3.5 of [13] and the
“if” part of Theorem 4.1 of [13] are both valid without the assumption ®(1) < 1.

(b) Theorem 4.2 of [13] can be replaced by Proposition 2.4 of [14], which does
not require ®(1) < 1. In Step 4, when this is used, we note that

lu;(n) — Euy(n)l/(fr.d(t,)) < 27/{r, = 0.

(c) Note that ®(1) < 1 is not required for the validity of Remark 5 because of
Lemma 2.3 in [14].
(d) Fix 7 > 1, initially and note that when p(n) = d(n) (H) implies

(H*) {n#(X/d(n)|Bf)} Iisrelatively compact.

Hence (H*) can be used in Lemma 2.1 to establish C(7) < oo.
(e) In the proof of Lemma 2.5, use (H) with p(n) = d(n) to establish that

supnP(|| X| > 7d(n)) < e/2

rather than Theorem 3.4 of [13].

The proof of Theorem 2* follows from Theorem 1* exactly as Theorem 2
follows from Theorem 1.

To verify Remark 10, notice that the only modification required in the proof
of Corollary 3 is the use of Theorem 2* along with the fact that if = > 0 satisfies
(1.16)*, then 7, = = fulfills (H), which is equivalent to the two conditions

supnP(X| > 70(n)) < o
n

and
Ve>0, 3c> 0such thatsup,nP(X| > co(n)) <e.

This yields Corollary 3*.
Corollary 4 now holds without the condition ®(1) < 1 by using Corollary 3*. O
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