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ALMOST SURE CONTINUITY OF STABLE MOVING AVERAGE
PROCESSES WITH INDEX LESS THAN ONE

By A. A. BALKEMA AND L. DE HAAN
University of Amsterdam and Erasmus University, Rotterdam

Rootzén (1978) gives a sufficient condition for sample continuity of mov-
ing average processes with respect to stable motion with index a less than
two. We provide a simple proof of this criterion for a < 1 and show that the
condition is then also necessary for continuity of the process. The same result
holds for the moving-maximum process. A description of the local behaviour
of the sample functions of such processes is given.

1. Introduction. Consider a Poisson point process on R X R, with mean
measure df ax~ 1" *dx, a > 0. Let (T}, X,,), k = 1,2,... be an enumeration of its
points. Let f: R —» R, be Borel measurable such that [©_ f%(s) ds is finite. We
define two stationary processes based on this point process and the function f.
The stochastic process Z/ defined by

Zl=supX,f(T, +t), t<R,
k

is finite a.s. for fixed ¢ [cf. de Haan (1984)]. It is called a moving-maximum
process. It is the supremum of a sequence of functions f,, where f, is obtained
from the given function f by a random shift over T), to the left, and a random
multiplication by the factor X,, in the vertical direction. The ensuing process Z/
is stationary and max-stable: For any time points ¢,,..., {, € R and any positive
constants c,, ..., c, the random variable U = max(c,Z/, ..., c,Z/) has an ex-
treme value law as distribution function:
P{U <r} =exp(—Mr™*),

with

o0

M= / max(c, f(x + ¢,),...,c,f(x + t,))" dx.
- 00

[The event {U<r}={Z] <r/ec,...,Z[ <r/c,} has the form “no point
(T}, X,) of the Poisson point process lies above the graph of the function

r r
&(x) = ‘“”“‘( ol i 8 af(x T m)

and hence has probability exp{ — [*, [g,0x ™' dx ds}.]
For 0 < a < 1 the stochastic process S/ defined by

Sl =Y X, f(T, + ¢), teR,
k
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is finite a.s. for fixed ¢ [cf. Schilder (1970)]. This also holds for real-valued f if
|f|* is integrable. It is called a stable moving average process since it can be
written as

[ 1+ R (dw),

where {R ()}, = (£, X)L <1, <5y — Lir<T, <0))}; IS asymmetric stable motion.
We shall prove the following two theorems.

THEOREM 1.1. Let f: R > R be measurable and let o € (0,1). The sum
process S above has a.s. continuous sample paths if and only if f is continuous
and

(1.1) foo sup |f(t+ x)*dx < oo.

-0 0<t<l1

Indeed, we shall see that the series X, X,, f(T), + ) which defines the process
S’ as. converges absolutely and uniformly on bounded time intervals if (1.1)
holds (the corollary to Proposition 3.2) and that the sequence { X, f(T}, + t)} is
a.s. unbounded in a dense set of (random) time points ¢ if (1.1) fails to hold
(Proposition 5.1).

THEOREM 1.2. Letf: R — [0, o) be measurable and let a be strictly positive.
The moving-maximum process Z'! above has a.s. continuous sample paths if and
only if f is continuous and (1.1) holds.

Rootzén (1978) has given sufficient conditions for a.s. continuity of S/ for
0 < a < 2. The condition for 0 < a < 1 agrees with ours. OQur result disproves
the conjecture in Remark 4.4 of Rootzén’s paper. Continuity of f and condition
(1.1) are necessary for sample path continuity of the processes S/ and Z'.
However, it is not difficult to construct a function f which is neither continuous
nor satisfies condition (1.1) such that the processes S/ and Z/ have versions with
continuous sample functions. (See Section 6.) ,

Section 2 treats condition (1.1). Section 3 contains a useful probabilistic
interpretation of condition (1.1) in terms of the process Z!/I. This allows us to
obtain a simple proof of Theorem 1.1. Section 4 contains a proof of Theorem 1.2.
Section 5 contains a closer analysis of the sample functions of the processes Z/
and S’. In the case where f is continuous and (1.1) holds the sample functions of
Z! are local maxima of finitely many scaled translates of f. In the case of the
sum process S/ the finite linear combinations of translates are only dense (in the
metric of uniform convergence on compact intervals). Section 6 treats the
problem: For which measurable functions f does there exist a version of S/
(respectively Z/) with continuous sample functions?

