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0. General notation and conventions. This section is for reference only.
We include some standard notation not defined in the text.

C; will stand for a strictly positive, finite constant, whose precise value is of
little importance for us. In fact, C; may have different values at different
appearances.

We call a function f increasing if x; > x, implies f(x,) > f(x,), and strictly
increasing if x, > x, implies f(x;) > f(x5).

For v = (v(1),...,v(d)) € RY,

lo] = max{|v(i)]: 1 <i<d},.

follz = { L 1o(i)[F) "

]
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1232 H. KESTEN

For two strictly positive functions f and g

1
%f*L

log g

as a suitable argument approaches a special value.

The indicator function of a set or event A is denoted by I[ A].

d denotes the topological boundary. Thus, d([—n, n]¢) = {x € R% |x(j)| <
n,1<j<d, but |x(i)] = n for some 1 <i < d}. P, is the product probability
measure on the configuration space with bonds (or sites) open with probability p.
P, stands for P,.

f = & means

1. Description of the simplest percolation model and first problems.
Percolation theory as known today originated with Broadbent and Hammersley
[11]. A precursor of the model appears in Flory [39]. Broadbent and Hammersley
wanted to model the spread of a fluid (or gas) through a random medium. The
difficulty was to describe the random medium; the randomness in their model is
totally in the medium and not (as in the usual diffusion model) in the motion of
the fluid. Broadbent [10] already modeled the medium as a system of channels,
some of which are wide and others narrow. He assumed that the fluid passes
through all the wide channels, but not through any of the narrow ones. The
system of channels was represented in idealized form by the edges of Z%. We take
d > 2 throughout, the case d = 1 being trivial. One now takes each of the edges,
independently of all others, open (or passable) with probability p and closed (or
blocked) with probability ¢ := 1 — p. The corresponding probability measure on
the configurations of open and closed edges is denoted by P, E, denotes
expectation with respect to P,. If the origin 0 is a source of fluid, which points
are wetted? Denote the set of these points by W. Thus,

(1.1) W = collection of points connected to 0 by an open path on Z .

Here, and in the sequel an open path is a path all of whose edges are open. We
use A — B to denote that there exists an open path from some vertex in A to
some vertex in B. W is called the open cluster of 0, and the open cluster of a
vertex v is defined by replacing 0 by v in (1.1). Most questions in percolation
theory concern some aspect of the distribution of W. Despite its simplicity the
model is very rich, as I hope to demonstrate. I find it fascinating that this very
elementary and easily explained model leads to a large variety of quite difficult
(and many still unsolved) problems. The first question raised by Broadbent and
Hammersley is: What is the probability that points very far out are wetted? In
the limit the question becomes, “What is

0( p) = P,{W is infinite} ?”
0(p) is called the percolation probability. We do not know how to calculate
0( p), but it is easy to see that
(1.2) 6(0)=0, 6(1)=1 and p — 6(p) isincreasing.
(The last property follows, at least intuitively, from the fact that increasing p
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makes it more likely to have open edges, and hence more likely to have an open
path from 0 to infinity.) One can therefore define the critical probability

(1.3) p.=sup{p: 6(p) =0}.
[In several of the references this critical probability is denoted by p u to
_distinguish it from p; of (1.9). Since it is now known (cf. the answer to (1.10))

that p, = py, the common notation p, seems preferable.] By definition

=0, forp<p,,

(1.4) 0(p) = P{W 1smf1mte}{ >0, forp > p,.

The general shape of the graph of 6(-) is believed to be as in Figure 1. The

8(p)+
1 (1,1)

0 Pe T op>

FIG.1. General features of the graph of 0(-).

subject came to life with Broadbent and Hammersley’s proof in [11] and [50]
that 0 < p, <1, so that there are two regimes with totally different global
behavior of the system. For p < p, there are no infinite clusters, while simple
ergodic considerations (see [54]) show that for p > p, there are w.p. 1 infinite
clusters (or “percolation occurs”). In fact, a recent result of Aizenman, Kesten
and Newman [4] shows that there is w.p. 1 a unique infinite cluster, whenever
0(p) > 0. The system is said to undergo phase transition at p.. This is one of
the main reasons of the popularity of the subject these days. The popularity can
be measured by the fact that the surveys and books [13], [25], [27], [33], [34],
[36], [53], [59], [64], [74], [89], [90], [91] and [97], all of which appeared in or
after 1979, devote about 1700 pages to percolation. Statistical physicists hope
that the model is simple enough to demonstrate explicitly many aspects of phase
transitions or critical phenomena known experimentally or (often on a nonrigor-
ous basis) from other models. There is even a rigorous relation between the Ising
model—or more generally the Potts model—for magnetism and percolation due
to Fortuin and Kasteleyn [57] and [40] (see also [35], Section 6A). The heuristic
interplay between these models has, however, been much greater than one would
expect on the basis of this rigorous relation alone; results in percolation have
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often stimulated a similar result in the Ising model and vice versa. We list some
of the questions suggested by considerations of statistical mechanics or im-
mediate mathematical curiosity and indicate the answers as far as known today.

(1.5P) What is p.?
For d = 2, p, = ; [569], but p, is still unknown for d > 3.
(1.6P) Is p - 6( p) continuous?

Yes, at all p + p. ([4]), and for d = 2 also at p, ([54], [85] and [59], Theorem
3.1). One believes, but has not yet proved, that 6(-) is continuous at p, also for
d > 3. Note that by (1.4) continuity at p, is equivalent to 6( p_,) = 0, or to the
absence of infinite open clusters at p,. This is not the case in all generalizations

of the model (cf. [6]).
Several new questions arise when one tries to describe more details of the

distribution of

#W := number of edgesin W.
Note that ( p) is simply the atom at co of this distribution. For instance, one
can consider

(1.7) x(p) = E,{#W; #W < o0}
and

(1.8) E,(#W} = x(p) + 6(p) - o,
and define

(1.9) pr=sup{p: E,{#W} < w0 }.

Clearly, p; < p,, since by definition E {#W} > 6(p) - o0 = oo for p > p.. Some
authors did not distinguish between p; and p,, but it became clear from [84]
and [86] that this is an important distinction. In fact, the latter paper reduced
the proof of p, = ; for d = 2 to proving p; = p, for d = 2. One thus has the
general question:

(1.10) Is pp=p, forall d?

Menshikov, Molchanov and Sidorenko [74], and independently Aizenman and
Barsky [1], have just shown that the answer to (1.10) is yes. This is even true in
much more general models. The results of [1] and [74] immediately imply p, = 3
for the above model in dimension 2 and also provide the main step for rederiving
the known critical probabilities in other models, to be discussed in the next
section. Moreover, in contrast to the usual approach, their method uses little
geometry. We therefore consider [74] and [1] as the most important and exciting
recent papers on the subject. Other obvious questions are:

How do B{#W = n} and F{Rad(W) = n} or P{n <
(141P) #W < o0} and P,{n < Rad(W) < oo} behave, as func-

tions of n and/or p?

where
(1.12) Rad(W) (= radius of W) := max{|v|: v € W}.



PERCOLATION AND FIRST-PASSAGE PERCOLATION 1235

Not surprisingly, the asymptotic behavior in n of the above functions is quite
different for p < p,, p = p. and p > p,, and only partial information is avail-
able.

Consider first p < p,. Subadditivity arguments as in [3] and [59], Lemma 5.9,
show that (for any p)

1
(1.13) lim;log P{#W = n} exists.

However, the limit in (1.13) is nontrivial, i.e., finite and strictly positive, only if
P < p,. Some partial information about this limit can be obtained from [5], [59],
Theorem 5.1, and the forthcoming article by Nguyen [77].

Grimmett (private communication) pointed out that simple subadditivity
arguments show that for p < p,, there exists a £(p) = £(p, d) € (0, ), such
that

Clnl“dexp(— ) < P,{Rad(W) > n}

n
£(p)
(1.14) n )
¢(p) )

The quantity &(p) is the same as the correlation length, as defined in Chayes,

Chayes and Frohlich [18] (see also [13], Section 2.3) for p < p,. More specifically,
if we define

(1.15) ™(p,x,y) = B,{x > y; #W < 0},

< Cynd! exp( -

then for p < p, (where #W < oo is automatic)

1 1
—— = lim - —log 7(p,0,(n,0,...,0)),
57 = Jim — <1oE (5,0, )

and (since T is supermultiplicative)

(1.16)

(1.17) 7(p,0,(n,0,...,0)) < exp(— ﬁ), D <D,

The function 7 in (1.15) is sometimes called the truncated connectivity function.
The ordinary connectivity function is P,{x — y}.

The exponential factor in (1.14) and (1.17) does not becomes significant until n
is of the order of the correlation length. For n much larger than the correlation
length, the probability of an open path between points a distance n apart
becomes small when p < p.. On the other hand, it is known (by [59], Theorem
5.1, and the result p, = py; see also [85]) that at p_ the probability of an open
crossing of [0, n] X [0,37]¢"! in the first coordinate direction is bounded away
from 0 (as n — oo0). Thus, for p < p, one can think of the correlation length as
the smallest scale at which the connectivity probabilities differ drastically from
those at p,. This intuitive interpretation of correlation length is also useful for
P > p, and is also a heuristic support for scaling theory (see the end of Section
2.3). So far we only have a way of making this precise if d = 2 (cf. [66]). For fixed
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n, 7(p,0,n,0,...,0)) and P{Rad(W) > n} are continuous in p, so that the
above intuitive interpretation also tells us that we must have

(1.18) ¢(p)to, asp?p,.

In fact, this follows from the fact that £(p) in (1.14) and (1.16) is increasing on
[0, p,), but that 7(p,0,n,0,...,0)) and P,{Rad(W) > n} are known not to
decrease exponentially in 7 [cf. (1.21) and (1.22)]. Here, and below, P, stands for
P, .

chor P = p, it is believed that

(1.19P) P{#W=>n} =n"1/9,
for some 0 < 8 < o0, in the sense that
(1.20) (log n) "'log P.{#W > n} » —1/8.

