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ON THE CENTRAL LIMIT THEOREM FOR p-MIXING
SEQUENCES OF RANDOM VARIABLES!

By MAGDA PELIGRAD
University of Cincinnati

In this note we establish the central limit theorem for p-mixing sequences
under combinations of moment assumptions and p-mixing rates. These re-
sults contain the well-known Ibragimov theorems and answer a problem from
recent work of Bradley.

1. Introduction. Mixing sequences of random variables are sequences for
which past and distant future are asymptotically independent. In this note we
discuss the central limit theorem for p-mixing sequences of random variables
where the p-mixing coefficient is defined to be the maximal coefficient of
correlation. The result we obtain bridges the gap between two well-known
theorems due to Ibragimov (1975).

First some notation: log denotes the logarithm with base 2 and log*x =
max{0,log x}. The indicator function of a set A is denoted by I,. The notation
a < b means a = O(b). The notation @ ~ b means lim a/b = 1. The greatest
integer < x is denoted [x]. In some places a, will be written as a(n). The norm
in L, is denoted || - |[,. N(0,1) denotes the standard normal distribution. For f,
& € L,, we denote by corr( f, g) = (Efg — EfEg)/||f Il2ll8ll>-

Throughout the paper we suppose that {X,},., is a strictly stationary
sequence of real-valued random variables on a probability space (2, F, P). For
— o0 <J < L < o0, let FF denote the o-field of events generated by the random
variables (X,, J < k < L). For each natural number n > 1 define the depen-
dence coefficient

p(n) = sup|corr( f,g)|9 fELZ(Fgoo)vgeLz(F;zw)'

The stationary sequence {X,} is said to be “p-mixing” [Kolmogorov and Rozanov
(1960)] if p(n) —» 0 as n — oo.

For each n > 1 define the partial sum S, = X, + --- +X, and denote by
0?2 = varS,. Ibragimov [(1975), Theorems 2.1 and 2.2] proved the following
central limit theorem (or CLT for shert).

THEOREM 0 (Ibragimov). Suppose {X,} is a strictly stationary sequence of
random variables such that

EX,=0, EX}!<ow, 0,0 asn— o

1.1)

and p(n) >0 as n— .
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Then o} = nh(n), where h(n) is slowly varying as n — «. Suppose, in ad-
dition, at least one of the following two conditions is satisfied:

(i) E|X,|**® < o0 for some 8 > 0, or
0

(ii) X p(2) < co.
i=1

Then S,/0, = N(0,1) in distribution as n - oo.

Bradley (1980) showed that conditions (i) and (ii) cannot be omitted al-
together. In a recent paper, Bradley (1987) proved that condition (i) cannot be
improved to Eq(|X,|) < oo, where g(x) is a function such that for every § > 0,
q(x) = o(x2*%) as x > . On the other hand, he showed that (ii) is in fact the
slowest possible rate under which one has the CLT under just the assumption of
finite second moment. In order to prove these results Bradley constructed a
counterexample, a strictly stationary sequence {X,} satisfying Eq(|X,|) < oo,
where x? < g(x) < x2%% as x > o for every § > 0, with S, failing to be
asymptotically normally distributed and with p(n) < 7(n). Here 7(n) is an
arbitrary nonincreasing sequence such that Y%_,7(2") = oo and satisfying in
connection with the function ¢ the following condition: for some positive
number d,

[log n] - 1/2
(1.2) q([nexp(—d ';1 1-(2‘)” ) =o(n) asn - .

This counterexample suggests that there might be a positive result, a more
general CLT than Theorem 0, that bridges the gap between (i) and (ii). Based on
the hope that the example is essentially sharp, Bradley conjectured that if {X,}
is strictly stationary and satisfies

(1.3a) Eq(X,|) <
and

[log n] 1/2
(1.3b) n«q([nexp(—d Y p(2i))} )

as n — oo, for every d > 0, then {S,/0,} is asymptotically normally distributed
as n — oo.

REMARK 1. It is easy to see that exp(dX!™)p(2)) is a slowly varying

function when n — o, for every real d.

We shall denote g(x) = x%g(x), where g: [0, c0) — [0, o0) is supposed to be a
nondecreasing function. One can see that (1.3b) implies

[log n]
(1.4) g(n'?) > exp(d )y p(2"))

i=1

for every d > 0.
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Our result is somehow more precise than that conjectured by Bradley.
We shall establish the following.

