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APPROXIMATION OF THE FINITE PREDICTION FOR A
WEAKLY STATIONARY PROCESS ‘
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Let w be the spectral density function of a weakly stationary stochastic
process with w = |h[%, & being an outer function in the upper half plane, and
let p*(a) = dist(e"**h/h, H®), where H*® is the space of boundary functions
on R for bounded analytic functions in the upper half plane. It is shown that
the standard deviation of the difference between the infinite predictor and
the finite predictor from the past of length T' does not exceed p*(T)/(1 —
p*(T)) times the prediction error of the infinite predictor. Some other
estimates relating to the difference between the infinite predictor and the
finite predictor are also discussed.

1. Introduction and preliminaries. Let X(¢) be a weakly stationary sto-
chastic process of ¢ € R (the real line) and let w(x) denote the spectral density
function of X(t), ie, we LYR,dx) and w > 0. It will be assumed that
(log w)/(1 + x?) € LR, dx). Thus w = |h|?, where h is an outer function in
H?, the Hardy space for the upper half plane. Let Z = L%(R,wdx) and let
Z(a, b) denote the closed subspace in Z generated by (e, a < t < b}, e, = e'**.

The statistical prediction problem is to find the best estimator of X(s), s > 0,
by means of the linear combinations of observed values X(¢,), —T < ¢, <0,
T > 0, or of their limits. In the language of functional analysis this problem is to
find the orthogonal projection of e, on Z(— T, 0). In order to get this projection
we shall adopt Hayashi’s method [6]: Under mild assumptions, Z(—T,0) =
Z(—T, o0) N Z(— 00, 0), so the desired projection may be approximated by “pro-
jecting back and forth” on Z(—00,0) and Z(—T, ) repeatedly. (This idea
originally goes back to von Neumann [10]). Projections onto these last subspaces
are straightforward. We need additional notation. Let the map S: f — hf be an
isometry of Z onto L%(R, dx). Then S maps Z(— ,0) and Z(—T, o) onto
(h/h)H? and e_H?, respectively (where the bar denotes the complex conjuga-
tion). Let P, and @, denote projections from L*R, dx) onto e,H? and
(e h/R)H?, respectlvely Then it is readily checked that Py = e Pe_aq) and
Q.9 = e,h/hQe_,h/hg, where P and @ denote the orthogonal projections
of L*R,dx) onto H? and H?, respectively. Let M, = e_rH? N (h/h)H?
and 7, be the projection onto M;. Then S~ 'S is the projection from Z onto
Z(—00,0) N Z(—T, 0).

The estimator of X(s), s > 0, which uses the whole history of X(¢), £ < 0, is
called the infinite predictor and the estimator of X(s) which uses the part of the
history X(¢), —T <t < 0, is called the finite predictor. In this paper we study
the variance of the difference between the infinite predictor and the finite
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predictor, and get a more precise order than the previous one obtained by the
author in [1). The order given below is related to p*(a) = dist(e,h/h, H®),
where H® is the space of boundary functions on R for bounded analytic
functions in the upper half plane. Note that p*(a) — 0 as a - oo if and only if
h/h € H* + BUC, where BUC is the space of bounded uniformly continuous
functions on R (Sarason [7]). Also we note that p*(a) is equal to the operator
norm ||@,P_,|| and is a nonincreasing function of a (Dym [4]).

2. Theorems. In view of the stationarity of our stochastic process, we have
the following time-shifted modifications of the theorems of Dym and Hayashi.

THEOREM A (Dym [5]). If 1/w is locally integrable, then
Z(-0,0) N Z(-T,0) = Z(-T — ¢, ¢).

e>0
If also p*(¢) < 1 for some ¢ > 0, then
Z(-T,0) =Z(-,0) N Z(—T,»), foreveryT > c.

THEOREM B (Hayashi [6]). Let1/w be locally integrable. Then the following
are equivalent:

@) o*(T) < 1.
(ii) (QoP_r)" = my exponentially fast in the operator norm as n — oo, where
@y IS the projection onto M.