However, it is only known for general d that
P {#W > n} > P,{Rad(W) > n}

(e.g., by the method of [94], Corollary 3.15, combined with [59], Theorem 5.1).
Also (cf. [1])

(1.21)

[o2]
(1.22) Y P{#W=n}e "t > C,h™1/?,
n=1

which is equivalent to

P{(#W>n} > Cyn~ V2
For d = 2 we have the more detailed estimates (cf. [59], Chapter 8, Kesten in
[64], [66], [84], [86] and [87], Chapter 3)

Cn V3 <P {Rad(W) > n} < P {#W>
(129 17 < Po{Rad(W) = 1) < Po{#W 2 n)

< Csn= G,
For p = p_ one also expects
(1.24P) P {Rad(W) > n} = n~ /%,

for some 0 < §, < oo, but so far one can only prove (1.21)-(1.23).
As discussed in [5] it would be very desirable to have an answer to the
following problem when d > 3:

Find a good upper bound for the left-hand side of (1.21) and
for ( p,,0, x).

.Finally, for p > p, it is believed that
(1.26P) log P{#W = n} ~ —Cynt@-/4,

Lower bounds of this form for the left-hand side are in [3] and [59], Theorem 5.2,
and upper bounds in [20].

(1.25P)
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2. Generalizations and applications.

2.1. Bond and site percolation on general graphs. To motivate generaliza-
tions and further problems we begin with the following application or interpreta-
tion of percolation, due to Frisch and Hammersley [41]. Think of the vertices of
Z? as the trees in an orchard and assume that a blight starts at the tree at 0. We
now want to use percolation as a model for the spread of the blight through the
orchard. The model of Section 1, which is called (Bernoulli) bond percolation on
Z %, might be reasonable if the event of a tree at v infecting a tree at a neighbor
w depends only on the soil between v and w. If, on the other hand, this event
depends only on the resistance to the blight of the tree at w, then a better model
would be one in which the randomness is attached to the sites or vertices, rather
than the bonds. This leads to site percolation, in which each site is indepen-
dently “occupied” with probability p and “vacant” with probability q. Clearly,
one can also formulate mixed site—-bond problems, and one may replace Z¢ by
any graph ¢ periodically imbedded in R (cf. [59], Section 2.1). E.g., a favorite
graph ¢ C R? is the triangular lattice of Figure 2. The reader will have no

RRRK

Fi1G.2. The triangular lattice.

trouble finding his own interpretation for the two states of the bonds or sites.
When considering alloys of materials A and B, “occupied” or “open” may mean
“occupied by component A” and “vacant” or “closed” may mean “occupied by
component B.” In the case of electron spins the states may be “spin up” and
“spin down,” while there are still other interpretations in the resistance prob-
lems of Section 2.5.

It can be shown that bond percolation on ¢ is equivalent to site percolation
on the covering graph or line graph of ¢ (cf. [59], Sections 2.5 and 3.1), but not
vice versa, so that site percolation is somewhat more general than bond percola-
tion, as long as one restricts oneself to models in which the-sites (or bonds) are
independent of each other. Percolation with the latter property is usually called
Bernoulli percolation.

For various models the independence assumption is inappropriate. Consider,
for instance, the following simple-minded model of a forest fire or spread of an
epidemic (see, for instance, [70]). Again the vertices of Z? are the trees. If a tree
at v is ignited it burns for a random time A = A(v) during which it may ignite
some of its neighbors which are not yet burning or have not yet burned. For fixed
v the events {v ignites w: w a neighbor of v} are usually dependent since the
probability that v ignites w will be an increasing function of A(v). Thus, even
for i.i.d. A(v)’s, the occurrence of the event v ignites w; will tell us something
about A(v), which in turn influences whether v ignites w,. Dependence destroys
the simplicity of the model and we consider here only Bernoulli percolation.
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The last example also illustrates the need to consider directed graphs ¥;
{v ignites w} should be distinguished from {w ignites v}. Thus, in general, we
want to consider one edge directed from v to w and another from w to v. Of
course, one or both of these edges may be absent, and they could be dependent.
E.g., the original model of bond percolation on Z¢ can be viewed as one in which
each pair of adjacent vertices is connected by a pair of edges with opposite
orientation, and both edges are open (closed) simultaneously with probability p
(q, respectively). Directed or oriented percolation discusses many of the prob-
lems of ordinary percolation, but has also some new problems. We shall not
discuss this generalization here. A nice survey is in Durrett [27]; see also Durrett
and Schonmann in [64].

As a final generalization we mention multiparameter problems. In the above
examples of the spread of the blight or forest fire, one may want to treat the
horizontal and vertical bonds of Z? differently, for instance, because of prevail-
ing wind conditions. Thus, one may want to take horizontal and vertical bonds
open with probabilities p, .. and p,.,, respectively. It is obvious how to phrase a
general multiparameter model on a graph ¢ (cf. [59], Section 3.2). All the
functions introduced so far now become functions of several parameters and
most problems have immediate multiparameter versions. E.g., (1.5) is replaced
by, “For what parameter values do infinite open clusters occur?” Many more
variants appear in the literature (see, for instance, Halley in [25] and Wierman in
[64]), but to keep the length of this review down we restrict ourselves to
one-parameter Bernoulli percolation, and with the exception of Sections 2.2-2.4,
even to bond percolation on Z ¢

2.2. Power laws and scaling relations. Consider one-parameter site percola-
tion on a periodic graph ¢ in Z¢ (as pointed out above, bond percolation is a
special case of this). The critical probability p, depends on ¢. Not too much
effort is devoted these days to finding p(¥), even though p (%) is unknown
with few exceptions. E.g., p, = § for site percolation on the triangular lattice
([59], pages 52-54) and p, = 2sin(#/18) for bond percolation on the triangular
lattice ([96]); but p, is not known for site percolation on Z¢, d > 2, or bond
percolation on Z¢, d > 3. The reason for the limited interest in this problem is
that p (%) seems to depend too much on special properties of ¥. Ad hoc
methods which work for one ¢ seem to tell us nothing about another graph.
Instead, most efforts seem to be devoted to so called power laws and critical
exponents, which are supposed to be universal in a sense to be explained now.

Many of the quantities introduced previously, have a singularity at p,, when
considered as a function of p. This singularity is supposed to have the form of a
power law, that is, the function or one of its derivatives is believed to blow up
like a power of |p — p,|, as in (2.4)—(2.6). Define

[>2)

Ap)= ¥ —P(#W=n)
(21) n=1 n

= E,{(#W)7}; #W = 1}.
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A( p) is the average number of clusters per site and was first considered by Sykes
and Essam [92] in an attempt to calculate p (%) for various ¢ (see also [46] and
[95]). This function is an analogue of free energy in statistical mechanics (cf. [57],
[40] and [35], Section 6A). This analogy has been useful, at least in a heuristic
sense, to a number of people. E.g., [1] and [4] use this function heavily. Sykes
and Essam’s [92] arguments were based on the assumption that A(-) has exactly
one singularity and that this is located at p,. It is still not known what this
singularity is, if any, but one generally believes that

(2.2) A”(p)=|p—p| 7% forsome—1<a<O0.
As in (1.20), (2.2) is to be interpreted as
(2.3) lim (loglp - pd) logA”(p) = -1-a,

even though it is possible that a much stronger asymptotic relation between the
two sides of (2.2) holds. Similar comments apply to (2.4)-(2.7). Some other
proposed power laws are

(24) 8(p)=(p-p)", p>pe
(2.5) x(p) =Ip—pl7,
(2.6) ¢(p)=Ip—pd".

[This requires defining the correlation length also for p > p,, since it is not clear
that (1.16) will work for p > p,.. A further discussion of (2.6) for d = 2 is in [66].]

Still other power laws refer to behavior of functions of n, with p fixed at p,,
rather than behavior of functions of p. We already mentioned (1.19) and (1.24),
and an additional one is

2.7) 7(Per 0, W) = |0 — w| @724,

It is conceivable that one may have to distinguish the approach of p to p,
from the positive side and from the negative side, i.e., one may have to replace
(2.3) by the two relations

lim (loglp — p.|) "'logA”(p) = -1 —a,,
plp

lim (loglp — p,|) ‘logA”(p) = -1 - a_,
ptp.

with distinct a, and a_, and similarly for (2.5) and (2.6). The available evidence,
numerical from simulations and theoretical ([66]), points in the direction of
equality of the limits for p | p, and p 1 p.. )

The o, 8,7, »,n, 8, 8, are called critical exponents and (with the exception of
a) are believed to be strictly positive numbers. The universality conjecture states
that within one class of models these exponents depend only on the dimension d,
but not on the remaining structure of ¢ (as long as ¢ has only a bounded
number of vertices in each unit cell and a bounded maximal coordination number
and perhaps a few symmetry properties). Thus, for instance, the exponents for
bond and site percolation on Z2 and the triangular lattice of Figure 2 should all
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be the same. However, one will get different exponents for oriented percolation
on these lattices.

Other important conjectures concerning the critical exponents are the scaling
relations. The exponents introduced so far are not supposed to be all indepen-
dent, but expressible in terms of two of them. One form of the conjectured
scaling relations is as follows:

(2.8) 2 —a=y+28=p(5+1),
-1

(2.9) 2-n=dg—,

(2.10) §=ds -1,

(2.11) all members of (2.8) equal d.

Actually, relations (2.9)-(2.11), which involve d, are usually referred to as
hyperscaling relations and are only supposed to hold for d less than or equal to
a so called upper critical dimension, which is believed to be 6 (see below). For
d > 6 one believes that the exponents no longer depend on d, but take on their
so-called mean field value, which is the value these exponents have when ¢ is a
tree of a fixed finite coordination number (a Bethe tree). (The mean field value
for n has to be defined in a different way, though.) In particular, if ¢ is a binary
tree all the power laws hold and the exponents can be calculated. One often
thinks of such a tree as corresponding to Z¢ for infinite d, by thinking of each
pair of edges between an nth generation vertex and its children as being
translates of the positive and negative coordinate vectors of a separate dimen-
sion. Thus, the upper critical dimension conjecture can be paraphrased as “for
any d > 6 one has the same behavior as in infinite dimensions.” The value 6 for
the upper critical dimension was guessed by Toulouse [93], because substitution
~ of the mean field values for a, 8, v, 8, 1 and » yield equahtles in (2.8)-(2.11)
when one takes d = 6.

Very little of this scaling theory has been proven so far. For many exponents
one has been able to prove that the mean field value is a one-sided bound for the
exponent for all d > 2 (cf. [5] for vy, [14] for 8 and [1] for &). One also has bounds
in dimension 2 which show that most exponents do not yet take their mean field
value for bond or site percolation on Z?2 (cf. [66] and [67]). For d = 2 specific
rational values have even been conjectured for the exponents (cf. [90] and the
references therein).

