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METASTABILITY FOR A CLASS OF DYNAMICAL SYSTEMS
SUBJECT TO SMALL RANDOM PERTURBATIONS
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Instituto de Matemdtica Pura e Aplicada

We consider dynamical systems in R? driven by a vector field b(x) =
—va(x), where a is a double-well potential with some smoothness condi-
tions. We show that these dynamical systems when subjected to a small
random disturbance exhibit metastable behavior in the sense defined in [2].
More precisely, we prove that the process of moving averages along a path of
such a system converges in law when properly normalized to a jump Markov
process. The main tool for our analysis is the theory of Freidlin and
Wentzell [7].

0. Introduction. One of the challenging problems in the study of thermody-
namical systems is to understand and to model in a rigorous way the phenome-
non of metastability. The authors introduced in [2] a new (pathwise) approach to
describe metastability in stochastic processes. The basic difference from other
approaches (e.g., [8])—mostly based on the “evolution of ensembles” —is that it
focuses on the statistics of each typical path.

The situation under consideration can be outlined as follows: A stochastic
process with a unique stationary probability measure, which, for suitable initial
conditions, behaves for a very long time as if it were described by another
“stationary” measure (metastable state), performing, at the end, an abrupt
transition to the correct equilibrium. In order to detect this behavior, it is
. suggested in [2] to look at time averages along typical trajectories; we should
see: apparent stability—sharp transition-stability. To make this precise we
consider a parametrized family of similar systems, and the statement will be
made sharp if, by properly rescaling, the (measure-valued) processes of suitable
time averages converge in law to a (measure-valued) Markov jump process. The
Markov property accounts, in some sense, for the unpredictable character of the
transition.

This behavior contrasts with the hydrodynamical one, whose main feature is a
smooth evolution (in a certain space and time scale) through a continuum of
“equilibrium states.” We refer to [5] for a survey on this subject and to [2] for
more general comments on the present approach to metastability.

In [2], the reader will also find two examples of stochastic processes showing
metastable behavior: The first is a simple one-dimensional model, the so-called
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Curie-Weiss model, and the other is a system of interacting particles on Z, the
basic contact process of Harris. This last example presents particularly interest-
ing features, giving rise to some open questions on how the transition happens
(i.e., spatial patterns related to the transition). Some extensions of [2] concerning
the contact process have been obtained by Schonmann [12].

Here we prove that a certain class of dynamical systems in R? when
subjected to a small random disturbance (to be specified later), exhibits metasta-
ble behavior in the sense just described. (The parameter will be the “strength” of
the perturbation.) The class includes systems driven by a vector field b(x) =
—va(x), where a(-) is a double-well potential (with some smoothness condi-
tions). The assumption of deriving from a potential can be somewhat relaxed;
due to the notion of “quasipotential”’ developed by Freidlin and Wentzell in
their basic work [13], it is possible to extend the results to some nongradient
cases, provided some restrictions are added.

This class of systems constitutes the simplest nontrivial example of processes
in R¢ exhibiting metastable behavior. In this case the results are quite intuitive
and appealing (especially after [13, 14]). Moreover, the proofs involve interesting
problems. For instance, the study of the law of the exit time from a domain
containing both stable and unstable critical points is not covered by known
results in this field [3, 4] and it is interesting by itself.

This material will be organized as follows. Section 1 describes the model and
states the main results, besides establishing the basic notation. Section 2 pro-
vides the basic ingredients for the proofs, and contains the proof of Theorem 1
on the “exponentiality” of the jump time. In Section 3 we study the stability of
time averages and prove Theorem 2.

1. Description of the model. Statement of the results. Throughout this
article we shall be working with a family of diffusion processes, which is obtained
from a dynamical system X3(¢) on R?,

dXi(t) = b(X3(t))dt, t>0,

1) 50) =

through an additive random noise. More specifically, we consider the family of
diffusion processes XZ(-), given by the stochastic Itd equation

(1.2) X¥(t) = x + fo‘b(X:(s)) ds +eB, t>0,

where (B,),, , is a standard d-dimensional Brownian motion on some complete
probability space (2, #, P); x denotes the initial position and ¢ is a positive real
number.

As mentioned in the introduction we shall be particularly interested in the
case of a gradient vector field which derives from a double-well potential. More
precisely, let us assume

(1.3) b(x) = -va(x), x€R?
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where the following conditions are satisfied:
(i) a: R¢ > R is a C? function;

(ii) a(x) = + o0, as |x| = +o0;

(iii) a(-) has exactly three critical points, denoted by p, ¢ and r, with
det((d%a/dx; dx;)(x)) # 0, for x = p, g, r, with p and ¢ being points of stable
equilibrium for (1.1), and r being a saddle point;

(iv) a(q) < a(p) < a(r).