We shall henceforth tacitly assume that 1 /w is locally integrable and p*(c) < 1
for some ¢ > 0. In terms of functional analysis the infinite predictor and the
finite predictor are given by S~'Q,Se, and S~ 'm.Se, = lim,, , S~ QoP_1)"Se,,
respectively.

Hence, using the isometry of S and Theorem B(ii), we can evaluate the
variance of the difference of these predictors by ¢Z(s) = ||Q,he, — mphe,||? =
lim, _, ||Qohe, — (QoP_1)"he,||?, where the norm || || is in L?(R, dx). The
following theorems and corollaries hold. The theorems are proved in Sections 3
and 4.

THEOREM 1. For somea >0, e,j € H*®, i.e., p*(a) = 0 if and only if
o,(s) =0, foralls>O0,
where j = h/h. In this case, the finite predictor from the past of length a equals
the infinite predictor.
COROLLARY 1. If p*(a) = 0 for some a > 0, then for every T > a and every
s > 0, we have
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This is an immediate consequence of Theorem 1 and the fact that e,j € H®
implies e;j € H® for T > a.

COROLLARY 2. If e, o} agrees on R with the reciprocal of an entire function
of exponential type < a/2, then
o;(s) =0, forT>a.

This is also immediate from the fact that under the condition of Corollary 2,
e,J agrees a.e. on R with an inner function (Dym [3]).

THEOREM 2. Let p*(c) <1 for some ¢ > 0. Then we have for T > c,
onls) Tz [enrar)
where p*(T) = dist(eph/h, H®) and h is the L*-Fourier transform of h.

COROLLARY 3. Let j= h/h. If j is an inner function, then for each s > 0,
or(s) decreases to zero exponentially fast as T — oo.

This is clear frorn Theorem 2 and the fact that p*(T) = mkaleleT] k|l
decreases to zero exponentially fast as T' — oo when j is an inner function (Dym

[2D.

THEOREM 3. Let p*(c) < 1 for some ¢ > 0. Then we have for j = h/h and
T=>=c

er(J) S A 1/2
< ————{ | |h(¥)? dt} ,
or(s) < 7=y { [1AO)
where ep(@) is the error of the best approximation of ¢ by entire functions of
exponential type not greater than T.

COROLLARY 4. If j is uniformly continuous, then for each s > 0,
or(s) = 0(w(4,1/T)), asT - oo,
where  is the modulus of continuity in L®. In particular, if j € Lip a, then for
each s > 0,
op(s) =0(1/T*), asT - .

This is a simple consequence of the well-known theorem which states e (¢) =
O(w(9,1/T)) and = O(T~*) for ¢ € Lip a (Timan [9]).

3. Proof of Theorem 1. Let j = A/h and P be the orthogonal projection
from L%R, dx) onto H?, and define the operator V on L% R, dx) by V = jPj.
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Then we may write Q,=1I— V= jQj, where @ = I — P. Since for T > 0,
P_; = e_pPey and he, € H? imply P_jhe, = he,, it follows that Q,P_ he, =
Qohe, is the infinite predictor and that Q,P_rhe, — (Q,P_r)*he, =
Q.P_ TVhe We will make frequent use of this last equality in what follows.

If e,j € H®, then we have P_ ,Vhe, = e__Pe,jP(he,) = jP(he,). On the
other hand, @, jP(he,) = jQP(he,) = 0. Consequently, we have (Q,P_,)Vhe, =
0, from which Q,P__,he, — (QOP_a)zhe =0. At the same time, we have
QOP—ahes - (QO —a)nhe =0, 0r o,(s) =

Conversely, we assume that o (s) = 0 for all s>0. Then Q,P_,
(QoP_,)’he,. Indeed, if we take n — oo in the inequality

"QOP—ahes - (QOP—a)zhes" =< "QOP—ahes - (QOP—a)nhes"