Even though none of the power laws has been made rigorous, it has been
proven in [66] for bond and site percolation on Z2 that once we have the two
power laws (1.24) and (2.6), then the other power laws and all the scaling
relations (2.8)—(2.11) with d = 2 must hold. There is one exception. We cannot
prove the first equality in (2.8); very little is known about a and it is not even
known yet that A”’(p) has a singularity at p.. It should be noted that the
results of [66] do not rely on (1.24) and (2.6) as assumptions. Independently of
these, [66] derives relations between various quantities which are interesting by
themselves. For example, for bond and site percolation on Z? it is shown that

x(p)
[£(p)Po{Rad W > &(p)}]
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is bounded away from 0 and o0 as p — p,. When this relation is combined with
(1.24) and (2.6), one obtains (2.5) plus one of the scaling relations.

Durrett and Nguyen [28], [30] and [76] have proven a number of inequalities
between critical exponents in all dimensions, provided the critical exponents
exist. Typically, these inequalities are one half of a scaling relation, i.e., they
show that some relation between exponents which is conjectured to be an
equality is at least an inequality in one direction. Further inequalities between
critical exponents are in Newman’s contribution to [64].

It is somewhat silly to list the conjectures discussed here as open problems.
Rather, they form the core of scaling theory and proving of power laws,
calculation of critical exponents and proving universality and the scaling rela-
tions, is a whole program. Only modest beginnings in this direction have been
made and the program is likely to keep statistical mechanicians and probabilists
busy for a long time.

2.3. Heuristics for Section 2.2. For the interested reader we insert here a
heuristic section which attempts to make some of the principal conjectures of
scaling theory for percolation plausible. More about this can be found in Amit
[7] and Fisher [38]. These references also explain how scaling and the renormal-
ization group arose in other physics models. All further sections are independent
of this section, which should be skipped by anyone interested in the flavor of the
subject only.

Power laws and universality seem to have been conjectured purely phenome-
nologically, on the basis of experimental evidence concerning critical phenomena.
In some models such results can be demonstrated, albeit not always rigorously.
Also simulations for percolation support these conjectures. The favorite explana-
tion for such conjectures at present rests on renormalization group arguments. A
version for percolation might run as follows. Consider first the relation

P {Rad(W) > n} = n~V/%

[given in (1.24)], which only concerns the system at p,. At criticality there is no
favorite length scale. One therefore believes that (in some sense) the “connectiv-
ity picture” in [ —n, n]¢ when suitably scaled looks the same for all large n. In
particular, for fixed A > 1,

P.{Rad(W) > An}
P, {Rad(W) > n)

should have a limit as n — oo. Indeed, the right-hand side of (2.12) is the
probability that some of the endpoints of open paths from 0 to d([ —n, n]%) can
be continued by open paths to d([ —An, An]?) across [—An, An]¢\[—n, n]% If
thé limit of (2.12) indeed exists for all A > 1, then (1.24) follows; in fact,
P_{Rad(W) = n} even has to be regularly varying (cf. [37], Section 8.8). Similar
arguments can be adduced for (2.7). (1.19) seems less intuitive to us, but if one
believes that #W (= volume” of W) behaves like a power of Rad(W') when the
latter is large (for d = 2 this is justified in Kesten’s contribution to [64]), then
(1.24) implies (1.19).

(2.12) = P {Rad(W) > An|Rad(W) > n}



1242 H. KESTEN

Next we discuss the power laws, which involve powers of (p — p,), beginning
with (2.6). Suppose that we start with site percolation on ¥ and that for some
fixed L we divide space into the cubes

(2.13) [AL, (i + VL) X [jL, (G + DI) X -+ X[JaL, (Ja+ VL),

J; € Z, and identify the cube in (2.13) with the site (j,, ..., j;) of a new copy of
Z% Call such a cube an (L-) renormalized site. We would like to find a
percolation problem for the renormalized sites which is (more or less) equivalent
to our original percolation problem. Before attempting this we illustrate the
effect of renormalization in a much simpler situation. Let {X(v): v € Z%} be an
ii.d. family of random variables with distribution F of mean p and variance 1.
We view p as the parameter which plays the role of p. The variables X(v) do not
necessarily take two values only, but we shall say that the system percolates if

Y X(v) > 0, n- oo

lol<n

By the law of large numbers p.= 0 and the system percolates (does not
percolate) w.p. 1 if p > p. (p < p.). By the central limit theorem we have to look
at the sum of X(v) over a cube of edge size at least |n| %/ to note that
p # p, = 0. Thus, the correlation length can be taken to be || ~%>/¢, which is the
power law (2.6) with exponent 2/d for this example. (Note the “universality”;
this statement does not depend on the shape of F.) Renormalization assigns to
the L-renormalized site j = (j,..., ;) the random variable

1
Y.(J) = 1an )y X(v),
v in the cube (2.13)

whose distribution we denote by F(:). Fy is a functional of F, so that we can
write F, = S(L, F) for some transformation S of distribution functions. Note
that S(L,, S(L,, F)) = S(L,L,, F). The original problem for the X’s is equiv-
alent to a problem of exactly the same kind for the Y;’s. We have merely
replaced F by F;. Note that for large L, F; is more or less normal with mean
pL%? and variance 1. If F has mean 0, then so does S(L, F), and S(L, F)
converges to a standard normal distribution as L — oo. This limit distribution is
independent of the shape of F, and it is a fixed point of the transformation S.

We return to our original percolation problem. In analogy to our example we
want to obtain a percolation problem for the renormalized sites. To do this we
must decide when a renormalized site is to be called occupied. There is no
obvious way to do this, but presumably, if we call the cube in (2.13) occupied
when it contains sufficiently many occupied paths on ¢ (say an occupied path
between each of the d pairs of opposite faces), then an infinite cluster of
oceupied renormalized sites is almost the same as an infinite occupied cluster in
the original percolation problem on ¢. This is only approximately true, because
the occupied crossings on ¢ in two adjacent occupied renormalized sites do not
necessarily connect, as illustrated in Figure 3. The assumption is that for p > p,
and large L the probability of a connection is high and that this is a good
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F1c. 3. Two adjacent occupied renormalized sites. The occupied paths in the left and right square
do not necessarily connect.

approximation. Once this is accepted we can calculate
S(L, p) = P,{an L-renormalized site is occupied}.

The above approximation would say that the probability of an occupied connec-
tion on ¥ over distance n, with parameter p, should behave like the probability
of an occupied connection over n/L renormalized sites, i.e., connection over
distance n/L in site percolation on Z¢ with parameter S(L, p). In particular, we
can expect in some approximate sense

(2.14) &(p) = LE(S(L, p)).
For p < p, this approximation is not convincing. It becomes slightly more
acceptable that two adjacent occupied sites are connected, if we define j to be
occupied if there exists an occupied crossing in the i-direction of

[AL, G+ DL] X - X[ = DL, (i + 2)L] X -+ X[ JoL, (Ju+ 1)L],
for i =1,...,d. For d = 2 two adjacent occupied sites now necessarily connect
(see Figure 4). The new percolation problem is, however, no longer a Bernoulli

F1c. 4. Two adjacent renormalized sites which are occupied according to the second definition. The
solid and dashed squares are of size 3L X 3L; the solid and dashed paths are occupied and must
connect.

percolation problem. Sites j and k are dependent if |j — k| < 3. We are therefore
forced to consider p not as a single parameter, but as some infinite-dimensional
vector which can describe also the dependence structure of the percolation
problem; S(L, -) is then a transformation on this infinite-dimensional parameter
space. ’

If we start with the percolation problem on L,-renormalized sites (instead of
the original problem on ¢) and combine Lg L,-renormalized sites into one
L, L,-renormalized site, then the same argument gives

£(S(Ly, p)) = Lyé(S(LyLy, p))-
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In this last step the original problem on ¢ does not enter, so that S should be (at
least in some asymptotic sense) independent of ¢, which argues for universality,
as we shall see. If the original problem is critical, i.e., on the boundary between
the regimes with only finite clusters and with an infinite cluster, then the same
should hold for the system of renormalized sites. We postulate that if we start at
D., iteration of S = S(L, -) will take us to some fixed point p of S, which does
not depend on ¥ (except through its dimension) or on L, i.e.,

(2.15) S/(L,p,)—-p, - .
(Compare this with the behavior of the F;’s in the simple example of ii.d.

random variables, considered above.) We also assume that S can be linearized
near p, so that

S(L,p)-p~ A(p - D),

for some linear operator A ;. Furthermore, we assume that A; has a dominant
eigenvalue A, so that

log|| A%, ()| — log||7|| ~ & log|A |,

for some norm |||, £ large and vectors = which are not orthogonal to the
eigenspace corresponding to A,. All this is somewhat vague, since we have not
specified the space of p’s on which we are working (and, what is more, do not
know how to do this); see [38], Section 5, for a slightly different formulation. We
thus hope that

(2.16) log||S*(L, p) — S*(L, p + =)|| — log||7|| ~ klog|A,],

for p close to p and suitably small = and large k. We now want to start with
- Bernoulli percolation on ¢ with parameter p, close to p, = p(¥), and we want
to apply (2.16) with p = 8%(p,), p + ™ = S/(p,). This is unreasonable for j = 0,
since p, is not necessarily close to p, but by (2.15), we can choose j, = jo(P.) s0
that S/(p,) is close to p, and then (2.16) should hold for p = S/(p,), p + 7 =
SY( p,), when j = ji, p, close to p, and & such that S/**(p,) is still close to p.
The closer p, is to p,, the larger we should be able to take % (see Figure 5). We
expect [A;| > 1, since |[A;| <1 would imply that all systems near p, would
converge to p under iterations of S, and all such systems would have similar
behavior. This would contradict the fact that arbitrarily close to p, there are
both percolating and nonpercolating systems, by definition of p,. (We ignore the
boundary case |A ;| = 1.) Finally, if we start out in the one-dimensional subspace
of Bernoulli percolation, with p, and p, numbers close together, we should be
able to replace [|S%(p,) — S(p,)ll by Clp, — p.| with C = (d/dp)S”(L, p)
evaluated at p, (provided this derivative exists). Putting all this together we
expect that we can let p, = p, and k& — oo such that

log||S**( p,) — 8**(p,)| ~ log Clpo — p.| + klog|A |
is bounded away from 0 and co. This would give
—loglpy — p.| ~ klog|A .
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Fi1G. 5. The flow of S’p. (2.16) should work well in the circled neighborhood.

