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STRONG LAWS FOR QUANTILES CORRESPONDING TO
MOVING BLOCKS OF RANDOM VARIABLES

By RALPH P. Russo

The University of Iowa

Let Uy, Uj,... be a sequence of independent uniform (0, 1) random vari-
ables, and for 1 < k£ < n let {,(n, k) denote the pth quantile, 0 <p <1,
corresponding to the block U,_,.1,..., U,. In this paper we investigate the
a.s. limiting behavior of §,(n, a,,) when a,, is an integer sequence, 1 < a, < n,
and lim, _, ,a,/log n = B € [0, o]. In addition, we investigate the a.s. limit-
ing behavior of max, .;..f,(n, k) and other maxima involving the
£,(n, k)'s.

1. Introduction. Let U}, U,,... be a sequence of independent random vari-
ables, uniformly distributed on the unit interval, and for 1 <i<k <n let
U,,(i) denote the ith order statistic among U,_,,,, U,_449,-.., U, (the block
with right endpoint n and length k). For fixed 0 < p <1 and 0 < = < 1 define
the corresponding pth quantile

77l]nk(pk) + (1 - 77)Uvnk(pk + 1), if pk = [pk]’
U.([pk] + 1), if pk # [ pk],

where [ y] denotes the integer part of y. If a, is an integer sequence satisfying
1<a,<nfornz=>1,then

(11) &,(n, &) = {

(1.2) nli_1)1:°£p(n, a,) =p as.

when a, = n, and {,(n, a,) = U, diverges (“oscillates” over [0, 1]) almost surely
when a, = 1. The condition “a, — c” is necessary for (1.2) to hold, but it
is not sufficient. How fast must a,, grow for (1.2) to hold? When (1.2) holds, what
is the rate of convergence? When (1.2) fails, how does §,(n, a,) behave? In this
paper we answer these questions for the case where lim,_ a,/logn = B,
0 < B < . In addition, we investigate the almost sure limiting behavior of
max, _; . ,$,(n, k) and other maxima involving the £,(n, k)’s.

2. Results. In Theorem 2.1 we assume B = co. We associate with each
difference, £,(n, k) — p, the normalizing constant

n -1/2
o(n, k) = k1/2<2p(1 - p)(logz + Ioglogk)} , 8<kx<n,

and consider a,, , = (§,(n, a,) — p)¢(n, a,), the maxima
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maxn(ép(n, k) —p)é(n, k),

a,<ks<

max (gp(k + Ay, an) _p)¢(k + a,, an),

O<k<n-—a,

- s (8,(k k=) = p)olh k=),
a,<k—j

and a, ;,, i =1,2,3, defined as a, ; with |{, — p| replacing (§, — p). In Theo-
rem 2.2 we assume 0 < 8 < co. We consider v, o = {,(n, a,) and the maxima

Yo = agﬁng,,(n, k),

= max kE+a,,a
o2 OskSn—angp( n n)

and

= max k,k—7).
¥n,3 05j<ksn§p( J)
a,<k—j

Figure 1 indicates the relationship among the various maxima we have in mind.

THEOREM 2.1. Suppose 1<a,<n, a,/logn —> c© as n—> o0, r=
liminf, , (log(n/a,)/loglog n) and that r/(r + 1) = 1 for r = . Then, with
probability one, liminf, , a, and limsup, , ., are as indicated in the follow-
ing table:

liminf lim sup
a, -1 1 (a)
= F(a), ifa,/n—-a
@,y e[-1,F(a)], if liminfa,/n=a 1M
n—oo
an,la 0 1 (C)
r 1/2
=(r+1) ’ if0<r=oe
a,,anda, 3 e[-10], ifr=0 1 )
= G(a), ifr=0anda,/n - a
r 1/2
an,2a and an,3a (r +1 ) 1 (e)
@ )
where
0, a=0,
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block length

(n,n) /
an,l and « 1
—
an,3
and ~ .3 a,
(a.a)
(n,a))
an,2 and ~ ,2
right endpoint
of block
Fic. 1.
and
0, a=0,
G(a) = (2n + 1)a —1\"? 1 1
- <a<—,n=12,....
n(n+ 1)a n+1 n

THEOREM 2.2. Supposel <a,<n and a,/logn - B €[0,0), as n > «.