Let us also assume
) |b(x)®> < KQ + |x*), |b(x) — b(»)|* < K|x — y°, for all x, yeR"
where K is some positive constant.

(See Figure 1.)
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REMARKS.

(a) Condition (v) guarantees strong uniqueness of the solution for (1.2). It can
be relaxed if we treat (1.2) in the weak sense, with uniqueness in law (via
martingale problems). For us this will be irrelevant since the other conditions
will allow us to restrict the study to X*(-) before it leaves a certain compact set.
In this case (i) automatically guarantees strong uniqueness of the stopped
process.

(b) From (ii) and (iif) we know also that A = ((3%,/dx, 9x,)(r)) has only one
negative eigenvalue with a one-dimensional eigenspace. Thus, W,“ is a one-
dimensional manifold (cf. [10]). [Notation: as usual, we let W* (W) denote the
unstable (stable, respectively) manifold at r, for the system given by (1.1).]

Some notation.

1. B(x) denote the closed ball centered at x, x € R?, with radius ¢ > 0 (for the
Euclidean norm).

2. Let D, (and D,, respectively) denote the basin of attraction of p (and gq,
respectively) for the deterministic system Xg(-).

3. (#,);>0 denotes the natural filtration on (Q, #) associated to the given
Brownian motion, i.e., %, is the o-field generated by (B,: s < ¢).

4. Cy(R?) denotes the space of bounded continuous real functions on R? with
the supremum norm.

5. A, denotes the space of probability measures on Z(R?). We consider .#,
with the weak*-topology induced on it as a subset of the dual of Cy(R?).

6. IX[0, + o), .#,) denotes the set of functions from [0, + c0) to .#,, which are
right continuous with left limits. Since .#, is a separable metric space we
have no problem to define the Skorokhod topology on D([0, + ), .#,) (see
[1,11]).

7. Sometimes we shall write simply X, instead of X7, and then use P, to denote
the law of the process when the initial condition is x. Similarly, for T* and
other objects defined below.

8. &, denotes the Dirac measure at x.

9. ¢(0, T],R?) denotes the space of continuous functions f: [0, T] - R% for
any f, g belonging to ¢([0, T],R?),

pr(f,8) = sup |f(¢) — &(t)l.
0<t<T

DEFINITION. Let us fix ¢ > 0 so that B(p) € D, and B(q) C D,, and let us

define the %, stopping times: '

T =inf{t > 0: X*(¢t) € B(q)},

(14) e
TF = inf{¢ > T*: X*(t) € B(p)};
the infimum being defined as + oo when the set is empty.

We may now state our main results.
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THEOREM 1. For ¢ > 0 let B, be defined through the relation B(T, > B,) =
e~'. Then, for all x € D,
(1.5) P(T/B, > t) ?Oe“, forallt > 0.

THEOREM 2. Let B, be as in Theorem 1. It is possible to find R, > 0 with
R,— +wand R,/B, — 0 as &0, so that if we define the # \-valued processes

(¥£)e» 0 via

1 +
(16) i(1) = g [ H(Xde) ds, [ CyRY),
then, for each x € D,
(17) B mp b)) - H(p) >8] -0,
0<s<(T.—3R,)/B.

(18) B sm pih) - @) >8) >0,
T./B.<s<(T,~3R.)/B,

as €0 for each 8 > 0 and each f € C,(R?). Finally, let
5 =, ifte [(T.-3R,)/B., T./Bl]
= ¥(r,_3R,) /8, Otherwise.

Then, for each x € D,, (7)., converges in law on D([0, + ), #,) to a
Markov jump process (v,), o given by

v,=98,, ift<T
=38, ift=T,

where T is an exponential random variable with mean one.

REMARK. From Theorem 4.2, Chapter 4 of [7] it is known that &’ln B8, —
2(a(r) — a( p)) and our proof will show that given 0 < a < & < 2(a(r) — a(p)),
we can choose for R, any point in the interval [exp(a/e?),exp(d/e?)]. In
particular, R, = B with 0 < y < 1 is a possible choice for R, in Theorem 2.