In addition,
|log £(S**7o( py))| = |log £(S**7( p,) + S*+/o(py) — S**%o(p,))|

can then be expected to stay bounded [since S**/o(p ) — p], so that (k& + j,)
iterations of (2.14) finally give

log £(p,) ~ klog L ~ — —5=_logip,  p
og ~ og ~ — ——]o - D>
pO lOgIALl g 0 D

which is (2.6) with p replaced by p, and » = (log|A.|) 'log L. [Note that
[Az| > 1 and hence » > 0 is consistent with (1.18).]

Once we accept that the correlation length obeys a power law, the remaining
argument is that the correlation length is the fundamental length scale, and that
dependence on p should be governed only by this length scale. This leads to the
scaling ansatz '

0|
- |2
(217) (2,0,0) ~ lo =8| 75
(cf. Essam [36], Section 4.6) and
n
(2.18) P{#W =n} ~ nl"fi(zm),

where the + and — signs correspond-to p > p, and p < p,, respectively (cf. [89],
Section 3.1.1, or [36], Section 4, for a similar hypothesis; see also [38], Section 5,
for further justification). Here g and f, are “nice” functions,  some constant,
and the asymptotic relations are supposed to hold when p — p,, |v] =
[n = o0] in such a way that |v|/£(p) [respectively, n/é(p)] tends to a limit.
Note that, in view of (2.7), (2.17) states that 7(p,0, v) is approximately equal to
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7(p,, 0, v) times a correction factor which depends only on |v|/&(p) [ie., |v|
measured on the scale £(p)]. Since 7(p,0,v) = 7(p,0,v) and &(p) = o as
b = p,, we expect that

(2.19) 0<g(0) = }ciix(l)g(x) < 0.

Also, since 7(p,0, v) = 0 as |v| = o0, we should have
(2.20) g(x) >0, asx—>
[and even exponentially fast, by (1.17)]. (2.19) and (2.20) should also hold with g
replaced by f .. Thus, the scaling hypotheses (2.17) and (2.18) go hand-in-hand
with the intuitive interpretation of the correlation length after (1.17).

From (2.6), (2.17) and (2.18) one can obtain the remaining power laws, as well
as the scaling relations, by simple manipulations and a few intuitive hypotheses.
For example, by (2.18) and (1.7)

x(p) = inz;{#w= n)

should behave like
21y )~ 7 ey )
= &) [ 1) .

Not only does this, together with (2.6), imply (2.5), but it even says that
v = »(3 — 7). By similar manipulations (cf. [36], Sections 4.3 and 4.6, and [89],
Sections 3.1.2 and 4.2.1 and Appendix 1), one can express also the other
exponents in terms of » and 7. Elimination of 7 then yields the proposed scaling
relations.

As a final bit of heuristics we point out that (2.17)—(2.19) and the analogue of
(2.19) for f indicate that in blocks of size £(p) or smaller the “connectivity
picture” should have a very similar distribution under P, as under P,. Le., on
the scale of the correlation length, the picture is essentially the same as that of a
critical system. It is difficult to formulate this in a precise way, but a modest
beginning in this direction for d = 2 is in [66], where it is proven that

P {Rad(W) > n}
0<C= 3 [Rad(W) = n)

< C, < o0, uniformly for n < &(p).

2.4. Continuum percolation. For many phenomena it seems unreasonable to
impose a lattice structure on the model. For instance, the early work of Flory
[39] mentioned previously dealt with gelation. When long polymer molecules in
solution form sufficiently many bonds between the molecules, then an infinite
connected cluster arises or a gel is formed (see Figure 6). Flory used a branching
process as a model for this situation (ignoring cycles of intermolecular bonds),
but I do not know of a really satisfactory model for this situation. In any case, it
points to the need for models in which space is continuous rather than discrete.
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/

F1G. 6. The long strands are polymer molecules. Intermolecular bonds (as indicated by the double
lines) may form.

One appealing continuum model (which seems of no use for the gelation
phenomena, though) is the following. Let 2 = {p,},., be the points of a Poisson
process in R¢ with constant density A. Let {F}};, be a sequence of i.i.d. figures,
independent of #. E.g., F; might be a ball with center at the origin and (random)
radius r;. Let W be the component of 0 of UX.,( p; + F). p; + F, is the figure F;,
translated by p;, W= @ if 0 € U(p; + F)). If F, is the ball with center 0 and
radius r;, then U( p; + F) is the union of a countable number of balls, centered at
the random points p;. U(p; + F;) takes the place of the collection of open bonds
in our first model. Percolation now corresponds to W being infinite, and accord-
ingly we define the critical density as

A, = sup{A: P\{W is infinite} = 0},

where P, is the measure governing the model when % has density A. There
seems to be some ambiguity in this definition, since “W is infinite” may mean
“W has infinite Euclidean volume” as well as “W contains infinitely many p,.”
Fortunately, these two interpretations lead to the same A, (Roy [83]). Questions
quite analogous to the ones for ordinary bond percolation can be phrased in this
model and some results including estimates of A, can be found in Menshikov,
Molchanov and Sidorenko [74], Molchanov and Stepanov [75], Hall [48], [49]
and Roy [83]. Criteria for percolation of more general (dependent) random fields
are also considered in [74] and [75].

One original motivation for this model is given by Gilbert in [42]. Take d = 2
and think of p; as the location of an FM relay station. Its signal can be
transmitted up to its horizon, i.e., it can be received by points in the disc

D(p;,2r;) = {x: ||x — pll, < 27;}.
Is the probability that a signal from the station nearest to the origin can be
transmitted infinitely far strictly positive? For r; = r, a constant, this is equiv-
alent to the question whether .

P{U(p; + D(0, r)) is infinite} > 0,
since transmission through the stations at p,,), p;q), ... is possible only if
| Pick+1) — Piryllz < 27. Actually, a more important type of question is, what the
probability is of transmitting a signal across the United States. This leads to the

problem of estimating probabilities of open crossings of rectangles; for bond
percolation on Z¢ we shall discuss this problem in Section 2.5.



1248 H. KESTEN

Alternatively to introducing a critical A in the last model, one may, when
F,=B(0,r) == {x € R% ||x||, < r} (the ball of radius r), fix A, as 1 say, and
introduce the critical radius

r, == sup{r: P{component of 0 in U( p; + B(0, r)) is infinite} = 0}.

This is actually the way Gilbert looked at the problem, and it is also the way in
which it appears most naturally in the cluster analysis of Hartigan [55]. The
problem in the last paper is statistical. If X, X,,..., X, are i.i.d. observations
from a continuous density f(-) on R¢ one wishes to determine how many
components the “high-density set” S(c) = {x € R% f(x) > ¢} (for some given
¢ > 0) has, by counting the number of r-clusters in the sample which contain at
least a fraction a > 0 of the observations. Here a and r are at our disposal and
an r-cluster of the observations is a maximal subset € of the observations such
that if X; and X; belong to €, then there is a chain X, = X;, X,,),..., X, =
X; of observations in ¢ from X; to X; with || X;,,,) — Xl <1, 0<s<p.
[55] proves that if S(c) consists of » < co compact components S,,..., S,, any
pair of which is separated from each other by the set {x: f(x) < Ac} for a certain
constant A = A(c) < 1, then there exist 7, = r,(c), a, = a,(f,c), e =&(f,c) >0
and ¢, = ¢,(f, ¢)| 0 such that for n — oo,

P(3 v r,-clusters €,,..., %, as above, such that d(S;, %;) < ¢,,

221) inf{llx —yll: x € €, yEF, i #j} >} > L.

Here
d(A, B) = sup inf ||lx — yl,.
x€A yeB

It should be intuitively clear that the proof of this consistency result relies on
results for the continuum percolation model of this section, since the r,-clusters
are essentially the same as the components of our set U(p; + F,) for F,=
B(0, r/2). Hartigan [55], page 391, also formulates a conjecture for continuum
percolation, which is an analogue of (1.10). If true, this would allow us to take
A = A, 11 in the conditions for (2.21), and thus would show that components of
S(c) can usually be discovered. The Hartigan conjecture has been proven for
d = 2 ([83]), but not yet for d > 3. However, the results of [74] Section 8, and [4]
leave little doubt that Hartigan’s conjecture (in slightly modified form) is true
for all d > 2. :

Ramey [80] used minimal spanning trees for another version of Hartigan’s
cluster analysis. Again properties of continuum percolation are used to derive
properties of minimal spanning trees for X, ..., X, when d = 2 (cf. [80], Lemma
3.3.1).

2.5. Resistance and flow problems; crossing probabilities of blocks and reli-
ability. An old problem in physics, going back more than a century to Maxwell
[73], Volume 1, page 365, and Rayleigh [81] is the determination of the effective
conductivity of a mixture of materials with known conductivity. For instance, if
one mixes a fraction p of a good conductor A with conductivity ¢, and a
fraction 1 — p of a bad conductor B with corresponding conductivity oz < o,
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how well does the mixture conduct electricity? The answer depends on how the
materials are mixed, and is not determined by the numbers p, o4, oy alone.
Stochastic continuum versions of this problem have been treated by Golden,
Papanicolaou and Varadhan ([43] and [78]). Here I want to discuss a discrete
version. Consider the edges of Z¢ as i.i.d. random resistances with distribution F
(concentrated on [0, oco]). Kiinnemann [69] has already studied this model when
each resistance lies in a fixed interval [a, b] with 0 < @ < b < o0, and also [43]
and [78] correspond to this case. To make contact with percolation theory, we
consider the extreme case where F has an atom of size p at 1 (ohm) and an atom
of size ¢ = 1 — p at co (ohm). The edges with infinite resistance do not conduct
electricity, so that we may as well remove them. Thus, we are dealing with the
resistance of the random network obtained by removing a fraction g of the edges
of Z¢ (and giving each remaining edge the fixed resistance of 1 ohm). Let

(2.22) Sy=[0,n]*"x {0} and S,:=1[0,n]*"x {n}
be the “bottom” and “top” of the large cube [0, n]¢ and for the random network
let

R, = resistance in [0, n]? between S, and S,.

(For this we have to think of all vertices in one face S; as connected by
superconducting material; see [59], Chapter 11, for a precise definition.) For p
small we expect that there are no conducting paths between S, and S, at least
with high probability when n is large. This would result in R, = co. On the
other hand, for p = 1, one easily calculates that for the full network R, =
n(n + 1)! =% Thus, one can hope that for large p,

(2.28) r.(p)= lim n? 2R, exists (in some sense) and lies in (0, c0).

n-— oo
In fact, one believes that these two are the only possible asymptotic behaviors,
and that the separation between the low and high p regime is again at
PAZ%bond), the critical probability for bond percolation on Z¢. For d = 2 we

have the following result, which is a good step in the desired direction (cf. [569],
Theorem 11.2, and [15]).