Then, with probability one, liminf, , vy, and limsup, _, .y, are as indicated in
the following table:

B=0 0<B<w
linl ior.}f linm_)s::p li,?l i£f li'rlxl s::p
Yn,0 0 1 1—yrB) | 4,'(B) | ®
Yn,1 p 1 P V(B | (®
Yn,2 aNd Y, 3 1 1 ¥, (B) ¥, (B) | (b
@ @ 3 C))

where zp;l denotes the inverse of the function

v,(A) = —(1og{(%)p(%)l_p})_l, p<A<l.

REMARKS. When lim, , a,/logn = B, statements (a) and (f) say that “B =
c0” is necessary and sufficient for (1.2) to hold. Convergence rates in this case are
given by (a). The oscillatory behavior of §,(n, a,) (Wwhen 0 < 8 < o) is indicated
by (f). Note that y,%(8) » p as 8 — o and that Y, (8) - 1 as § - 0. When
a,=[Blogn], 0 < B < 0, (3h) and (4h) applied to v, , give Book and Truax’s
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“Erdés—Rényi law for sample quantiles” in [3]. In (1b) and (1d), liminf is not
given when a,/n diverges. However, it can be shown by example that “lim inf”
is not determined by liminfa,/n = b, and limsup a,/n = b, when b, # b,,
without additional assumptions on a,,.

3. Proofs. Throughout this section #[A] denotes the number of elements
in the set A, and C denotes various positive constants whose exact values do not
matter so that, for example, 1 + C = C might appear in this notation. For
notational convenience we define for 3 < k <n, ¢ '(n, k) = (¢(n, k)" and
d(n, k) = {2k(log(n/k) + loglog k)}'/?, and for 0 <u<v<1, B,(u,0)=
#li:n—-k+1<i<n u<U<vo]

LemMa 3.1. If 1<a,<nanda,/logn — « asn — o, then

P{ lim sup max |B,,(0, p) — kplk~'o(n, k) = 1} =1.

nooo @n<ks<

Proor. For n > 1 define
— B _.(0,
(31) = 2 Bal0:0)
(p(1-p))

Since |B,;(0, p) — kplk~'¢(n, k) = |S, — S,_4l/d(n, k) for 3 <k <n, the
above lemma follows from Theorem 5.1 of [5]. O

and S, =Y, +--- +Y,

ne

For A > 0 and 3 < k < n define the events
Anin = {|Bus(P, 0 + 267X (n, ) — kA6~ (n, k)| > 4(kA6™!(n, k)logn) "),
= <|Bnk(p — X" (n, k), p) — kAo n, k)| > 4(kA¢™(n, k)log n)l/z}
and

n
E,= (limsup U A

n—o k=a,

n
U (].imsup U A’Ilk)\) = E)\l U E>\2.

n—o k=a,

LeEmMA 3.2. Suppose that A > 0. If 1 <a,<nanda,/logn - © asn -
o0, then P(E,) = 0.

Proor. We will prove that P(Ey)=0. The proof that P(E,,) =0 is
similar and is omitted. If 3 < k2 < n, then by Bernstein’s inequality (see [9])
—16kA¢ " !(n, k)logn
2kA¢~Y(n, k) + E(kEA¢~Y(n, k)log n)"”*

P(A ) < 29XP{
(3.2)

1
< 2exp{ - Emin(S log n, 6( kA~ !(n, k)log n)l/z)}.