Note that S’ is an example of a stationary stable process [cf. Hardin (1982)]
and Z/ is an example of a stationary max-stable process [cf. de Haan and
Pickands (1986)]. For related results on continuity of stable processes see Marcus
and Pisier (1984).
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2. The condition (1.1) for nonnegative functions f. This section contains
some alternative formulations of (1.1). These will not be used in the proofs of
Theorems 1.1 and 1.2. We begin with some comments.

(1) For any nonnegative function f, the function x = sup{f(¢ + x)|0 < ¢ <1} is
measurable. It is lower semicontinuous as a supremum of the lower semicon-
tinuous step functions x = (@)1, 4+1(%), @ € R.

(2) Suppose f is nonnegative. If the integral

o0
I(a) :=f sup f(¢+ x)dx
—00<t<a
is finite for some a > 0, it is finite for all @ > 0, since it is nondecreasing and
satisfies 0 < I(a + b) < I(a) + I(b) for a, b > 0.

The Pickands condition (1.1) implies that f is bounded. It will be satisfied if
f = 0 is unimodal and f* is integrable, or if |f| is bounded above by such a
function.

Condition (1.1) can be rephrased in a number of ways. Note that the second
condition in the next proposition is equivalent to Rooztén’s (1978) condition (4.5)
except for the continuity.

PROPOSITION 2.1. Suppose f is measurable and ¢ = |f|*, a > 0. The follow-
ing are equivalent to the Pickands condition (1.1):

(1) JZ8uPy < <1P(f + x) dx < 00.

(@) TF._ oty < o0 where ay = SUPj <, < p419(%).

(8) The function ¢ is bounded above by an integrable function ¢ of bounded
variation.

(4) The function ¢ is bounded above by a bounded strictly positive function g
which satisfies [® g(x)dx < o and g(x,+ h,)/g(x,) > 1 if |x,| - o,
h, — 0 [cf. Widder (1971), page 204].

ProoF. We may and shall assume a = 1. Write n(x) = sup, ., «9(¢ + x),
and ¢, = Ypa 11z pr1)

(1) = (2) since ¥,(x) < max{n(x — 1), n(x — 3), n(x)} for all x.

(@) = (3) Take y = ¥,.

(3) = (2) Set B, = sup; ., < 1¥(¥) and v, = inf, _, .5, 1¥(x). Then Ly, <
oo since ¢ is integrable and Y8, — v, < oo since ¢ is of bounded variation.
Hence X8, is finite. This implies Ya; < 0.

(2) = (4) We assume that ¢ is not identically zero. For each integer % define

gi(x) = aze™ %, x <k,
= ay, k<x<k+1,
=qeftl=* x>k +1,

and set g := sup,g,. Then g is bounded and integrable. It is strictly positive,
and a; — 0 implies that for each x € R there exists an index k£ such that
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&(x) = gu(x). It follows that
e " < &(y)/8(x) < e
[Assume £(y) < &(x) = g(x). Then &(y) = g,(y) = e™7 g, (x).]

(4) = (1) We claim that (4) implies that g(x, + b,)/g(x,) is bounded for any
pair of sequences x, » oo and b, € (0,1). [Otherwise there would exist such
sequences for which g(x, + b,)/g(x,) > e™ for all n. Now write this quotient as
T17_,8(x, + ib,/n)/g(x, + (i — 1)b,/n), and one has g(3,)/&(3, — b,/n) > e
for all n on setting y,=x,+i,b,/n for some appropriate i, € {1,...,n}.
This contradicts (4).] It follows that k(x) := sup,.,,8(x + t) = O(g(x)) for
|x] = co. Hence k is integrable. This gives (1). O

3. Proof of Theorem 1.1 (continuity of S/). Our starting point is the
following proposition from de Haan and Pickands (1986) on the moving-maxi-
mum process Z/ (rephrased for our purpose).