THEOREM. Ford =2
(2.24) P{R, = o eventually} =1, ifp <34,
(2.25) P1/2{1im R,=w} =1, ifp=41,
and for some constants 0 < C;, § < co and 0 defined by (1.4) for bond percola-
tion on Z2, : ,

2 _ . , s
(2.26) o0 < CilO(P)] ™ < Iminf R, < limsup R, < Cy(p —4) ™) =1,

ifp>3.

For d > 2 we have much less information. (2.24) still holds for p < p(Z ¢, bond)
[by [59], equation (11.20), and p, = p, in [1]]. Also, by [15] [this time with 6(-)
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the percolation probability for bond percolation on Z¢; cf. (1.4)]
(2.27) B,{0 < C,[8(p)] " < liminfn?~?R,} =1, if p > p(Z9 bond).

However, an analogue of the other inequality in (2.26) is only known for p > p2,
where

pLF = pLEl(d) = critical probablhty for bond percolation on '

(228) 4F qlaby @+ % {0,1,..., k)42
and R
(2.29) pZ = lim pl¥.

k— oo
Then (cf. [15], Theorem 3.6)
(2.30) P(limsupn??R, < o} =1, if p>pe.

Note that the existence of r(p) in (2.23) has not even been shown for d = 2
(even though the limit does exist in the L%-sense in the more restricted cases of
[43], [69] and [78]). Nevertheless, it is believed to exist for all p > p, =
p{Z% bond) and to satisfy a power law

(2.31) r(p)=(p-p)"", Pplp.

(2.26) together with the bound 6(p) > C,(p — p,)?* for p > p. ([59], Theorem
8.1) sandwiches r,( p) between two powers of (p — p,) if d = 2 (more informa-
tion about these powers follows from [15] and [16]). This discussion raises the
immediate problems:

(2.32P) Is p2(d) = p(Z¢,bond)?

Trivially, p*(d) = p(Z%bond) and equality is believed by many people.
An affirmative answer to (2.32) would solve several problems, since there
are a number of properties which we believe true above p,, but can only prove
above p.

Prove the existence of r,(p) in some sense for p >
pAZ¢4,bond).

Establish the power law (2.31) and relate the exponent ¢ to

other critical exponents.

(2.33P)

(2.34P)

In connection with the last problem, it should be pointed out that the fine
structure of the resistance network for p close to p, is still not well understood
and it is not yet clear whether ¢ is an “independent” exponent or expressible in
terms of other exponents (see [68] and [15] for recent surveys of some work in
this direction and also the next section). So far the rigorous bounds in (2.24)—(2.30)
and [15] are obtained by estimating

v(n) == maximal number of edge-disjoint paths in [0, n]¢
from S, to S,.

As pointed out R, = o if »(n) = 0, whence (2.24) and its analogue for d > 2. On
the other hand, 1t is intuitively clear that large »(n) should lead to small R,. To

(2.35)
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make this quantitative assume that there exist » = v(n) edge-disjoint paths from
S, to S, of respective lengths /,,..., ,. A self-avoiding conducting path of length,
1, i.e., consisting of [/ edges, has resistance / ohm, since it consists of ! one-ohm
resistances in series. Edge-disjoint paths from S, to S, act as resistances in
parallel so that familiar rules for combining parallel resistances give

v 1 -1 1
RnS{ZT} S_EZli
1 b V'

(2.36) (by harmonic-arithmetic mean inequality)

< (V(ln) )2dnd.

In the last inequality we used the facts that our paths are edge-disjoint, and that
the number of edges in [0, n]¢ is dn®. Thus, (2.30) is reduced to showing

v(n
(2.37) liminf;(d—_z— >0,

and an upper bound for limsup n?~ 2R, will be d times the (—2)th power of the
left-hand side of (2.37). It is not clear how good this upper bound is, but in any
case the resistance problem seems closely tied to estimating the distribution of
the number of edge-disjoint crossings of [0, n]¢ from S, to S,. This is a special
case of the flow problem, to which we return in Section 3.3.

Through considerations of crossing probabilities, percolation theory also makes
contact with reliability theory. It is not hard to think of the sites (or bonds) of
Z<¢ as machine parts or switches which can be operating or defective, and the
total machine works only if there is a path in [0, n]¢ from S, to S, containing
only operating parts. The probability of the existence of such a crossing from S
to S, is then the probability that the machine is in working order. The number
of disjoint paths with operating parts only is a measure of the reliability of the
machine. The more such paths exist, the less likely it is for the machine to break
down. Less obvious are the applications of Greene and El Gammal [45] to the
manufacture of integrated circuits. The circuit is made up of “ processors.” Some
processors have a defect. One now produces spare rows and columns of processors
and after testing of the processors “on chip switches are set to connect nondefec-
tive elements into the desired configurations.” Identify the processors with the
sites of Z% and assume they are independently defective (nondefective) with
probability g (respectively, p). The connections between nondefective processors
are to run in so-called channels (the regions between the rows and columns of the
array). One wants the connections to be short, say of length < d, and not too
many connections in one channel, say at most ¢ connections in one channel. [45]
discusses problems of the following form:

(a) How to choose connections such that at least Rn? nondefective processors
from [0, n]2 form a linear chain (not passing through any processor twice) with
connections between successive processors in the chain of length < d and at most
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two connections per channel. Here R € (0,1) is a given number which we would
like to be large. The law of large numbers shows that the probability that this
can be done tends to 0 as n > oo for R > p. [45] shows a construction, which is
successful with a probability tending to 1 (at a rate which is estimated) when
R < p and d is large enough. It divides the array into square blocks. “Good”
blocks are those with at least four nondefective processors. With suitable choices
the good blocks form a large percolating cluster of blocks, which allows for
efficient connections between the blocks (see Figure 7, which is based on [45]).

an.
<a——+—

o ool

L+— Ly E "good"
4 | +“$E block
—d 1 élel L] 1

F16.7. A section of an array connected into a chain. O = nondefective and ® = defective processor.
Each block contains nine elements. Channels for one wire are provided between elements within a
block and for two wires between blocks.

(b) Find a wiring scheme for the connection of a 2 X k array of nondefective
processors, from [0, n]2 [or even [0, Rl + &)n] X [0, n]] with 2 > Rn (see
Figure 8). It is shown in [45] that for R < p this can be done with a probability

F16. 8. Connection of a 3 X 3 nondefective array from a 4 X 4 array.

tending to 1 (n — o0) in such a way that the connections have length O(‘/iog n)
and so that the number of connections per channel is bounded.

[45] also shows that its requirements on the connection length d are in some
sense the best possible ones.

2.6. The incipient infinite cluster and the ant in the labyrinth. The behavior
of the resistance R, of the last section, and its critical exponent ¢, are perhaps
the least understood of all the quantities mentioned so far. Clearly, to obtain a
power law for r_( p), one needs an understanding of the long open (or conduct-
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ing) paths when p is close to p.. This leads one to study the structure of the
infinite cluster when p — p_ is very small, but strictly positive. Ideally, one
would like to “take the limit” and study the infinite cluster at p, (the so-called
incipient infinite cluster). Unfortunately, we know for d = 2—and suspect that
this is true for all d > 2—that there exists no infinite cluster at p, (i.e., with P,
—probability one). How should one then define an object which takes the place
of an infinite cluster at criticality? One can try to force the existence of an
infinite cluster by means of conditioning. In [62] it is proved for d = 2 that there
is a probability measure » on the configuration space (which in our case is
compact, being the product of two-point spaces) such that the weak limits

(2.38) lim P.{-10 > d([-n,n]?)} and hlm P,{-|W is infinite}
n— oo P D

exist, and both equal »(-). Still for d = 2, there exists a unique infinite cluster w
a.e. [v], and W contains the origin. We proposed in [62] to call W the incipient
infinite cluster. An obvious question is:

Do the limits in (2.38), with [—n, n]¢ in place of [—n, n]?,

(2.39P) exist and are they equal, when d > 2?

One’s first reaction is that one should be able to answer (2.39) affirmatively by
simple monotonicity properties or inequalities, but this has not worked so far, so
that at present the above approach is restricted to d = 2.

Chayes and Chayes [13], Section 7.1, have suggested the eventually invaded
region in invasion percolation (see the next section) for the incipient infinite
cluster. The advantage of this definition is that it works for all d > 2, but it is
not clear how the definition relates to the one via the limit » of (2.38). On the
other hand, the second limit in (2.38) corresponds intuitively to what one takes
as incipient infinite cluster in simulation studies. E.g., in simulating a random
walk on the incipient infinite cluster, as discussed below, one often seems to
choose a large number, say N, and then simulates N steps of the random walk
while simultaneously building the random cluster. One only keeps those trials in
which the cluster building does not stop before N steps of the random walk. This
, amounts to a conditioning similar in spirit to the first limit in (2.38); one
conditions on the “cluster being larger than the span of the walks” (cf. [8]). In
the simulations of [56] (cf. page 1270) the conditioning is a bit more complex.
One conditions on the cluster of 0 being the largest cluster in some square (and
on the frequency of open sites in this square being within 0.0005 of p).

Still another approach to incipient infinite clusters is in [17].

What can one say about the structure of the incipient infinite cluster, and how
does it help us with the resistance problem? For d = 2 and W the unique infinite
cluster chosen according to the measure » of (2.38), it has been shown that W
has asymptotic density P,{Rad(W) > n}, in the sense that

-1

#(Wn [—n, n]2)

<e -1,
n’P,{Rad(W) > n}
as ¢|0, uniformly in n (cf. [62], Theorem 8). Little else is known about the

vie <
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structure of W. Much effort has been devoted to the so-called link, nodes and
blob picture of the incipient infinite cluster (cf. Stanley and Coniglio in [25], [68],
Section 5, and Stanley in [88]). So far this has not yielded a rigorous quantita-
tive relation with the resistance problem.