Since a,/logn > o, we have (kAo ~'(n, k)log n)'/*(log n) ™! — co uniformly in ‘
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k for a, < k <n. Thus from (3.2), P(A,,,\) <2n~* for a,<k<n and n
sufficiently large so that

)

ZP( U AnkA)SC"‘ Y (n—a,)n*< . O
k=a,

n=3 n=3

LEMMA 33. Ifl1<a,<nanda,/logn — o asn — oo, then
(3.3) ¢,(n, k) =2p— k7 'B,,(0,p) +e,, 1<ks<n,
where as n — 0, Max, ;. qleupld(n, k) = o(1) a.s.

Proor. Fix 0 <8 <1, an integer M > 2/8, and w € D = NMIYES N A),
where A is the event in Lemma 3.1. By Lemmas 3.1 and 3.2, P(D) = 1. Since

ko Y(n, k)/(k¢\(n, k)logn)/?2 > o as n = oo, uniformly in &k fora, < k < n,
we have for all large n, n > ny, and a, < k < n,

(3.4) |B,,(0, p) — kp| < 2k~ X(n, k),
M+1
(3.5) we U (An,k,js U Aln,k,js)
j=1
and
(3.6) 8ko~Yn, k) > 4((M + 1)8kd~(n, k)log n)">.

Fix n > n, and suppose that a, < k < n. By (3.4) there exists 1 <j,,=j<M
such that either

(3'7) kp _j8k¢_1(n’ k) < Bnk(O) p) < kp - (.] - 1)8k¢_1(n) k)
or
(8.7a) kp+ (j—1)8k¢ Y n, k) < B,,(0, p) < kp + jok¢ ™ '(n, k).

Suppose that (3.7) holds [the proof is the same if (3.7a) holds]. Then, by (3.5) and
(3.6)

B.i(0, p + (J + 1)8¢ " (n, k))
= B0, p) + B,y(p, p + (j + 1)8¢7'(n, k))
> kp — jOk¢ " H(n, k) + (j+ 1)8ko¢ Y (n, k)
| —4((j + 1)8ko~Y(n, k)logn)""”
> kp + 8k¢pY(n, k) — 4((M + 1)8ko!(n, k)log n)l/2 > kp,
so that ¢£,(n, k) <p + (j + 1)d¢"'(n, k). By (3.3) and (3.7)
ene = £p(n, k) — 2p + k7'B,,(0, p)
<(j+1)8¢7(n, k) —p+k (kp— (j— 1)k~ Y(n, k))
=280 Y(n, k).
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From a similar calculation, enk —28¢"Y(n, k). Since 8, k and « are arbitrary,
the lemma follows. O

PROOF OF (1a) AND (2a). With S, defined as in (3.1), Lemma 3.3 says that the
collection of limit points, L, of a, , is almost surely that of (S,-S,_, )/
d(n, a,). By Theorem 1 of [8] we can define a standard Wiener process {W(T'),
T > 0} and the sequence Y}, Y,,... on a new probability space (say Q) so as to
have S, = W(n) + O(log n) a.s. Since a,/log n — o we get (log n)/d(n, a,) -
0, so that the collection of limit points of «a,, is almost surely that of
(W(n) — W(n - a,))/d(n, a,). By Corollary 2.3 of [6], P(L=[-1,1]} =1.O0

PROOF OF (2b)—(2e). With S, defined as in (3.1) it follows by Lemma 3.3 and
Theorem 5.3 of [5] that

lim sup = limsup max —&——I =1 as
n—>oop n,3a n_,oop O<j<k<n d(k k- ]) o
a,<k—j
Thus, statements (2b)—(2e) follow from (2a) since a,,<a, ;< a,,, for i =

1,1a,2,2a,3. 0

ProOF OF (1b)—(1e). Again, we go to Q’. By Lemma 3.3 and Theorem 1 of [8]
we have, as in the proof of (1a) and (2a),

- - W(k + a,) — W(k)
ll’fl_l)l::fan’z - h}?llolo}f 0<Ireria;zx—a d(k +a,a )

a.s.