ProposITION 3.1. If (1.1) holds and f is nonnegative, the process Z! is a.s.
bounded on every finite interval. If (1.1) does not hold, the process Z! is a.s.
unbounded in every finite interval.

For continuous f we can use Baire’s theorem to obtain the following improve-
ment on the second statement above.

PROPOSITION 3.2. If the function f > 0 is continuous and (1.1) does not hold,
then for almost every sample function of the process Z! the set {Z! = x} is a
dense G; in R.

PrROOF. The random set W, := {t € R|Z/ > n} is open since Z/ is the sup of
the continuous processes ¢ — X, f(T}, + t) by definition. By Proposition 3.1 the
set W, is a.s. dense in R. By Baire’s theorem the intersection is a dense G,. O

CoroLLARY. If f: R = R is a continuous function which does not satisfy
(1.1), then for a.e. realization there exists a dense G of time points t € R such
that the sequence X,, f(T}, + t) is unbounded [ and hence the series ©X,, f(T}, + t)
cannot converge no matter what order of summation one chooses].

PRrROOF OF THEOREM 1.1. First assume that almost all sample functions of
the process S’ are continuous. We choose an arbitrary Borel set A CR X R,
with finite mean measure

0<pA= f dtax'~*dx < oo,
A

and set S/:=YX{X,f(T,+ t)|(Ty, X;) € A). Then S/ =0 with probability
e "4 > 0. Hence the processes S/ and S’ — S' are mdependent by virtue of the

underlying Poisson point process, the process S/ — §7 is as. continuous, and
hence so is S/ = S/ — (S — S7). With probability pAe *4 > 0 the process S/ is
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the sum of one term,
S/ =X,f(T, +t), teR.
This implies that f is continuous. By the corollary above condition (1.1) holds.
Now assume condition (1.1) is satisfied. The function

g°(s) = sup |f(s + )"

o<t<l1
is integrable and hence

L X, sup |f(T,+t) =S <o as,
k 0<t<1

by Schilder (1970). For sample functions which satisfy this inequality Lebesgue’s
theorem on dominated convergence gives

tli_>ntl %ka(Tk +1) = XX, (T + to),

for each point ¢, € (0,1). This proves that S/ is a.s. continuous on the interval
(0,1). By stationarity the process is a.s. continuous on R. O

4. Proof of Theorem 1.2. For the proof we need the following.

LEMMA 4.1. Let M be a Poisson point process on a space E with mean
measure p. Let g,: E — [0, 0] be a family of measurable functions (¢t € T). Set
Y, == sup, c y&/x). (We think of M as a random subset of E with generic point
x.) Suppose there exist measurable functions g, and g* with g, < g, < g* for
all t € T, and such that

(8) p{xlgu(x) > 0} = .
(b) p{x|g*(x) >1/n} < o0 forn=1,2,....

Then with probability one there exists a finite collection X,,..., X, € M such
that

Y, = max(g,(X,),..., g(Xx)),
forallte T.

ProOF. After deleting a null set we may assume that for every realization
the sets {g* >1/n}, n=1,2,..., contain only finitely many points of the
random set M, and that the set {g, > 0} contains at least one point, say X®.
Then

Y,> W= gu(XP) >0
and hence

Y, = max{g,(X,),..., &(Xxk)},
where

(Xps..., Xg} = M0 {g* > W). o
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ProoF oF THEOREM 1.2. First assume f is continuous and (1.1) holds. The
theorem is obvious if f = 0. Hence we may assume that f is strictly positive on
some interval I. We shall apply the lemma above with M the Poisson point
process on E = R X R, with mean measure dp = dt ax '~ *dx, and with the
functions g,(s, x) = xf(s + t), 0 < ¢ < h. If we choose h sufficiently small these
are bounded below by a function g,(s, x) := nx1,(s) for some 7 > 0. By condi-
tion (1.1) the functions g,, 0 < ¢ < h, are bounded above by g*(s, x) = xg(s),
where g(s) = sup, ., ,lf(s + t)| satisfies [g%(s)ds < co0. [Choose & < 1 or use
comment (2) in Section 2.]