De Gennes [23] suggested that one should be able to obtain useful information
for the resistance problem from what he called “an ant in a labyrinth” (see also
the survey of Mitescu and Roussenq in [25]). The labyrinth here is the network
of open edges in an incipient infinite cluster for bond percolation. (Similar
versions for site percolation exist.) The ant performs a random walk in the
labyrinth. Of the several versions considered, the simplest one, to us, is the one in
which the ant moves from its position X,, at time n, to its position X, , at time
(n + 1) by moving along an open edge incident to X,; this edge is chosen
uniformly from all the open edges incident to X,,. {X,,} is really a random walk
in a random environment (environment = labyrinth); it is only conditionally
Markovian, when the labyrinth is fixed. One studies power laws for

E{|X I3} or P{X,=0|X,=0}

and tries to relate the corresponding exponents to the resistance problem and the
8 and §, of (1.19) and (1.24). Even though there are some relations known
between random walks and resistances (cf. [26]), the only rigorous result for this
problem seems to be that if d = 2, and the labyrinth is the unique infinite cluster
W distributed according to », then {n'/27¢|X,|l,: n > 1} is a tight family for
some & > 0. Thus, X, shows subdiffusive behavior (cf. [63]). But it would be
desirable to solve the following problem:

(2.40P) Find the proper scaling and limit law for X,,.

As a closing problem of this section, which may have a bearing on the
structure of the incipient infinite cluster as well as the resistance problem, we
mention the length of the shortest open crossing of [0, n]¢ from S, to S, [cf.
(2.22) for notation], conditional on the existence of such a crossing.

How does the length of the shortest crossing from S, to S,
(2.41P) behave under P,? In particular, does it grow faster than n'**
for some ¢ > 0?

The second question can be paraphrased as, “Are open crossings at criticality
necessarily very tortuous?” The numerical evidence of [79] and [44] seems to be
not fully conclusive, according to [32]; see also Stanley’s paper in [88]. For a
related problem see (3.18P).

2.7. Invasion percolation. All the preceding models were static. Time played
no role and the whole configuration of open and closed edges is chosen at one
single moment. A more dynamical model was introduced by de Gennes and
Guyon [24], modified by Lenormand and Bories [71] and Chandler, Koplik,
Lerman and Willemsen [12], and studied further in [98], [99] and [19]-[21]. The
original motivation was to describe the displacement of one fluid by another.
Interest in this arises from methods which attempt to recover oil by pumping
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water into the ground. In this model one assigns to each edge e of Z¢ a value
Dp(e) = 0. Without attempting to describe the physics accurately, we think of e
as a capillary, and p(e) as the minimal pressure which the water must have to
force the oil out of this capillary. If water is pumped in only at 0, then nothing
happens until the pressure reaches

(2.42) min{ p(e): e incident to 0}.
Assume that there exists a unique edge e, incident to 0 for which the minimum

in (2.42) is taken on, and set W(1) = {e,}. If the pressure is increased, oil is first
forced out of W(1), and nothing else happens until the pressure reaches

(2.43) min{ p(e): e touches W(1), but e & W(1)}.

After that the oil is forced out of an edge e, for which the minimum in (2.43) is
achieved. Inductively, W(n) will be a connected set of n edges, which contains 0;
it is called the invaded region at time n. W(n + 1) = W(n) U e, ,, where

(2.44) p(e,..) = min{p(e): e touches W(n), but e & W(n)}.

So far we have assumed that the oil can always be forced out, but in practice it is
important to take the phenomenon of trapping into account. A region R
becomes trapped by W(n) if R is separated from co by W(n). Once R is trapped
no oil from R can be displaced, so in the version which takes trapping into
account the edges of R become forbidden for invasion when R gets first trapped.
(2.44) has to be modified accordingly: The minimum in (2.44) is now only over
edges which have not yet been trapped by time n, and e, ,, has to be one of
those edges.

The model becomes stochastic when one assumes that { p(e): e € Z¢)} is an
i.i.d. family of random variables. For simplicity, we take the common distribu-
tion of thé p(e) to be the uniform distribution on [0, 1]. [This is not much of a
restriction for our purposes, since for any other continuous distribution function
F, we can realize p(e) as F~(£(e)) for a uniform ii.d. family {£(e)}, and the
invaded region for the p’s will be the same as for the £’s.] The resulting models
are called invasion percolation (without trapping) and invasion percolation
(with trapping). Perhaps the most immediate problem is:

What is the volume fraction of the trapped region in invasion
percolation with trapping? More precisely, what is

lim ———
N-w d(2N)

(2.45P)
X {number of trapped edges in [~ N, N1¢\ UW(k )}
k

and what is the behavior of the number of edges trapped by

W(n)?
It is useful to allow n to be a random time in the last question. For instance, in
simulations one often takes for n _the first time when each edge in [-N, N 19 is
either trapped by or belongs to W{(n).
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Interesting questions also came up in simulation studies of invasion percola-
tion (without trapping). [98] studied the empirical distribution functions

Q) = 5 L 1lp(e) <]

of the invaded edges. [Actually, [98] considered some numerical version of the
density of @,(x), and even that only at certain stopping times, but it is simpler
to discuss @, itself.] It was discovered numerically that [ p, = p(Z ¢, bond)]

x/pc’ ifx Spc,
(2.46) Q) > {7 n s

One can understand (2.46) intuitively if one knows the following standard
method to simulate ordinary bond percolation: Pick the {p(e): e € Z9) i.id.
uniformly distributed on [0, 1], and call an edge e p-open if and only if p(e) < p.
It is easy to see that the collection of p-open edges then has the same
distribution as the collection of open edges under P, in bond percolation on Z 7,
This method which seems to have been introduced by Hammersley [51], Scheme
C, therefore allows us to construct a sample of the open configuration under P,
for all p € [0,1] simultaneously. To connect this with (2.46) note that for each
Do > D, there is a unique infinite cluster W(p,) of p,-open edges. Once the
invaded region reaches W{( p,), i.e., once e, C W(p,) for some n [and hence
p(e,) < p,], all future invaded edges e, with & > n will belong to W{( p,) [since
the invasion can simply proceed picking edges from W{( p,) and have correspond-
ing pressure < p,]. Thus, one expects for any p, > p, that p(e,) < p, eventu-
ally, and that the edges e, e,,... picked in the invasion process behave as if
they were picked from W( p,). This would immediately explain the second line in
(2.46). But also the first line of (2.46) becomes reasonable; it says that the
invaded edges behave asymptotically as if they are samples from the conditional
distribution of p(e), given p(e) < p.. Presumably, the fact that e, is invaded
does not tell us much more about p(e,) than that p(e,) is not much higher than
j

An interesting fact about the above construction (which is essentially in [51],
page 285) is that the percolation probability

0(p) = P,{(W is infinite} = P{p(e,) < p for all n in invasion
(without ‘trapping) percola-
tion}.

Unfortunately, there are difficulties with the above explanation. One has to
prove that the invasion reaches W{( p,) for p, > p, w.p. 1. For d = 2 this is easy,
but for d > 3 it has not yet been proven. Furthermore, we know that there is no
infinite cluster W( p,) when d = 2, and we believe that this is also true for any
d.> 3. Nevertheless, the above heuristics explain why the eventually invaded
region UW(n) was proposed as the incipient infinite cluster (cf. [13], Section 7.1).
It also explains why invasion percolation has features similar to a critical
ordinary bond percolation system. This is made more precise in [19], where also a
good part of (2.46) is proven rigorously.
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Chayes, Chayes and Newman [20] also used invasion percolation to obtain the
following bounds for ordinary bond percolation on Z %
(p,0, x) < exp(—Cy(p)ix|),

Cz( p) pd-1yd
logn ’

(2.47)

P{#W=n} < exp(—

for p sufficiently large. E.g., (2.47) holds for p > p* [cf. (1.15) and (2.29) for
notation]. These results gain in interest when they are compared with (1.17) (for
b <p.), and the lower bounds of [3] and [59] mentioned in connection with
(1.26).

[98] and [99] also try to set up a scaling theory for invasion percolation, and,
in particular, to interpret critical exponents related to the rate of convergence in
(2.46) to critical exponents for Bernoulli percolation. Since we do not yet
rigorously have power laws for Bernoulli percolation such relations are somewhat
speculative. In the case of invasion percolation with trapping there is even some
debate as to whether the analogue of (2.46) requires a new critical probability
instead of p, (cf. [98] and [21]).

3. First-passage percolation.

3.1. The classical model. The asymptotic shape result. Originally introduced
by Hammersley and Welsh [52] as a generalization of Bernoulli percolation,
first-passage percolation has sufficiently distinct problems from Bernoulli perco-
lation to deserve a separate chapter. One now assigns to each edge e of Z¢ a
nonnegative random variable #(e). (Site versions of the model—with the ¢’s
assigned to sites rather than bonds—have also been considered, but we shall not
~ discuss those here.) (e) is usually interpreted as the passage time of the edge e,
but other interpretations will be discussed below. Throughout we shall make the
following assumption:

(8.1) {t(e): e € 7%} areiid.
The common distribution function of the #(e) will be denoted by F. The passage
time of a path r on Z? which runs successively through the edges e,,..., e, is

T(r) = 2 f(e,).

The e; do not have to be distinct here, but note that loops in a path can only add
to its passage time. The travel time from u to v is defined as

T(u, v) = inf{T(r): r a path from u to v}.

Finally,
* B(t) = {ve 2% T(0,0) < t)

is the set of vertices which can be reached from the origin by time ¢ The

principal object of study in first-passage percolation is the set B(¢) and various
of its asymptotic (for large ¢) properties. This is closely related to problems of
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finding optimal routes, since v € B(t) if and only if the fastest route from 0 to v
has travel time less than or equal to ¢ To see the relationship with Bernoulli
percolation consider the case in which

(3.2) p = P{t(e) =1} =1 - P{t(e) = 0},

and identify open edges with those edges of zero-passage time. Then the open
cluster W of (1.1) is just the set B(0). Thus, Bernoulli percolation deals with very
special aspects of B.

To formulate the principal result of first-passage percolation “smooth out”
the lattice structure by replacing B(t) by

B(t) = {v+ U:ve B(¢)},
where
U= {x=(xQ),...,2(d)): |x(i)| < 3,1 < i< d}

(the closed unit cube centered at 0). The principal result says that B(t) grows
linearly with ¢ [possibly at an infinite rate, see (3.6)] and has an asymptotic
shape which is not random. The first version of this was proved by Richardson
[82]; the following final form is due to Cox and Durrett [22].

(3.3) THEOREM. Assume that
(3.4) Emin{ty,..., t5,} < oo,

where t,,..., ty,,; are i.i.d. random variables with distribution F. Then there
exists a nonrandom convex set B, C R¢ with nonempty interior, and which is
either compact or equals all of R?, and has the following property:

1
(3.5) If B, is compact, then for all ¢ >0, (1 — &)B, C ;B(t) c
(1 + &)B, eventually w.p. 1.