THEOREM 1. Suppose {X,} is a strictly stationary sequence satisfying (1.1)
and

(1.59) EX28(X,]) < o
and

[log n]

(1.5b) g(n'/?) > exp|2 Y, p(2°)/(1 —n)| forsome0 <n<1.
i=1

Then S,/0, = N(0,1) in distribution as n = .

This theorem contains Theorem 0. By taking g(x) = constant for every x>0
we get the conclusion of Theorem 0 under (ii). By taking g(x) = x® with § > 0
and using Remark 1, we obtain the conclusion of Theorem 0 under (i). By simple
computations we get the following corollaries.

COROLLARY 1. Assume {X,} is strictly stationary satisfying (1.1) and for
some0<e<landc>0,

(1.62) EXZ(log*|X,[)*”" ™ < oo

and

(1.6b) p(n) < c(logn)™" for every n sufficiently large.
Then the CLT holds.

REMARK 2. Bradley [(1987), Corollary 1] established that there is a strictly
stationary sequence satisfying (1.6a) for which p(n) < (logn)~! and the se-
quence does not satisfy the CLT. This result shows that our Corollary 1 is sharp.
Moreover, our corollary specifies that the mentioned counterexample has to
satisfy in addition limsup,p(n)log n > c, where c is the constant from (1.6a).

COROLLARY 2. Assume {X,)} is strictly stationary satisfying (1.1) and for
some 0 <B<1,0<e<landc>0,.
(1.7) EX2[exp(21og™ | X,))' #7747 <
and
p(n) < c(logn) “B  for every n sufficiently large.
Then the CLT holds.

‘REMARK 3. (1.7) is implied by
(1.8) EXZexp(log*|X,|)* < o and p(n) < (logn) ",
where a > 0,0 <8 <landa+ 8> 1.
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Therefore, (1.8) implies that {S,/0,} is asymptotically normally distributed as
n — oo. This result complements Corollary 2 from Bradley (1987) that states
that for each a > 0 and B8 > 0 such that a + B8 < 1, there exists a strictly
stationary sequence { X} satisfying (1.1) such that EXZexp(log™|X,|*) < co and
p(n) < (log n)~# and the sequence does not satisfy the CLT.

2. Proving Theorem 1. We shall give first three preliminary lemmas fol-
lowed by the proof of Theorem 1.

LEMMA 1. Suppose {X,} satisfies (1.1). Let 0 < e < ¢* < 1. Then there exist
two positive constants C, = Cy({p;}, &) and C, = Cy({X,}, &, €*) such that for
everyn > 1,

[(1-e)log n] )
(2.1) ol < ClnEXgexp( Y e(2)/(1 - £))
i=1
and .
[(1—¢)log n] .
(2.2) 02> Cyn exp(— Y e(2)/(1- s*))
i=1

PROOF. Let us notice first that by the proof of Lemma 3.4 of Peligrad (1982),
for every n' > 1,

[log n]
ES? <8000 [T (1+ p([2/°]))nEXE.
i=1

Because p(n) — 0, for every n > 0 we can find a positive constant C = C(n, {p,})
such that

(2.3) ES? < C*n'*"EX¢, forevery n > 1.

Denote S,(m) = X,,,, + -+ +X,,,,.. Let 0 <7 < 1. By (2.3),
103m = 154(0) + Spu(m + P)lla| < 2Cp©*" %,

for every integer m > 1, p > 1. By the definition of the p-mixing coefficient,
|E(S,u(0) + S,(m + p))* ~ 207 < 20(p)o.

Therefore, from the last two inequalities we deduce

(2.4) 0y, < 2721 + p(p)) e, + 2CpO+V/%,
and |
(2.5) 6, <27%(1 = p(p))"*(0,,, + 2Cp*"/%,).