SOME COMMENTS ON THE METHODOLOGY. As previously mentioned, we
make strong use of the large deviation theory developed by Freidlin and
Wentzell [7, 13, 14] for small random perturbations. Their results are by now
well known, and for the class of diffusion processes we are studying, their very
basic theorem gives approximations of large deviation probabilities for (X (2):
0 < t < T); these are described by the “action functional”

1.7,
#2(9) = 5 [T16(2) = bo())P dt

and “scaling” &2, for each fixed T < + o0, as defined in Chapter 3 of [7].
Applying the basic large deviation theory on finite intervals, Freidlin and
Wentzell could study certain typical long-time behavior of these processes, for &
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going to zero. Examples of such situations are the problems of exit from a
domain which, for the deterministic system, is completely attracted to a stable
equilibrium point.

In our proof we use results from Chapter 4 of [7], such as Theorem 2.1 on the
exit distribution and Theorems 4.1 and 4.2 on the asymptotic behavior of the
mean exit time. These theorems also provide estimates of the scaling factor 8,. In
fact, we need a slightly stronger version of these results since we handle domains
containing both a stable fixed point and a saddle point or only this last one. It is
easy to check that the proofs in Chapter 4 of [7] actually cover the stronger
results we need. In any case they are covered by the much more general results
of Chapter 6 of [7].

2. Basic ingredients. Proof of Theorem 1. If C is a closed or open set we
shall use 7*(C) to denote the first hitting time of C, for the process given by
(1.2), starting at x,

7(C) = inf{t > 0: X(t) € C}
= + 00, if the above set is empty.

The x, and eventually the ¢, will be omitted when no confusion is possible.

For the questions we are concerned with, we may as well restrict our attention
to a convenient bounded domain in R¢ The hypothesis on the potential a(-),
with a vector field b(-) given by (1.3), allows us to take a bounded domain G
with a sufficiently smooth boundary (C? suffices) so that

(@) B(p) U B(q)<c G, rEG;

(b) (b(x), n(x)) <0 for all x € G, where n(x) is the unit exterior normal
. vector to dG at x [in particular, G U 3G is invariant under the flow (1.1), as
time evolves positively];

(¢) a(r) < min, ¢ sga(y).

[For instance, we may take G = {x: a(x) < a} with a(r) < a.]

W? is a (d — 1)-dimensional manifold, being a separatrix for the basins of
attraction of p and q. From (b) we see that W*° N G divides G into two
subdomains, G N D, and G N D,.

We are interested in the escape of the processes X(+) from G N D, to G N D,.
In order to study exit problems it is convenient to have no critical point at the
boundary of the domain [4, 7]. Therefore, we single out a “small” subdomain G,
containing r. The picture to keep in mind is that of Figure 2 (drawn in the
2-dimensional case). Lemma 1 will help us to define precisely G,.

def —
LEMMA 1. Given a>0 we may take n >0 so that if Cc= {y € G:
distance(y, W N G) <}, then -

sup E,(7(R9\ C)) < e*/¢,

xeC

for € sufficiently small.
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T

Fic. 2.

ProorF oF LEMMA 1. This is in fact a quite simple remark (analogous to
Lemma 1.7, Chapter 6 of [7]). Denoting by S;(-) the action functional of Freidlin
and Wentzell, i.e.,

Sr(o) = %legb(t) ~ b(¢(2))*dt, if ¢ is absolutely continuous
o ,

= +o00, ifnot,

the continuity of b(-) guarantees the existence of L < + oo such that for all
x, ¥ € G one can find ¢(-) with ¢(0) = x, ¢(T) =y, where T = |x — y| and
Sr(¢) < Ljx — yI. .

Let us take 0 <% < a/6L and T, < +00 so that, for each x € W’ N G,
X5(+) reaches By(r) during (0, Ti)]. Let us fix z such that distance (z, W’ N G) =
|z — r| = 7 and let n = 7j/2. If C = {y € G: distance(y, W’ N G) < 7}, then for
each x € C we can find ¢, with ¢,(0) = x, ¢(T') = z for some T < T, = T, + 49
and Sy(9,) < 3L < a/2. Thus, pg(X3(-), ¢,) < 7 implies r*®?\ C) < Ty, and
from the basic properties of the action functional [condition (II) of the defini-
tion, Chapter 3 of [7]] we have the existence of &, > 0 such that for ¢ < ¢,

inf P,(7(RI\C) < Tp) = inf_Px( sup | X (¢) — ¢.(¢)] < n)
xeC xelC

t<T,

> e—3a/452.
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Using the Markov property we get for & < &,
sup P,(7,(R?\ C) > nT,) < (1 — e~3*/4)",
xeC