By Theorem 2 of [7], to prove our result for liminf, ,  «, , it suffices to prove
that

. W(k + a,) — W(k)
liminf max

n—o 0O<k<n-a, d(k +a,, an)
(3.8)

o W(t+ arp) — W(¢)
= liminf = max
T-ow 0<t<T-ar d(t+ ar,ap)

as.,
where ar =a;pyfor T>1and ar=Tfor0<T<1l. For T>1and 0 <t <
T-ar,
W([t] + a[T]) - W([t])
d([¢] + arry, arry)
W(t+ap)— W(t) d(t+ap, arp)
B d(t+ar,ap) d([t] + arry, a[T])
B W(¢ + ar) - W([¢] + a;ry) w(¢) - W([¢])
d([t] + arry, apr) d([t] + agry, apry)
W(t+ ap) — W(¢)

= At anar) A(t,T) + B(t,T) + C(¢,T).
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By Theorem of 3.3B of [5], if M; — oo, then

W(t) ~ W(s)|

(3.9) lim =0

max
T- o0 Oﬁf:fsslT (MTlog T)
Now, A(¢,T)— 1 uniformly in ¢, 0<¢t<T - a, as T —» . By (3.9), with
probability one, B(¢,T) - 0and C(¢, T) — 0 uniformly in t,0 < ¢t < T — ar, as
T — oo. This proves (3.8). A similar proof (which also uses Theorems 1 and 3 of
[7]) yields the remaining lim inf statements of Theorem 2.1. O

ProoF OF (4g) AND (4h). The following relationship is evident from Figure 1
or Lemma 2.1 of [5]:

(3.10) limsupy, , < limsupy, ; = limsupy, ;.

n—oo n—oo n—oo

(Note: To use Lemma 2.1, one needs to replace the original sequence, a,, by a
nondecreasing sequence.) Define for p < A < 1,

r(A) = (\/p)" (1 =N)/(1-p))' "
By Theorem 1 of [1] (see also Lemma 1 of [2]) there exist constants 0 < C,, <
C,) < oo such that for all large £ and n > &,
(3.11) Cink V2h(N)* < P{£,(n, k) > A} < Cpak™2R(A)".
Fix ¢ '(B) < A < 1. By (3.11), for n sufficiently large

P(G) =P kQ {¢,(n, k) > A}) < ckg; A(A)

(3.12) _ Ck_i eXp(—k/le(}\)) < C‘/‘;n _lexp(—x/ll’p(k)) dx

< Cexp(—a,/P,(A)) < Cr=(@n/¥)/logm),

Since 0 < y,(A) < B and a,/logn — B, it follows from (3.12) that

n-1P(G,) < 0. Since A is arbitrary we get limsup, , v, , < ¥, '(B8) almost
surely. Thus, (4g) and (4h) follow from (3.10), (3.16) in the proof of (4f), and the
observation that v, ; > v,,for1 <i<3.0

PRroOOF OF (3h). Fix p <X <y, (B). By (3.11), for n sufficiently large

[n/a,]
Pl N {¢(ja,, a,) <A}

j=1
[n/a,]
[T (1 - Ca;*2h(A)*)

1

o
exp(—Ca,?h(\)*[n/a,])
exp( — Ca;¥/2n! = (@n/400/ 155 ),

P(J,)

IA

A

IA
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Since ¥,(A) > B and a,/logn - B, ¥2_,P(J,) < co. Since A is arbitrary, (3h)
follows from (4h). O

PROOF OF (1g) AND (3g). We will prove that
(3.13) if 1<a,<n, then liminfy,,=p as.
n—oo
(Note: The assumption that lim a,,/log n exists is not needed in this result.) Fix

0 <8 <1< B sothat p™'%" > n~Y all n>1, and ¢,(p + ) < B. By (4g),
lim sup,, _, ,,MaX| 514 n] < £ < np(7> k) < p + & almost surely, so that

(3.14) liminfyn’lsmax{liminf max §p(n,k),p+8} as.
n—o0 n—o 1<k<[Blogn]

Let n,>1 be such that (n, — 1)* < n} — [Blog nZ], and for n > n, define
A, = {max, _, _(piogn21¢p(n% k) < p + 8}. We will show that
P( limsupAn) =1.
n—oo