Let 0 < e < 1. We take in (2.4) and (2.5), p = [m'™*] and 5 = ¢/(2 — 2¢). By
(2.4), by recurrence, for every r > k > 0 we have

-1 -k
0(27) < rl—l (1 + p([zi(l—e)]))l/z 2r=k)/2g(2k) 4 Erz Q- D/2+(r=i)1=e/D/2 |,
=k

1= i=1
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So there is a constant € = C(e, {p,}) such that
r—1
o) <CTI(1+ p([2i(1_‘)]))1/22’/201.
i=0

By the relation 1 + x < exp(x) for every x, we obtain

r—1
02(2") < 522’EX§exp( Y p([2i(l")])).
i=0
Relation (2.1) follows now by writing n in binary form and by a simple
computation. ,
In order to prove (2.2), let us mention that for every 8 > 0 there exists x,,
such that (1 — x) > exp(—x/(1 — B)) for every 0 < x < xg.
Let e<e* <1, >0, such that 1 —e)(1 — B) =1 — ¢*, and let 2* be an
integer such that p([2*"®~9]) < min((1 — 27%/2), x,). By (2.5), by recurrence, for
every r > k > k*,

a(2k) < otk-nr2 :131(1 _ p([2i(l—£)]))_1/20(2r)

r—k )
+C2ka-e/0/% Y (2¢/%(1 - P([2k(l’£)])))_l/2'
i=0

Therefore, for every r > k > k* we have

r—-1
o(2*) < 2<k-'>/2o(2r)exp( ¥ p([20-9])/2(1 - B)) + CRa- /g,
i=k
where C; = Cy(e, {p.})-
Now, by Theorem 0, o(2%) = 2%/2h1/2(2%), where h(x) is a slowly varying
function on R*, when x — oo. Therefore, there is a positive constant C, =
C(s B,{X,}) such that, for every r > 1,

6%(2") = C42'exp(— Tg:zp([?(l_’)])/(l - B))

After a simple computation, we apply relation (4.4) of Peligrad (1982) and we get
(2.2).0 :

REMARK 4. Bradley (1985) noticed that relation (2.2) cannot be obtained
with a constant C, depending only on &, ¢* and {p,}, even if a factor EX{ is
included in the r.h.s. of (2.2) [as in the r.h.s. of (2.1)]. It also has to depend on the
sequence {X,} as the following example shows. '

+ Suppose {Y,} and {Z,} are iid. N(0,1) random variables and consider the .
sequence

Xéa) = Yk - Yk—l + J‘;Zk‘

Because p(2) = 0, this sequence is p-mixing with 62 = 2 + na, inf,02/n = a and
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E(X{)? =2 + a. It is obvious we cannot have a constant CZ, such that (2.2)
applies to all sequences {(X{®), a > 0}, even if we include EX{ as a factor in the
r.h.s. of (2.2).

However, when we need a lower bound of type (2.2), with a constant which
does not depend on the sequence, we shall use the following lemma.

LEMMA 2. Suppose {X,)} satisfies (1.1). Let 0 < & < 1. Then there exists a
positive constant Cy = Cy({p,}, &) such that

(2.6) 0(2%) < 24~ V/26(21+ k) + Cyo,
for every integer k > 1, [ > 1.
Proor. This lemma follows by recurrence from (2.5). Let p be an integer

such that p(p) <1 — 27 By (2.5) there is a C = C({p,}, £) such that for every
m21,

o(m) < 2¢=92(g(2m) + 2Cpo,),
whence, by recurrence, we get (2.6). O
LEMMA 3. Suppose {X,) satisfies (1.1) and E|X,|* < co. Then for every
e > 0 there is a positive constant C = C(g, {p,}) such that for everyn > 1,
(2.7) E|S,|* < C(n**°E|X,|* + o).

PrOOF. Denote by a,, = ||S,|ls- It is easy to prove [see Lemma (3.6) of
Peligrad (1982)] that for all integers m > 1, & > 1, we have .

| < 241 + 707%(k)) *a,, + 20, + 2ka,.
Let0<e<1 /3 and k sufficiently large such that 1 + 70/%(k) < 2¢. By recur-
rence, for every r > 1,
r
a(2r) < 2)‘(1+¢3)/4a1 + 2 Z 2(i—1)(1+e)/4(o(2r—i) + kal).
i=1
By (2.6), for every r > 1,
r
a(2r) < C42r(l+e)/4a1 + 20(2r) Z 2i[(1+e)/4—(1—e)/2],

i=1
where C, = Cy(¢, {p,})- So
a(27) < Cf,(2’(”‘3)/“a1 + o(2')).
By writing n in binary form and by (2.6), we get ‘
a,<C (n(1+e)/ + o(2r))
The result follows now by (4.4) of Peligrad (1982). O