for all n > 1, concluding the proof. O

We now fix some a, with 0 < ay < 2(a(r) — a(p)) and take 7, according to
Lemma 1. With this choice we decompose G by taking (d — 1)-dimensional
manifolds of class C%, T and T, so that T ¢ G N D, T divides G into exactly
two subdomains G, and Awith B(p) c G,cGn D analogously, I ¢ G n D,
and T divides G mto exactly two subdomams G, and A with B(q) € G, G n
D,. We still ask that for each x € ruf 1tsdlstancet0Wsr'\ G 1sl%sthan No»
as ﬁxed previously. Then we define G, = A N A and we have (see Figure 2):

(i) dG, contains T, T and two connected components of 3G N G,.
(ii) G is the disjoint union of G,, G, G,, I' and ¥.
(iii) Since I' and T are relatively compact we may take M < + oo so that if
x € I(T), then X3(-) reaches B, 5(p)[ B, (q), respectively] during (0, M).
(iv) For ¢ sufficiently small

(2.1) sup E ( -(R\ G,)) < e/,

x€Q,

which is exponentially smaller than B, as £ 0. (Theorem 4.2, Chapter 6 of [7]
gives V 8 > 0: B, > exp{2[a(r) — a(p) — 8]/¢%} for ¢ sufficiently small.)

Also, according to our definition A = G, U T U G,. Setting S = 7.%( dA), we
obviously have S* < T, for x € A. Moreover, as we shall see, the difference
between them is not 1mportant as €] 0.

LEMMA 2. There exists a finite and positive constant M, such that
(2.2) P(T,<S,+M) -1,
as 0 for each x € A. Moreover, this convergence is uniform for x € B{(p).

PROOF. Let M < + oo be such that, for any x € T', XZ(-) reaches B, Aq)
during [0, M]. From Theorem 1.2, Chapter 2 of [7], we know that

(2.3) supr( sup |X.(t) — Xo(2) > c/2) -0, ase— 0.
xel 0<t<M

On the other hand, Theorem 5.2, Chapter 6 of [7] implies that for each x € A,

(2.4) P(X(S8)el)—>1, ae—0,

and moreover this happens uniformly for x € B(p), as can be easily seen from

the proof. Lemma 2 follows from (2.3), (2.4) and the strong Markov property. O
COROLLARY. Let v, be defined by PJS, > ye) = e~ .. Assuming that

PS> ty,) - et as €l0, then, for each x € G N D,, (1.5) is equivalent to

(2.5) P(S,>ty,) > et as elO.
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ProoF. Having proved that Py(S, > ty,) > e, Lemma 2 implies that
¥./B. — 1 and the rest is immediate, again from Lemma 2. O

Let us outline the basic idea of the proof of Theorem 1. To make things
simpler let us take x = p. If S,/y, converges in law to an exponential random
variable, one hopes that P,(S, > (¢ + s)y,) should behave like

Pp(Se > tYe)P})(Se > sYe)'
To prove this the most naive idea is simply to calculate P,(S, > (¢ + s)7.) by

conditioning on [S, > ¢v,] and on the position X(tv,); the loss of memory should
follow from the following two points and the strong Markov property:

(a) For y close to p [say y € B(p)], P,(S, > sv,) should be close to
B,(S, > s7.).

(b) Starting at y € A\ B/ p) and conditioned on [S, > sv,] then, with over-
whelming probability, X(-) visits B(p) before an interval of time (0, n,] has
elapsed, where 7, is negligible compared to sy, as €} 0.

These two points are made precise by the next two lemmas.

LEMMA 3. We can find n,> 0 such that ,/y, = 0 as ¢ > 0, and for all
u>0,

(2.6a) sup P(S,>u) < P(S,>u~-1,)+0(1),
YE€B(p)
(2.6b) yei;,}cf(p)Py(S,3 > u) 2 P(S, > u+n,) - o(l),

where o(1) refers to a function of € which goes to zero as ¢ tends to zero and does
not depend on u for u > 0.