+QoP_4ll (@ P_,)" ‘e, — (QyP_,)he,|,

the right-hand side becomes zero. Since P__ he, = he,, we have Q,P_ (I —
QoP_,)he, = Q,P_,Vhe, = Q,P_, jb, = 0, where we denoted Phe, € H” by b,.
Thus we have Q,P_,jb, = = jQje_,Pe,jb, =0, and j # 0 implies that
Qje__Pe_jb, = Qje__,Qe,jb, = 0. To complete the proof of Theorem 1, it is
enough to show that the last equality implies Qe,jb, = 0 because this is just
Seghier’s condition ([8], page 396). By just the same arguments Seghier used, it
can be shown that the linear subspace spanned by {b,, s > 0} equals H2? and
that e, j is the inner function which characterizes the invariant subspace e, jH?
and is uniquely determined by the subspace e, jHZ, save for multiplication by a
complex constant of modulus 1. Thus we only have to prove the next lemma to
complete the proof of Theorem 1.

LemMma 1. If Qje_,Qe, jb, = 0, then Qe, jb, = 0.

Proor. Under the condition, we can write

(*) hQe, jb, = e, hf,

for some f € H? Now let § = Qe, jb, € H?. Then the L'-Fourier transform of
h0, (h8)(u) is zero for u > 0, because 70 € H' (the L'-Hardy class in the lower
half plane). On the other hand, the L'-Fourier transform of e hf is zero for
u < a, since hf € H'. Therefore we see that the both sides of the equality (*) are
zero everywhere because their L'-Fourier transforms are zero everywhere, and
conclude that Qe, jb, = 0 since A is an outer function so that A # 0 a.e. O

4. Proofs of Theorems 2 and 3. We first prove the following lemma.

LEMMA 2.

orp(s) < %H(QOP—T)V"%"-
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ProoF. We saw in Section 3 that Q,P_rhe, = Q,he, is the infinite predic-
tor and that Q,P_,he, — (QyP_r)*he, = Q,P_,Vhe,. Hence we can write

"T(s) = n]i_?:o"QoP—Thes - (QOP—T)nhes"
< lim |{T+ (QP_z) + (QP_1)" + - +(QP_1)"}I
X||{@oP_1 — (@P_1)"}he,l
1
< -]_'T(Ts)"(QOP—T)Vhes”’

where the last inequality follows from ||@,P_r|| = p*(T") < 1 (Dym [3], page 37).
O

ProoF OF THEOREM 2. We have |Q\P_;Vhe,| < ||QyP_7| ||Vhe,|| <
p*(T)||Phe,|| and || Phe,||? = [§)A(u)|? du, A(u) being the Fourier transform of
h, which follows by Parseval’s identity. Now the proof of Theorem 2 is com-
pleted by using Lemma 2. O

In order to prove Theorem 3, the following lemma is needed.

LEMMA 3. If k is an entire function of exponential type a which is bounded
on R, then ek € H™.

PROOF. k of type a implies that for every ¢ > 0 there exists an A(e) such
that |k(2)| < A(e)exp{(a + €)|z|} and hence if |k(x)| < M on R the theorem in
Young [11], page 82, guarantees that |k(x + iy)| < Mexp{(a + ¢)|y|}. Now let
¢ — 0, then e,k is bounded and analytic in the upper half plane. O

PROOF OF THEOREM 3. Let b, = Phe, € H2 Since V = jPj and Q,jb, = 0, it
follows that Q,P_rVhe, = Q¢e_rPerjb, = Que_r(I — Q)erjb, =
— Q.e_rQerjb,, from which ||Qe_rVhe,| < ||Qerjb,||. Now let 2 be any entire
function of exponential type a < T which is bounded on R. Then ek € H®,
because e,k € H* from Lemma 3 and the fact that e,_, € H*. Hence we have
Qerkb, = 0 and |Qerjb,| = IQer(j — k)b, < IIj — Klllib,l, where || ||, de-
notes the uniform norm in R. Therefore ||Qesjb,|| < inf,||j — k||||b;, Where
the infimum is taken over every entire function of exponential type < T
without restricting it to the ones which are bounded on R by virtue of the
boundedness of j and this infimum is denoted by e(j) as usual. Thus Theorem
3 is proved. O
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