1
(3.6) If By=R¢% then for all €¢>0, {x: |x| <e '} C ?B(t)
eventually w.p. 1.
If (3.4) fails, then

1
(8.7) lim sup I—vl—T((_), v) =00 w.p.l.

V=00

The most obvious problem is: )
(3.8P) Determine B, as a function of F (and the dimension d).

By symmetry B, must be invariant under permutations of the coordinates and
reflections in the coordinate hyperplanes. If the rightmost point of B, on the
first coordinate axis is (p%0,...,0), then by convexity B, lies between the
“diamond” {x: X¢x(i)| < p~'} and the cube {x: |x| = max|x(i)] < p~'} (see
Figure 9). Durrett and Liggett [29] showed in a remarkable two-dimensional
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F16. 9. B, must contain the diamond (with the solidly drawn boundary) and be contained in the
cube (with dashed boundary).

example that the boundary of B, can contain straight-line segments, but one has
not been able to calculate B, entirely in a single example (excluding the trivial
case when F assigns unit mass to one point). The only general theorem about B,
is the distinction between the cases (3.5) and (3.6) (cf. [61], Theorem 1.15, and
[13], Theorem 4.4).

THEOREM. B, = R¢ if and only if
(3.9) F(0) > p(Z°, bond).

We should also mention that [despite (3.7)] without any moment condition on
F, one can replace T(0, v) by a quantity 7'(0, v) such that

1 A
HIT((), v) — T(0v)| = 0 in probability,

as [v] = oo and such that (3.5) and (3.6) hold with B(t) replaced by
B(t) = {vo+ U: 1(0,0) < t}.

This was proven first for d = 2 in [22], and later for d > 3 in [61], Theorem 3.1.

Of course, one has done simulation studies of B,,. The earliest ones may be the
ones of Eden [31] in connection with Eden’s growth model. In this model an
animal grows in discrete time. Its state at time n, A,, is a connected set of
(n + 1) vertices of Z¢. At time 0, we start with A, = {0}. 4, is formed from
A, by adding at random one of the sites adjacent to A,, but not in A,. If the
probability of adding a site v to A, to obtain A, , is proportional to the
number of neighbors of v in A, (see Figure 10), then one obtains a model which
is equivalent (in a sense to be explained) to the study of B(¢) when F is the
exponential distribution,

(3.10) F(x)=(1-e%)".

. A second model picks all sites adjacent to A, with the same probability for
being added to form A, ;; in this model all X’s in Figure 10 have probability
1/7 of being added. This version corresponds to the site version of first-passage

percolation, still with the F of (3.10). The relation between Eden’s model
and first-passage percolation is that [under (3.10)] A, has exactly the same
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X
® e x
X e o x
0
X X

F1G. 10. The solid circles denote A,. One of the sites marked X will be added to form Ag. In the
first model the site marked ® is twice as likely to be added as the other X’s ( hence with probability

2/8).

distribution as B(¢,), where
t, = inf{¢: B(t) contains at least (n + 1) vertices}.

Eden [31] already suggested that one investigate the asymptotic shape of A,
but no progress was made until Richardson [82] realized the above equivalence,
which, together with (3.5), implies that A, (when suitably normalized) has the
asymptotic shape B, corresponding to (3.10).

Most simulations seem to have been done for the second model (the site
version) in two dimensions. Here the Eden animal looks very circular for large n.
Nevertheless, it is not believed that B, is a Euclidean ball when F is given by
(3.10). For one thing, we know that it is not a Euclidean ball in either the bond
or site version when d is large (cf. [61], Section 8, and Dhar’s contribution to
[88]) and any reasons for spherical symmetry in low dimensions should also
apply in high dimensions. Also recent simulations suggest that even for d = 2,
B, is not a (Euclidean) disc (cf. [100]).

3.2. First-passage times and the time constant. The full theorem about the
existence of B, was not proven right at the start of the subject. Rather one
started looking at the “rightmost” point of B,. More precisely, Hammersley and
Welsh introduced

ay, , = T(0,(n,0,...,0)) and
by, = T(0,{x: x(1) = n}),
the so-called point-to-point and point-to-line (or rather point-to-hyperplane)
passage times. They proved [under the assumption Et(e) < o] that n™'a, , =
in probability for some constant p = p(F, d), the so-called time constant. They
also proved similar convergence results for related passage times and conjectured
that also n™'b, , = p in probability. It was not until Kingman proved his
famous subadditive ergodic theorem (cf. [72], Theorem 6.2.6 for a recent version)
that one could obtain the following stronger result: If
(3.12) E{min{t,,..., t34}} < o0
[with ¢; as in (3.4)], then

(3.11)

1 1
(3.13) lim —ay ,= lim —b, ,=p w.p.landin L'

n—oo N n-oo N
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(see [87] for this and a good survey of the early results in the subject). Again one
can drop the moment condition (3.12) if one replaces T' by the 7' [mentioned
after (3.9)] in the definitions (3.11); in this case one obtains for the corresponding
d,, , only convergence w.p. 1 (and not in L') in (3.13). (3.13) is contained in
Theorem 3.3, since a, , < ¢ is equivalent to (n,0,...,0) € B(t) and similarly for
by, - In fact, the intersection of the boundary of B, with the positive first
coordinate axis must be the point (1/u,0,...,0). In practice, one first proves
(3.13) and uses it to obtain Theorem 3.3.

A subproblem of (3.8) is to find p as a functional of F (and d). This and (3.8)
seem rather hopeless at the moment, since p is only obtained by Kingman’s
subadditive ergodic theorem. This theorem almost never leads to a computable
limit. Except for the easy estimate

(3.14) 0<p<E{tle)} = fxdF(x),

we do not even have good methods to estimate p. Note that p = 0 corresponds to
(3.6) and is equivalent to (3.9). The second inequality in (3.14) is strict unless F is
concentrated on one point (cf. [52], Theorem 4.1.9).

If t(e) has the Bernoulii distribution of (3.2), then p becomes a function of p,
with p = 0if and only if 1 — p > p, [by (3.9)]. It is believed that for 1 — p < p,,
p has a power law

6
p=(p.—(1-p)).
In fact, it is known [16] that p behaves essentially like [£(1 — p)] ™! [cf. (1.16)] so
that § = v provided » and @ exist [cf. (2.6)]. (Note that our p here corresponds
to 1l — p in [16].)
The next most obvious question is:

1 1
(3.15P) Find a limit law for _Y(n) (6,, , — np) or W(o""‘ - 8(n))

for suitable constants y(n) — o and 8(n).

Here, and in the rest of this section, # stands for a or b. Extremely little progress
has been made with this problem. Some (poor) estimates on the rate of conver-
gence of n~ 100, . to p have been proven in [61], Section 5. The proof there shows
that one would first like to know:

(3.16P) At what rate does n~'E#, , > pn?

For d = 2 and F the Bernoulli distribution of (3.2) with p = 1= p(Z?,bond),
i.e., at the critical point, [16] proves the remarkable result that Ef, , lies
between two positive multiples of log n so that {(log n)~'4, ,} is a tight family.
The arguments of [86] and [84] already proved in this critical case that P({f, , <
elog n} is small for small ¢, uniformly in n, so that any limit distribution of
(log n)~'6, ,, has no mass at zero.

Already Hammersley and Welsh [52] pointed out that (3.16) could be ap-
proached via the so called height problem. Call a path r on Z2 from 0 to
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(n,0,...,0) [or {x(1) = n}] a route for a, , (or b, ,, respectively) if T(r) =
a, , [T(r) = by ,]. It is known ([87], Section 4.3) that such routes exist when
d = 2, but not (yet") known when d > 2. We therefore restrict ourselves now to
d = 2. Define

M(r) = max{x(2): x = (x(1), x(2)) a point of r}.
1
(83.17P) Does the maximal height ;l-max{M(r): r a route for 6, ,} — 0?

See [61], Section 9, and [52], Section 8, for more details. We note that the answer
to (3.17) is negative for some lattices other than Z2 and some F. In fact, the
above-mentioned example of [29] in which B, has a flat edge gives, after rotation
over 45°, an example where (3.17) fails on Z 2 rotated over 45° (compare also [61],
Lemma 9.10).

Another problem basically going back to [52] concerns the length of routes.

1
(3.18P) Does lim;min{number of edges in r: r aroute for 6, ,} exist?

Results on (3.18) can be found in [87], Chapter 8, [58] and [101]. This problem is
related to (2.41P).
Further problems are listed in Chapter 9 of [61].

3.3. Flow problems and a higher-dimensional generalization of first-passage
percolation. Most of this section is taken from [60]. So far we interpreted the
t(e) as the passage time of e. We now wish to view it as a capacity, i.e., as the
maximal amount of fluid which can pass through e per unit time. We study the
maximal flow from the bottom to the top of the box

B=B(n,,...,n4,m)=[0,n]1x%x - x[0,n,.,] X [0,m],
subject to these capacity restrictions. This is defined as follows. Write
S(0) =[0,n,] X --- xX[0,ny_;] X {0} and
S(m) = [0,n,] X -+ X[0,n4_,] X {m},

for the “bottom” and “top” of B. A permissible flow from S(0) to S(m) in B is
an assignment of a number 0 < f(e) < #(e) and a direction to each edge e in B,
which satisfies for each vertex v & S(0) U S(m),

(3.19) T*f(e) —X7f(e)=0

where * [L~] is the sum over all edges e in B incident to v and directed
towards v (away from v) We think of f(e) as the amount of fluid flowing
through e per unit time in the direction assigned to e. (3.19) says that the total
inflow at v equals the total outflow at v. The total flow from S(0) to S(m) is

Iof(e) —Zg f(e)

where T [Z5]is the sum over all edges with one endpoint in S(0) and the other
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endpoint in B/S(0) and directed towards (away from) the endpoint in S(0). The
maximal flow from S(0) to S(m) in B is

o(ny, Ny, ..., ngy_q, m) == maximum of total flow from’S(O) to
S(m) over all permissible flows.

A special case of interest to us is if the distribution F of #(e) is concentrated
on {0,1} as in (3.2), then one can send one unit of fluid per unit time through a
path from S(0) to S(m) all of whose edges have capacity 1 (“open edges”) and no
fluid through any path containing an edge of capacity 0 (“closed edges”). It is
intuitively clear that in this case the maximal flow is equal to the maximal
number of edge disjoint open paths in B from S(0) to S(m) (see [9], Theorem
3.5). This is precisely the quantity which we wanted to get a grip on in the
resistance problem of Section 2.5.