ProOOF. Let us fix a compact K with smooth boundary so that B(p) € Kc
K c G,. If we set

(27) a= int [a(y) - a(p)],

then @ < a(r) — a(p), and so letting , = exp(2d/¢*) for some @ < & < a(r) —
a( p), Theorem 4.2, Chapter 4 of [7] gives
() n./7.— 0,
(28) (i) sup P(r(K°)>n,) 0.
Y€B(p)

For y € B(p), let ps(-) be the hitting distribution on 4K for X2(-), i.e,
p5(A) = P(X(1(9K)) € A)for A a Borel subset of K. By Theorem 1 of [3]
(2.9) sup ||u, — pll > 0, aselo,

Y€B(p)

where || - || is the total variation norm.
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Now setting 7, = 7(dK), the strong Markov property yields: For all x, y €
B(p)and all u,v >0,

B(8.> ) 2 RS> u+7) = [ui(d)R(S, > u)

(2.10) > [us(dz)P(S, > u) = 165 - w3l

= B(S,>u+17) —Ip5 — w3

2 Py(Se> u+ ‘D) - Py(Te > D) =l — l"';"
and the lemma follows from (2.8)-(2.10). O

LEMMA 4. Let f(t) = P(S, > v,t) for t > 0. There exist positive numbers 8,
with 8, = 0 as € = 0, such that for any s, t positive
(2'11) fe(s + 8e)fe(t + 83) - Ot(]') < fe(t + S) < fe(s)fe(t - 8&) + ot(l):

where o/(1) is a function of ¢ and t which tends to zero as ¢ - 0, this
convergence being uniform for t > t,, given any t, > 0.

ProOF. For each x in the basin of attraction of p, let T(x) be the time
needed for the orbit of (1.1) starting at x to arrive in B, ,( p). Then T(x) < + o0
and by the upper semicontinuity sup, g, T(x) = My < + oo. Then we easily get
(as in Lemma 2)

(2.12) sup P(7(B,p)) > My) >0, ase— 0.
x€@,

On the other hand, if we take 7/ = exp(a’/e?) where a, < o’ < 2(a(r) — a(p)),
then (2.1) implies that

(2.13) supE( (G°))/n,—> 0, ase— 0.

y€G,
Moreover, as noticed before, Theorem 4.2, Chapter 4 of [7] gives that 5./y, = 0
as 0.

Decomposmg the event [S, > 7/, 7(B{p)) > ne] according to the two possibil-
ities of remaining in G, during [0, n’/2] or reaching G during [0, n./2], we have
SuB Py(SE > n;’ Ts( Bc(p)) > T’;)

y€G,
< sup P(7(Gy) > n/2) + sup P(7(B{p)) > n./2),
b e) ye
where, in the second term on the r.hs., we used the strong Markov property.
From (2.12) and (2.13), both terms on the r.h.s. of (2.14) tend to zero. Thus, if we
define for all s > 0,

(2.14)

= inf{u > sy,: X,(u) € B(p)},
then (2.12), (2.14) and the Markov property (at svy,) yield

(2.15) supP(S >sy,+ 0., R°>sy,+7.) >0, ase—0,
yEA
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the limit being uniform on s. In particular, for any s, ¢ > 0,
P;,(Se > (t+8)y, R°>sy,+ 1) TOO,
&

uniformly on (s, ¢) € (0, + o) X [¢,, + o) for any given ¢, > 0.
On the other hand,
P(S,> (t+s)Y, R°<sy,+n)
(2.16) . .
= P(R* € du, X(R°) € dy, S,> u)P(S,> (¢t +s)y,— u)

(5%, 8Ye+ 1]
and the r.h.s. of (2.16) is bounded above by

(2.17) P(S,>sy,) sup P(S,>ty,—n),
YEB(p)

and bounded below by
(2.18) B,(S, > sy, +m, R°< sy, +n,) inf P(S,>ty,).
YE€B(p)

The lemma follows immediately from Lemma 3 and (2.15)-(2.18). O

PRroOOF oF THEOREM 1. First, let us consider the case x = p. By the Corollary
to Lemma 2 it suffices to prove that under P, the random variables S, /v,
converge in law to an exponential random variable with mean one. The tightness
on (0, + o0) follows easily from Lemma 4: In fact, applying (2.11) with ¢ = 2 and
inductively on s = 1,2,..., we see that for any 8§ > 0 there exist ¢,, n, with
f(dy) <& and f(1/n,) >1— & whenever ¢ < ¢, Now if p is a probability
measure on the Borel sets of (0, + o) appearing as a weak*-limit point of the law
of S,/y, and if we set f(¢) = p(t, + o0), Lemma 4 implies that

(2.19) f(t+s) =f(t)f(s),
for all s, ¢ > 0 such that s, ¢ and s + ¢ are continuity points of f(-). The right
continuity of f implies that (2.19) holds for all s, ¢ > 0. Thus, f(¢) = e *¢ for
some k > 0. Since f(1) = e~! for all ¢ > 0 one can easily see that in fact £ = 1,
proving the result in the case x = p.