Now p{gs >0} =[x, dtax™'"" = 00 and p{g* > e} = p{x > e/g) =
/(&(s)/€)*ds < oo. By Lemma 4.1 almost every realization of the process Z/,
0 < t < h, is the maximum of a finite number of continuous functions X, f(T}, + ¢),
k=1,..., K. Hence Z/ is as. continuous on the interval (0, 2). By stationarity
the process Z/ is a.s. continuous on R. Conversely, let Z/ have continuous
sample functions. Then (1.1) holds by Proposition 3.1. It remains to prove that f
is continuous.

Let ¢ > 0 be arbitrary. Write Z/ = max(Z’, Z”), where Z' is the sup over all
points (T, x) in the vertical strip (—¢, ¢) X [1,00) and Z” is the sup over the
remaining points. The processes Z’ and Z” are independent, and so are the
events

E’ =“there is exactly one point, say (T,, X,),in (—¢, ¢) X [1, «),”
E"={Z/<1lon(-c,c)}.

Note that PE” > 0 since sup, . Z/ = Z§, where g*(s) = sup,..f%(s + t) is
integrable by (1.1).
Conditional on E’ N E” we have

max(1, Z,) = max(1, X, f(To + ¢)), |t <e.

Since (T;, X,) has a positive density on (—c¢, ¢) X [1, ), it follows that f is
continuous on the interval (—2¢,2¢). O

5. Sample path behaviour of the processes S/ and Z/. Theorems 1.1
and 1.2 would seem to suggest that for nonnegative functions f which satisfy
condition (1.1) the processes Z/ and S’ behave very much the same. There is,
however, an essential difference between maxima and sums. If f is piecewise
linear, say f(t) = (1 — |¢|),, then Z/ is piecewise linear (on any bounded inter-
val), but almost every sample function of S/ is nonlinear on every interval. If f
is a step function, say f = 1j, ), then Z ! is an (usc) step function locally, but
again the sample functions of the process S/ are a.s. nonconstant on every
interval.

PROPOSITION 5.1. Suppose f: R - R is measurable and satisfies condition
(1.1) with 0 < a < 1. Then the series © X, f(T), + t) a.s. converges uniformly on
bounded intervals. If f is not a null function, then for each t the series a.s.
contains infinitely many nonzero terms.
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Proor. By Proposition 2.1 we can choose a continuous g > |f| which satisfies
(1.1). The series XX, g(T}, + t) converges uniformly on [ — ¢, ¢] by Dini’s theorem.
This then also holds for the series X}, f(T}, + ¢t).

If f is not a null function, the set A = {f # 0} has positive Lebesgue measure
and the strip A X (0, o) a.s. contains infinitely many points (7}, X,). O

Let f be continuous and satisfy (1.1). On any bounded interval [—c,c] c R
the sample functions of S/ are uniform limits of positive linear combinations of
translates of f. For the sample functions of the process Z/ one has a stronger
result.

For any f: R — [0,0) define '/ to be the smallest set of functions g:
R - [0, o) such that

(W ferT,

2) g h €T/ = max(g, h) € T/,

B gell,c>0=cgeT,

4) geT/, te R = 1,g €T/, where (1,g)(s) = &(s + ¢).

It is easily seen that I'/ is the class of all functions of the form
g= max(clfrtlf,.. s CTy | )

withm=>1,¢, €Rand ¢c;>0fori=1,...,m.

If f is continuous, satisfies (1.1) for some a > 0, and does not vanish
identically, then almost all sample functions of the process Z/ have the following
properties: The restriction to any bounded interval is bounded away from zero
and agrees with some element of I'/ on this interval. This is an immediate
consequence of the following result.