ProOOF OF THEOREM 1. By a theorem of Denker (1986) the CLT for strictly
stationary sequences satisfying (1.1) is equivalent with the uniform integrability
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of {S?/6?},. In Lemma 3.5 of Peligrad (1982), the uniform integrability of
{S2/0,2} under the assumption ¥% ,p(2°) < oo was established. We shall treat
here the case when L% ,p(2°) = oo, where we shall consider that g(x) — o as
x — oo. It is easy to see that under this assumption, (1.5b) implies the existence
of €*, 0 < &* < 1, such that

[log n] ‘
(2.8) g(n'/?) > exp(2 Y, e0(2)/(1 - s*)), for every n sufficiently large.

i=1
In order to establish the uniform integrability of {S?2/02}, we shall truncate at
the level T:

. [A-e)r] )
T= g“‘”(exp(2 Y e(2)/(1- e*)))-

Here gi™(x) denotes the inverse function of g(x), r =logn and 0 < e < &* < 1.
We put
X = Xilyx, <y — EXilyx, <1y

X = XiI{|x,.|>T) - EXiI(|x,|>T),

S = Z X Sp2 = Z X2,

i=1 i=1
G,fl = Varsnl, 0'32 = Varsn2. ‘
By (2.1) and the fact that g(x) is an increasing function, we have

[(A-er]
07y < Cl(n/g(T))EX(?g(lXOI)I(|X0|>T)exp Z p(2')/(1 - ¢)|,

i=1
where C, does not depend on n. By (2.2) and the definition of T it follows that
Oy < (C1/Cz)Uanngqul)qud>T)-

From this and because g™(x) = oo when x — oo we deduce that
(2.9) : 0,, =0(0,) asn— oo,

whence it is easy to see that

(2.10) 0, ~ 0, asn — oo.

By applying Lemma 3 to the sequence {X,}, we can find a constant K, =
K .,({p.}, &) such that for every n > 1,

E|S,|* < Ky(n'+*?T?EXZ + o).

By.(2.2) and Remark 1, we can find C = C({X,}, €) such that o > Cn?~*/2 for
every n > 1, whence, by (2.10),

(2.11) E(S,l/0,)" < K,(T?/n*"¢+ 1), foreveryn>1,

where K, is a constant that does not dépend on n.
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By (2.8), for every n sufficiently large
[A-e)r]
g([n'~c1%) = exp(2( Y o2/~ e*))).
i=1
This implies, by the definition of T, that T//n~9/2 is bounded and by (2.11) we
get

(2.12) sup E(|S,,|/5,)* < oo.

Now, from (2.9) and (2.12), we can conclude that {S?/0,?} is uniformly integrable
and so we have established the CLT. O

Acknowledgments. I am grateful to Richard Bradley for his clarifying
comments on the treatment of the constants in Lemmas 1 and 3, which helped us
to fill some gaps in their statements. I would like also to thank the referee and
Thomas Liggett for carefully reading the manuscript and for many suggestions
that improved the presentation of this paper.

REFERENCES

BRADLEY, R. C. (1980). A remark on the central limit question for dependent random variables.
J. Appl. Probab. 17 94-101.

BRADLEY, R. C. (1985). Personal communication.

BRADLEY, R. C. (1987). The central limit question under p-mixing. Rocky Mountain J. Math. 17
95-114.

DENKER, M. (1986). Uniform integrability and the central limit theorem. In Dependence in Proba-
bility and Statistics (E. Eberlein and M. S. Taqqu, eds.) 269-274. Birkhauser, Boston.

IBRAGIMOV, I. A. (1975). A note on the central limit theorem for dependent random variables.
Theory Probab. Appl. 20 135-141.

IBRAGIMOV, I. A. and LINNIK, YU. V. (1971). Independent and Stationary Sequences of Random
Variables. Walters-Noordhoff, Groningen.

KoLmoGgorov, A. N. and Rozanov, Y. A. (1960). On strong mixing conditions for stationary
Gaussian processes. Theory Probab. Appl. 5 204-208.

PELIGRAD, M. (1982). Invariance principles for mixing sequences of random variables. Ann. Probab.
10 968-981.

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF CINCINNATI
CINCINNATI, OHIO 45221-0025