The continuity of the limit implies that, in fact, f(¢) = e~* uniformly in ¢
Now, from Lemma 3, we have :

sup P/(S, > tv,) <f(t n./%.) + 0(1),
xEB(p)

mf P(S > ty,) = f(t +n./7.) — o(1),

x€B(

where 7,/y, = 0. Therefore for each ¢ >0, P(S, > tys) — e~ uniformly on
x € B(p),as e = 0.

“When x = p we know that ys/ B, — 1. We use now Lemma 2 to conclude that
for each £ > 0,

(2.20) sup |P(T,>tB,) —e Y -0, aselO.
x€B(p)



METASTABILITY FOR DYNAMICAL SYSTEMS 1299

Now, given x in the basin of attraction of p, let T(x) < + oo be the time
necessary for X3(-) to reach B, (p). Since

B sup 1X(1) - X,(6) > ¢/2) 20,

t<T(x)
we get
(2:21) P(n(B(p)) > T(x)) =,0.
Thus
(2.22) P(T.> tB,) - P(T. > tB,, 7(B{p)) < T(x)) > 0.

Using the strong Markov property at (B, p)) for the last term of the Lh.s. of
(2.22), we conclude from (2.20) [and again (2.21)] that P(T, > tB,) = e~ % O

3. Stability of time averages. Proof of Theorem 2. Let us first state two
lemmas: The first one (Lemma 5) is a particular case of a result of Freidlin and
Wentzell and the second one gives an estimate needed in the proof of both (1.7)
and (1.8).

LEMMA 5. (1) For any a > 0 we can find ¢, > 0 such that for any ¢ < g,

(3.1) sup E,((Gy)) < exp(a/e?).
x€G,
(2) For any 6 > 0 and any a > 0 if we set t, = exp(a/e%), then
(3.2) sup Px('rE(Bo(p)) >\t S, > te) -0, ase— 0.
x€A

ProoF. Part (1) is explicitly written up just for clarity, since in fact it is an
immediate consequence of Theorem 5.3, Chapter 6 of [7]. Indeed, using their
definitions (page 193 of [7]) it is easy to see that, in our case, taking D = G,,

Wp(x, y) = min{Vy(x, y), Vp(x, r) + Vp(r, ¥)},

for all x € D, y € dD and so min,, ¢ ;,p,Wp(x, ¥) = 0.
To obtain part (2), since £, = + o0, it suffices to prove that

sup Px(Te(@p) > \t/2,8, > tE) - 0.
G,

xe

But, for & small enough, ¢, > \/t,/2. Therefore,

Px(Te(c_;p) > m9 Se > te) = Px(Te(Grc) > M)

and the result follows from part (1). O

r

LEMMA 6. Let us call I,(-) the indicator function of By(p) and take R’ =
exp(a/e?) with 0 < a < 2a(r) — a(p)). Then for any 6 > 0, § > 0, there exists
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e, = €o(0, 8) > 0 such that

= [ (s) ds — 1

(3.3) sup Px{ [

x€A

>3,8 > R} < exp(—cs;R/R’),
for R > 2R’ and ¢ < &, where c; is a positive constant.

Proor. First we fix a as in the statement of the lemma. Now, given 6 > 0,
we choose 8, with 0 < §, < 6 such that 0 < min,. |,_,_s(a(z) — a(p)) < a. If
we define ¢, as

(3.4) t,=expe™ min_(a(z) - a(p))),

then ¢, < R, and t,/R.,— 0. Let us consider the decomposition (0, R] =
UM (i — D¢, it,] U (N.t,, R], where N, = [R/t,]. If t,/R < 8/2, then

(|7 [ s -1

={ Ng,

We may take K, K, compact neighborhoods of p so that

() pe K, c K, c K, C By(p);

(i) K,, K, have smooth boundaries and (b(x), n,(x)) <0 for all
x € dK,, where n;(x) denotes the unitary exterior normal vector to dK; at x;
and

(36) Gi)  min_(a(2) - a(p) <2 min (a(2) - a(p)).

>3,8 > R}
(3.5)

[0 X(s)) ds = 1

0

>8/2,8, > Nets}.

Let us define the random variables Y, i = 1,..., N,, as follows:
Y/=0, if X(-) visits K, during ( (i — 1)¢,(i — 1), + ¢, ] and
spends the rest of time interval ( (i — 1)¢,, it, ]in K,

=1, otherwise.