Let k; = [Blog n*]/[8log n] and suppose n > n,. The set
(n® - [Blog n?] + 1,...,n?%
can be partitioned into &, = [£/] groups,
g ="{h,+(k,—j)8logn] +1,..., 8, + (k,—j+1)[8logn]},

for 2<j<k,and g = {h,+ (k,— 1[8logn] + 1,...,n%), where h, = n? —
[Blog n®]. Note that #[g;]=[8logn] for 2 <j <k, and that [8logn] <
#[g,]1 <2[8logn]. Definev; = (#[i:i€ g, U <p + 6] > p[dlogn]} for2 <
J < k,. Note that P(v;) > 1/2 and k, < 3B/ for n sufficiently large, so by
choice of 8 and B,

P(A¥)=P|{U;<p+8allicg)n

kn
Nv,
j=2

(3.15)

> pidlog n](l/z)kn > n—1(1/2)33/8’

for n sufficiently large. For n > n,, A, D> A* so by (3.15), Yo n P(A,) = .
Since A, , A, .y,... are independent, P(limsup,_, ,A,) =1 as asserted. Now,
since § was arbitrary, (3.13) follows from (3.14), and the observation that
Yn,1 2 §,(n, n) - p almost surely. O

Proor orF (3f) AND (4f). Let K denote the collection of limit points of the
sequence v,, o. We first prove that

(3.16) P(K> [p,v;1(B)]} =1
Suppose that p <A, <A, <y, (B). Fix ¢ > 0, and for n > 1let y(n) = [n'*°].
For some ng > 1, £,(3(ng), @yn,))s (X + 1), @y 41)), ... are independent

random variables. The function 4 defined in the proof of (4g) and (4h) is
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decreasing, so by (3.11), for n sufficiently large,
P\, < £,(¥(n), aym) <Ay} = CQlogn) ™" *(h(A,)) ™™
= C(log n) ™" *n~@xm/a)@an/ 4/ 106 m) 5> Cp=1)

for & sufficiently small since y,(A,) > 8, a,/logn - B and ayny/a, > 1 +e
Thus, (3.16) holds. Now, consider the sequence U/ =1 - U,, Uy =1 — U,,....
Let §;_,(n, a,) denote a (1 — p)th quantile [use (1.1) with “7” =1 — 7] of the
subsequence U,_, .1,U,_, +2,--., U, and let K’ denote the collection of limit
points of §/_,(n, a,). By applying (3.16) to the U, sequence we get P{K’ >
[1 - p,¥71(B)]} = 1, or equivalently

(3.17) P(K> [1-y71,(8), p]} = 1.

By (3.16), (3.17) and an application of (4g) to the U, and U,/ sequences we get
P(K =[1—-y1(B) ¢, (B)]} =1.0

Proor or (1f) AND (2f). Define K as in the preceding proof. Suppose
0<a<bx<lDefineforn>1, M,={a<U <b,alln? —aqa,+1<i<n?.
For n sufficiently large

P(Mn) _ (b _ a)ane _ (b _ a)(anz/lognz)lognz > n_l,

since a,:/logn® — 0. The events M, , M, .,,... are independent for some
ny, > 1, so that P{K =[0,1]} = 1.0

PROOF OF (1h), (2g) AND (2h). Statements (2g) and (2h) follow from (2f). To
prove (1h) fix 0 <& < 1 and define H, =U* {1 -8 < U, <1 all (j - Da, <

i <ja,} for n>1 where k,=[n/a,]. Since a,/logn — 0, we have for n
sufficiently large

P(HS) = (1 — 8%)" < exp(—8%k,) < exp(—n"?),

so that X2_,P(Hf) < oo. Thus, P(liminf, ,  H,) =1 (note that this fact fol-
lows also from well-known results on the longest head run in Bernoulli trials).
Now note that {y,;>1—-68} D {v,,>1—-6} D H, for n>1, and that § is
arbitrary. O
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