ProPoOSITION 5.2. Suppose f: R — [0, o) is measurable, satisfies (1.1) for
some a > 0, and is bounded away from zero on some interval. Then for any
¢ > 0 there exists an a.s. strictly positive random variable V and an a.s. finite
index N such that

Zl =max(X,f(T, + ¢t),..., Xyf(Ty +t)) 2V, —-c<t<ec.

PrOOF. In the proof of Theorem 1.2 we saw that Z/ restricted to a suffi-
ciently small time interval [0, A] can be expressed as the maximum of finitely
many processes of the form X, f(T}, + t). In order to have a similar expression
over a longer time interval, we need an extension of Lemma 4.1 in which the
assumption (b) is replaced by

(b") There exists a finite set of functions g¢,..., g™ such that each function
&, is bounded below by one of these functions and such that p[g{’ > 0} = oo for
J=1...,m.

In this case we can a.s. choose points X such that g¢’(X ) > 0. Now set
W := min ;g{’(X) > 0. Then for each ¢,

sup{g,(x)lx € M} = sup{g,(x)lx € M, g*(x) > W},
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and hence there is an a.s. finite set {X,..., X,} C M such that for all £ € T,
Sup{gt(x)'x € M} = nmx(gt(Xl),“-:gt(Xk))'

The remainder of the proof is similar to the proof of Theorem 1.2. O

EXAMPLE. Let f=1,,. Then almost every realization of Z/ is strictly
positive on a dense subset of R. Elements of I'/ have finite support.

6. Continuous versions of moving average and moving-maximum
processes. The function f = 1, does not satisfy condition (1.1) for any «, and
is not continuous. The corresponding process S/ is a.s. unbounded on all
intervals (a, b), a < b. For fixed ¢ € R the random variable S/ vanishes with
probability 1. Hence there exists a version of the process S/ which has continu-
ous sample functions. (This is the zero process.)

Now suppose f is a Borel function, a € (0,1) and the process S/ has a version
S with continuous sample functions. (This means that for each ¢ € R we have
P(S, # S/} = 0.) Does this imply that there exists a continuous function ¢ such
that the processes S and S? are indistinguishable [i.e., S(w) = S?*(w) outside a
null set in ©]? This is still an open problem.

We can prove that the existence of a continuous version entails that f is
Lebesgue a.e. equal to some continuous function ¢ (at least if f is locally
integrable). Now if ¢ were to satisfy condition (1.1), then S¥ would be continu-
ous, and since S¥ is a version of S/, it would be indistinguishable from S. We are
only able to prove that ¢ satisfies condition (1.1) for nonnegative locally
integrable functions f.

THEOREM 6.1. Let f: R = R be locally integrable and a € (0,1). Suppose
there exists a continuous process S such that for each t € R,

(6.1) S, =YX, f(T, +¢t) as.
k

Then there exists a continuous function ¢ such that f = ¢ a.e. dx. If the function
f is nonnegative, then ¢ satisfies condition (1.1) and S® and S are indis-
tinguishable.

Proor. The first part proceeds as in the proof of Theorem 1.1. except that it
is convenient to work with the continuous processes o, = [{S/ds and
J,= [{S/ds, t€R, in order to avoid measurability problems. [The set
{(¢, @)|S((w) # S/(w)} is a A X P-null subset of R X ©, where A denotes
Lebesgue measure, hence for P a.e. w the realizations S(») and S/(w) agree A
a.e. on R. It follows that the integral processes [/S/ds and [{S,ds are indis-
tinguishable.] Let C’ be the subset of all continuously differentiable functions in
the space of all continuous functions. Then C’ is a measurable subset (with
respect to the usual Borel o-algebra on C) and one uses the independence of J
and J — J to conclude that J € C’ as. If the set A contains only one point
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(Ty, X,), then J, = Xo[sf(To + s)ds which proves that f as. agrees with a
continuous functlon ¢ (since J is a.s. C).

For the second part observe that if ¢ did not satisfy (1.1), then {Z¢ > n} and
a fortiori {S? > n} would contain an open dense subset of R for each n. Since
almost all sample functions of S® and S agree a.e. on R, it would follow that S is
a.s. unbounded on all nonempty open intervals. This would contradict the
continuity of S. O

For the moving-maximum process Z/ we have a more complete result.