Then
p(e) o supP(Y!=1,8>¢)
(3.7) x€A
< Supr(Te(Kl) > \/E’ Se > te) + Sup Px(Te(Kg) < te)
x€A xe€K,

By part (2) of Lemma 5, we see that the first term on the r.h.s. of (3.7) goes to
zero as ¢ — 0. Moreover, using Theorem 4.2, Chapter 4 of [7], (3.4) implies that
the second term also goes to zero.
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Now, for ¢,/R < §/2 (which happens if R > R’ and ¢ is small enough), we can
write, using (3.5), that for all x € A,

Px{ %fORIoo(X(s)) ds—1|>8,8, > R}

1 N 8 1
(3.8) — E - — T, S, > Nete}

AN 272 Jt.

N, )
<P{ Y Y'>-N,S, >Nt}
k=1 4

if ¢ is sufficiently small (so that \/Z > 4/9).
Now we can estimate the r.h.s. of (3.8) as follows: For all x € A,

N,
Px( E Ye > Ne8/4’ Se > Nete)

i=1
Nl
(3.9) < exp(—N,8/ 4)Ex{1[s, > N,t,]exp( ) Yei) }

i=1
N,

&

< exp( _M8/4){ sup E 1;s ., ]exp(Yel)} )
ye A (3 e
where the last inequality is a consequence of the Markov property. Now

sup Ey[I(SRt!)exp(Y;l)] < sup[eP(Y'=1,8,>¢t)+P(Y =0,8 >t)]
yEA yEA

(8.10) sup [P/(S, > t,) + (e — 1)p(e)]

yEA

< exp[(e — 1)p(e)],

where p(¢) is defined in (3.7).
From (3.8)—(3.10) we get

= (X)) ds -1

<exp[—N.,8/4 + (e — 1)p(e)]
< exp[ —N,5/8] < exp[ —csr/R!],
with ¢; = 8,/16 for & sufficiently small and R > 2R’. O

~ THEOREM 3. There exist R,1 + oo with R,/y, — 0 such that for all 6 > 0,
8 >0,

>8,S£>R}

sup Px{

x€A

— [P (X () ds 1

e's

>8}—->O

(3.11) sup I’;{ sup
XeB(p) |0<s<S-2R,



1302 A. GALVES, E. OLIVIERI AND M. E. VARES

as ¢ = 0. Also, in these conditions we may replace S, by T, — M in (3.11), for a
constant M, as given in Lemma 2.

Proor. Obviously, it is enough to prove (3.11). With R, > 0 to be chosen
later, for each 8, & positive and each ! nonnegative integer we set
. 1 ra+nr,
Al(a, 8) = { -RT"/I‘RE Io(Xe(s))ds -1 < 8}.

Then, (3.11) will follow if we prove that, for suitable R,, with R /vy, — 0, we
have

€

inf Px( N Ai(9,8), 1821)—>1,
*€BAp) \o<i<y,

where
l,= inf{l eN:S <(I+ l)Re}.

To simplify the notation let us write Aj for Aj(8, §). Then we have

+ o0
B[ N ani>1)- (N a5t-1L)

0<li<l, L=1 0<i<L
[o2]
-p(=1- LB U (2\4),4-1L)
L=1 0<I<L
K!
>P(>1)- L[ U (@\4)L-1)
L=1 0<I<L
_I?x(le > KS)'
Now, to conclude the proof of (3.11), we want to find R, and K, such that
1 inf P(l,.>1) -1,
@ it R(L=1)
(@) sup P(l,>K,) -0,
(3.12) x€B(p)
K, :
(3) sup Y P| U (2\A4),l,=L|—>0, whene— 0.

x€B(p) L=1 0<I<L

Notice that from the definition of /, and from Lemma 3 there exist 7, > 0 with
1./Y. = 0, when ¢ — 0, such that

inf P(l,>1)= inf P(S,>R,)
x€B(p) ~ x€B(p)

2 Pp(se > Re + 'ne) - 0(1)
= fe((RS + 1'8)/78) - 0(1)’
which, by Theorem 1, goes to 1, provided we have
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ConpITION C1. R,/y,— 0 ase|0.

From Lemma 3 we still have

x€BY(p) x€B(p)

< I)p(Se > KeRe - ne) + 0(1)

= f((K.R, = n.)/7.) + o(1)
and from Theorem 1 this goes to zero if

ConpIiTION C2. K,R,/y, > +0o0 as 0.