We return to the case with general #(e) > 0. One way to study ¢ is by means
of the max-flow min-cut theorem of Ford and Fulkerson (e.g., [9], Chapter 3.1),
which equates ¢ to the minimal capacity of a cut set. Specifically, for any set E
of edges define its value or capacity as

V(E)= ¥ t(e).
ecE
A set E of edges separates S(0) from S(m) in B if there is no path on Z¢ in B
from S(0) to S(m) which avoids E. (Thus, B\ E is no longer connected.) E is
called an (S(0), S(m))-cut if it is a minimal separating set of this kind. The
max-flow min-cut theorem now gives

(3.20) o¢(n,,n,,...,n4_;,m) =min{V(E): E an (S(0), S(m))-cut}.
The relation with first-passage percolation appears when we describe the cut

sets in the two-dimensional case. Let .#* be the dual graph of Z2%. We may think
of #* as Z2 + (1,1), the graph Z? shifted by (3, 1) (see Figure 11). #* has a

27y
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Fic. 11. Z2 and £*. The edges of Z2 are drawn as solid segments and those of £* as dashed
segments.

vertex at the center of each face of Z2. Each edge e* of £* bisects a unique edge
e of Z2 and vice versa. We call-such a pair e* and e associated edges. The edges
of Z* are in a 1-1 correspondence with the edges of Z? by this association. The
(8(0), S(m))-cuts on Z?2 (which separate the bottom edge from the top edge in
[0, n] X [0, m]) are now precisely the sets of edges of Z2 which are associated to
the edges of #* in a self-avoiding path on £* in [— 3, n+ 3] X [}, m — 3]
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i
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]
'

(0,0) n,o0)

F1G. 12. The dashed path is an (S(0), S(m))-cut.

from {— 3} X [3,m — 3] to {n + 3} X [3, m — ;] (see Figure 12). This follows
from Whitney’s theorem (cf. [87], pages 9-11). It simplifies language if we call a
set E* of edges of #* also an (S(0), S(m))-cut if the edges of Z2 associated to
edges of E* form an (S(0), S(m))-cut. If, in addition, we set

t(e*) = t(e), if e* and e are associated,
V(E*) = Y, t(e*) = value of E*,

e*eE*

for any set E* of edges of .#*, then we obtain from (3.20) for d = 2,

¢(n, m) = maximal flow from S@0) to S(m) in [0, n] X [0, m] =
(3.21) min{V(E*): E* is a self-avoiding pathin [— §,n + §]1 X[}, m — 3]
from (— 3} X [, m~ §1to {n+ 3} X [}, m~ 1]},

If we interpret #(e*) as the passage time of the edge e*, rather than its
capacity, then for a path r* on £*, V(r*) just becomes what we called its
passage time T(r*) in Section 3.1. It is therefore natural to call the last member
of (3.21) the line-to-line passage time from {— 1} X [3,m — 1] to {n + 1} X
[, m — 1] [compare (3.11)]. Since £* is just a shifted copy of Z?, it comes as no
surprise that n~! times this line-to-line passage time also converges w.p. 1 and in
L' to w(F,2) if the {t(e): e € Z?%} are ii.d. with distribution F satisfying
ftdF(t) < oo and if m does not grow too fast. We thus have the following result
from [47]:

If Et(e) < oo and n — o0, m — o0, in such a way that

22) 1 1 : .
(3.22) ;log m— 0, then —¢(n, m) > p(F,2) w.p.1 and in L'
n

* We reach new ground when we try to follow a similar procedure in dimension
> 2. (3.20) remains valid, but how to describe the (S(0), S(m))-cuts now? To
make some use of geometrical intuition we restrict ourselves to d = 3. As done in
[65], we replace £* by Z® + (1,4,2), and the analogue of a dual edge now
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becomes a plaquette, i.e., a unit square with corners at vertices of £*. Alterna-
tively, the plaquettes are the faces of the unit cubes with centers at vertices of
Z3. Again each edge e of Z3 is associated with a unique plaquette 7* of £*,
namely the plaquette #* which bisects e. For such a pair we again set #(7*) =
t(e), and
V(E*) = Y. ¢t(=*) = value of E*,
n*eE*

for any set E* of plaquettes. Again we call a collection of plaquettes an
(S(0), S(m))-cut if the collection of associated edges on Z?3 forms an (S(0), S(m))-
cut. Even though we mentally picture the cuts as some kind of surface of
plaquettes which runs between the top and bottom of the box [0, n,] X [0, n,] X
[0, m], we have, unfortunately, no good description of the class of cuts. Never-
theless, it is natural to ask for the minimal values of certain surfaces which
correspond to the point-to-point, point-to-line and line-to-line passage times.
This leads to a generalization of first-passage percolation: Find minimal surfaces
rather than minimal paths. One could even go further and ask for minimal
l-dimensional objects in d-space, I < d. We do not know, however, what the
analogue of the asymptotic shape Theorem 3.3 could be.

It is ambiguous what the analogues of the passage times a,, , and b, , should
be. Recall that a, , is defined as the infimum of T(r) over the collection of paths
r whose endpoints are fixed at 0 and (n,0,...,0). Aizenman, Chayes, Chayes,
Frohlich and Russo [2], Section 1(ii), argue that this suggests as an analogue of
a,, , the infimum of V(E*) over a collection of surfaces E* with fixed boundary.
Here the boundary of E* is defined as

JdE* := collection of edges of #* which belong to an odd
number of plaquettes in E*.
* Similarly, b, , was defined as the infimum of T(r) over paths with one endpoint
fixed, but the other endpoint only partially restricted, namely to lie in the
hyperplane {x(1) = n}. For reasons explained more fully in [60] and [65] we
opted for the following definitions of a(n,, n,), B(n,, n,) as analogues of a, ,
and b, ,, respectively:
BN = BN(nl’ n2) = [0’ nl] X [Os n2] X [_N’ N],
G,n=G,n(ny,n,y) = [0» n ] x [0, n,] X {£N},
a(n,, ny) = inf{V(E*): E* is a collection of plaquettes such
that JE* consists exactly of the edges in the perimeter of
[- 3 n +31X[— 3,ny+ 11X {$), and such that E* sep-
arates G_y from G, 5 in By for some N},
B(n,, ny) = inf(V(E*): E* is a connected set of plaquettes
(3.24)  which contains the point (— %, — 1,1) and which separates
- G_y from Gy in By for some N}.

One can also define an analogue of the line-to-line passage time, but of more
interest is the dual, and equivalent, quantity namely the maximal flow
¢(n1» n2s m)'

(3.23)
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The principal result of [65] proves analogues of (3.13) and (3.22) with the
above replacements for a,, ,, b, , and the line-to-line passage times. This may be
viewed as an indication that (3.23) and (3.24) are the “right” definitions. The
results are formulated here as Theorems 3.28 and 3.32. Unfortunately, we can
prove Theorem 3.28 only when F(0), the atom of F at the origin, is sufficiently
small. Lemma 3.25 serves to define the interval of F(0) values for which Theorem
3.28 works. The hope is that someone will prove this result for all F(0) <1 —
Dp[Z3,bond). If that can be done, then one will obtain a fairly complete analogue
of the first-passage percolation results for the “minimal surfaces” and maximal
flows.

(3.25) LEMMA. There exists a p, > 1/27 with the following property: For
every distribution function F with
(3.26) | F(0-)=0, F(0)<p,,
there exist constants ® = O(F) > 0,0 < C, = C(F) < oo such that
P{there exists a connected set E* of n plaquettes of £* which
(3.27)  contains the point (— 3, — },3) and with V(E*) < On} <
Ce %" n>0.

(3.28) THEOREM. Assume F satisfies (3.26) or more generally F(0 — ) =0
and (3.27). If, in addition,
(3.29) Eerd™) = f e dF(x) < oo,
[0, )

for some y > 0, then there exists a number v = v(F) < [jy .y dF(x) < oo which
is strictly positive and such that

(3.30) lim a(n,n,) = lim B(n,,n,) =v» w.p.l.

n,ng—>o0 NNy n;,ny—>0 NNy
Moreover, if n,, n,, m = o in such a way that
(max{n,, n,}) " *’log m > 0, for some & > 0,
then also

(3.31) lim

n;, ng— o NNy

o(n,ny,m)=» w.pl.
(3.32) THEOREM. Assume that
FO-)=0, F0)>1-p(2"bond) and’ [ +*dF(x)<co.

Then

lim sup

n;, ng— o0 n, ny

for 8 = a or B. A fortiori (3.30) holds with v = 0.

8(ny, ny) < 0 w.p.1,
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Furthermore, there exists a constant C; = Cy(F) < oo such that w.p. 1
¢(n,, ny,m) =0, for all sufficiently large n,, n,,
whenever m = m(n,, ny) = o as n,, ny —> o in such a way that

m(n,, n
limint T2 2) > C;.
m,ny—>oo log(nng) o

We conclude with the following problem:

Prove (3.30) and (3.31) for all F with F(0) < 1 — p(Z?3,bond).
(3.33P) In particular, show that » > 0 for such F. [One can probably
relax (3.29) as well, but that is of less interest.]

As remarked before, the Bernoulli case, when #(e) has the distribution (3.2), is
useful for the resistance problem. In particular, (3.31) implies for d = 3 for the
v(n) of (2.35),

1
hm’—z;v(n) =.

A proof of (3.31) with » > 0 for F determined by (3.2) with1 — p = F(0) <1 —
p(Z3 bond), would therefore prove that (2.30) holds for all p > p(Z3, bond)
[compare (2.37)].

Acknowledgment. The author is indebted to R. Durrett for various il-
luminating comments and helpful references, as well as the example discussed
below (2.13).

. Note added in proof. In a forthcoming paper by J. T. Chayes, L. Chayes,
G. R. Grimmett, H. Kesten and R. H. Schonmann it is shown that the limit in
(1.16) exists for all p. However, it has not been proven that this limit is strictly
positive for p > p_.

It has been shown by H. Tasaki (private communication), and independently
by J. T. Chayes and L. Chayes in the preprint, “On the upper critical dimension
of Bernoulli percolation,” that for d < 6 it is impossible for all the scaling
relations (including hyperscaling) to hold with the mean field values of the
exponents. Thus the upper critical dimension of Section 2.2 has to be at least 6.
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