THEOREM 6.2. Letf: R — [0, 00) be measurable and let a be strictly positive.
Suppose there exists a right-continuous process Z such that for each t € R,

(6.2) Z,=supX,f(T, +t) a.s.
k
Then there exists a right-continuous function ¢ which satisfies (1.1) such that
f=¢ a.e. dx,
Z* and Z are indistinguishable.

PROOF. Suppose A is measurable and h = f a.e. dx. Then we may replace f
by h in (6.2). In particular, if A is right-continuous and satisfies condition (1.1),
then Z* and Z will be indistinguishable.

We first replace f by a function A such that A = f a.e. dx and such that for
a<b,

esssup f(¢) = sup h(t).
a<t<b a<t<b
(This function A will not be right-continuous in general.)

It can be constructed as follows. Let N be a Borel null set in R such that x is
a Lebesgue point of f for x &€ N, and define & = f15c. Now let ¢ > 0 be given
and define

g(x) = sup h(x +t) = esssupf(x + ¢t).
0<t<e 0<t<e
On any measure space one has the equality sup||{,||,, = [lsup ¥,||. If we apply
this to the interval (0, ¢) with Lebesgue measure we find that a.s.

sup Z,= esssupZ} = supng(Tk) =: Z§.

0<t<e 0<t<e

If & is small, the left-hand side will be finite with positive probability. (The
process Z is right-continuous, and hence sup, ., .Z, < Z, + 1 < oo with positive
probability.) It follows that A is locally bounded. (Otherwise £ would be infinite
on an interval of length ¢ and Z§ = o0 a.s.) Hence g is locally bounded The
variables

U = sup{X,g(T)lj < T, <j + 1}, JELZ,
are a.s. finite and independent, and Z§ = sup U;. By Kolomogorov’s 0-1 law the
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tail event {Z§ = oo} has probability 0. Then g“ is integrable [cf. de Haan (1984),
page 1199]. Thus A satisfies (1.1) by comment (2) in Section 2.

Now proceed as in the proof of Theorem 1.2 in Section 4. Write Z* =
max(Z’, Z") and observe that on E' N E” as.

max(1, Z,) = max(1, X,h(T, + t)) a.e.on(—c,c).

Since (T}, X,) has a positive density on (—¢, ¢) X [1, o), there exists a right-con-
tinuous function ¢ on (—2c,2c) which agrees with A a.e. on (—2c,2c). (Since
there is at most one such right-continuous function, it does not depend on .)

Now let ¢ — oo and observe that ¢ satisfies condition (1.1) since

sup ¢(t) = esssup¢(t) = esssuph(t) = sup h(t). O
a<t<b a<t<b a<t<b a<t<bd

We close with an a.e. extension of Proposition 3.1 (the de Haan—Pickands

dichotomy).

PROPOSITION 6.3. Let f: R — [0, 00) be measurable and o > 0. Define
8(x) = esssupf(x + t).

0<t<1
Then g is measurable. Either [® g°(x) dx is finite, in which case f is essentially
bounded, esssup, ., ., X, f(T;, + t) > 0, k > oo, and hence a.s.

esssupZ/ < oo, for all intervals (a, b) C R,

a<t<bd
or [ g% x)dx = o and a.s.
esssupZ/ = oo, forallintervals (a,b), a<b.

a<t<b

ProOF. Construct ~ as in the proof of Theorem 6.2. Then g(x)=
sup, <, <, A(x + t) and sample functions of Z/ and Z” agree a.e. on R. Hence

esssupZ/ = sup X, esssup f(T), + t)
a<t<bd a<t<b
=sup X, sup A(T, +t)= sup Zl.
a<t<b a<t<b
Now apply Proposition 3.1.

It remains to prove ess local uniform convergence. For 0 < a < 1 this follows
from Theorem 5.1 which states that the series LX,h(T), + t) a.s. converges
uniformly on bounded intervals. The case a > 1 then follows by a simple
transformation. O
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