Finally, we estimate (3) in (3.12): For each x € B p),

KE
Y e U (2\41),4-1L)
L=1 ‘osi<L
KE
L=1 o0<iI<L
K!
< X XL P(Q\A4;L>1)
L=10<I<L
<K? sup P,(Q\A5 1l >1).
0<I<K,

From Lemma 6 if we set R, = exp(n/&%) with 0 < < 2(a(r) — a(p)) and let
R, > 2R’ this is uniformly bounded for x € A by
Kezexp(_csRe/R;)i

provided e is sufficiently small. Thus, (3) in (3.12) will be true if K, and R,
satisfy R, > exp(n/¢?) for some a > 0, and

ConpITION C3. K Zexp(—8R,/R’) — 0 as €0 for any 6 > 0.

Now it is easy to find K, R, satisfying Conditions C1-C3. As already
mentioned, Theorem 4.2, Chapter 4 of [7] tells us that given a < 2(a(r) —
a(p)) < &, then

exp(a/e?) < v, < exp(d/e?),

for ¢ sufficiently small. Thus, taking, for instance, R, = exp(a/z?) with fixed
0 < a < 2(a(r) — a(p)), then C1 is already satisfied. To satisfy C2 and C3 we
may take, e.g., R, = RY? and K, = exp(C/¢?), with € > 2(a(r) — a(p)) — .
This concludes the proof of Theorem 3. O

PrROOF OF THEOREM 2. To fix ideas let us take R, = exp(a/e?), where
0 < a < 2(a(r) — a( p)). From Theorem 3, it follows immediately that for § > 0,
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and for each f € Cy(R?),

1 s+ R
7 (X(w)du—1(p)
Now given x in the basin of attraction of p we can take T(x) < + oo to be the
hitting time of B, 4(p) for the orbit X7(-). Since P(7(By( p)) < T(x)) goes to
one [cf. (2.21)] it is very easy to conclude from (3.13) and the strong Markov
property, that (1.7) holds for such x.

Since a(r) — a(p) < a(r) — a(q), the above choice of R, also works if we
reverse the roles of p and q in Theorem 3. This fact and the use of strong
Markov property at T allows us to conclude the validity of (1.8).

Having already proved (1.7), (1.8) and Theorem 1 the final conclusion of
Theorem 2 is clear. Let us recall that: (1) .#, is a Polish space for the
w*-topology and the Skorokhod topology on D([0, + o), #,) can be defined as
in [1, 6, 9, 11]. (2) We can find a sequence g, g5,... in C,(R%), with ||g,]l, = 1
for all 2 and such that p, —»,. p in #, if and only if (g, dp, — [g,dp as
n — + oo for each k. Thus, if we set

>8}—+0.

(3.13) sup P, sup
x€B(p) 0<s<T,—3R,

Jevdn— fean],

then p(-) is a metric generating the w*-topology on .#,. From (1.7), (1.8) and
(3.14) we have: For each 8 > 0 and each x in the basin of attraction of p,

1_)x( sup P(V:9 Sp) > 8) -0
OSS<7‘¢/B,_3R¢/Bz

(3.14) p(p,m) = Z%
k

and
x r s’ Yq
T,/B.<s<(T,—3R)/B,
Moreover, if we define g, via Pq(’f'g > B) = e, reversing the roles of p and q in
Theorem 1, it follows that for each ¢ > 0,
P(T.>t8) >e* ase—0,
uniformly for x € B(q). Moreover, Theorem 4.2, Chapter 4 of [7] implies that
for any 0 < ¢ < 2(a(p) — a(q)) we must have B,/8, > exp(c/e?), provided ¢ is
sufficiently small. In particular, 8,/8, — + oo and we get that for all ¢ > 0,

(3.15) inf P(T/B,>¢t)—>1, ase— 0.
*€B(q)

Using (1.7), (1.8), Theorem 1 and (3.15) we conclude the proof of Theorem 2. O

P( sup p(v‘8)>8)-—>0, ase — 0.

FINAL REMARK. The final statement in Theorem 2 is written in terms of 7},
which is slightly different than »/, i.e., they differ only for ¢ in an interval of
length at most 3R, /B, (which goes to zero). Conceptually this does not change
anything, and the important facts are (1.7), (1.8) and the exponentiality of T,/8,
as €| 0 for x € D, together with the fact that B./B, = + oo, which means that
with the scaling ¢8, we do not see the return to B( p).
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