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SELF-INTERSECTION GAUGE FOR RANDOM WALKS AND
FOR BROWNIAN MOTION!

By E. B. DYNKIN

Cornell University

A class of random fields associated with multiple points of a random walk
in the plane is studied. It is proved that these fields converge in distribution
to analogous fields measuring self-intersections of the planar Brownian mo-
tion. The concluding section contains a survey of literature on intersection
local times and their renormalizations. A brief look through the first pages of
this section could provide the reader with additional motivation for the
present work.

1. Introduction.

1.1. A random walk on a d-dimensional lattice Z¢ is a sequence

(1.1) S=0, S, =¢(+---+4¢, forn=1,2,...,
where £,,...,&,,... are iid. random variables with values in Z¢. We assume
that:

1.1.A. £; have mean 0 and finite second moments.

1.1.B. The covariance matrix for £; is the identity matrix.

1.1.C. The set of m such that P{S,, = 0} > 0 generates the group Z of integers
(aperiodicity).

1.1.D. The set of x such that P{¢, = x} > 0 generates Z*.

Only condition 1.1.A and an assumption that the covariance matrix is nondegen-
erate are substantial. The rest of the conditions are imposed only to simplify
notations.

The formula

(1.2) Xt =VaS,,, teQ,={0,a2a,...,na,...}

defines a random walk on the lattice Z , = ya Z% As « | 0, the finite-dimensional
distributions of X converge to those of the Brownian motion W, in R%

Let X be a function on [0, co) which is linear on each interval [na, (n + 1)a]
and coincides with X7 on Q. According to Donsker’s invariance principle, if F
is a continuous functional on C([0, c],R¢), then

(13) F(Z%) ~, F(W)
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2 E. B. DYNKIN

(writing —, means convergence in distribution). If p is a continuous function
with compact support, then the formula

(1.4) F(W) = [dt, - [ dt,p(t;, W,; -5, W,)
0 0

defines a continuous functional on C([0, c],R?%) and F(X*) — < F(W) by the
invariance principle. Let

(1'5) F:!(Xa) = akzp(tly Xta; e ;tk’ Xto;)y

1

where the sum is taken over all ¢,...,¢,€ @, N[0,c]. We note that
E|\F(X*) — F(X*)| = 0 and, therefore,

(1.6) F(X*) -, F(W) asal0.

1.2. Formula (1.6) can be extended to a certain class of discontinuous
functionals by using the following lemma, which follows immediately from
Lemma A.1 in the Appendix.

LEMMA 1.1. We have

(1.7) liB})F"(Xa) = }ﬂF‘(W) in distribution,
if there exist functionals Ff = Ff(X*) such that

(1.8) Ff—>,F¢ asa—0,

(1.9) F:>,F, ase—0

and

(1.10) p(Ef, F,) >0 asa,e— 0,

where p is an arbitrary metric with the property U, -, U if p(U,,U) - 0
(which is true, for instance, for an LP metric p(U, V) = [E|U — V|?]/P).

We call F*© a Brownian shadow for F, and F¢ a link between F, and F°.
1.3. One can use Lemma 1.1 for proving limit theorems by a modified

method of moments.
Suppose that for all positive integers p,

(1.11) li_r}})E(Fa)” =E(F)’ < 0.
If
(1.12) LE[FP]™" = o,

then F, -, F [see, e.g., Feller (1966), pages 224 and 262]. Condition (1.12) is not
satisfied for the functionals we are going to investigate. We overcome the
difficulty by proving, instead of (1.11), a stronger relation: For all integers
k,1>0,

(1.13) lim E[(F)"(Fs)| = EF**' < o,
a,e—0
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which implies (1.10) for the L? metric. In our case,
(1.14) F=1limF¢ in L? forall p>1

-0
and F,, F¢ and F; satisfy conditions (1.8) and (1.9). We conclude from Lemma
1.1 that F, —», F.

1.4. We are interested in limit distributions for random fields
Pultis X555 th X?:). This means that we consider functionals

F(f)=a*Y pa(ts, X - stnr X2)F(2)

= /pa(t17 XZ, R 7% Xge)f(t)va(dt)’

where t = (..., ty), ¥, is the uniform measure on Q% which charges each point
with a* and f is a test function. We want to find a generalized random field
F(f) associated with the Brownian motion such that F(f) —, F(f) for all test
functions f. To this end, we need to define a shadow field p%(¢,, th; st W)
and a link pi(t,, X7; -+ ;t;, X;,) in such a way that

(1.15)

(1.16) F(f) = [o(t Wi - 5t W,, ) (2) dt
and
(1.17) Fi(f) = [osl(t, X35 -+ sta, X2) F(2)02(dt)

satisfy conditions (1.8)—(1.10).

1.5. Additive functionals of order %k studied in Dynkin (1986a) are an
example of generalized random fields which appear in this context. Basically,
an additive functional of the Brownian motion is a random measure
A(w; dt,,...,dt;,) on R® such that for any open intervals I,,..., I, the
restriction of A to I, X --- XI, is a kernel from (&, #(I, U --- UI,)*) to
(I, X -+ XI,, B(I, X --- xXI,)). Here # stands for the Borel o-algebra, #(U)
means the o-algebra in Q generated by W,, ¢t € U, and an asterisk means the
universal completion of a o-algebra. (The exact definition includes some finite-
ness and continuity assumptions.) The corresponding random field is defined by
the formula

(1.18) A(F) = [H(t,..., t,)A(dt,, ..., dt,)

for all positive Borel functions. Moreover, f can depend on . We put

(1'19) A((p) = f‘p(tl» W’tl; b mk)A(dtl:“" dtk)

for every positive Borel function @(#,, x;; * - * ;¢;, x;). It turns out that

(1'20) EA((P) = f‘p(tl, Xyy o ;tk’ xk)p(tb Xyt ;tk:xk)y‘(dty dx)y
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where p is the joint probability density for W,,..., W, and p is a measure on
(R, X R?)* The measure yu determines A umquely up to equivalence. We call it
the spectral measure of A. If a spectral measure has the form

(1.21) Adxy,...,dx,) dt, -+ dty,

then A is called the characteristic measure of A. We can rewrite (1.19) in the
form

A(9) = [o(t, Wi - 5t W,)p(W,.,..., W, ) dt, -+~ di,

(1.22) =f(P(t1’VVt,; ...;tk,mk))\(dzl,...,dzk)

X8, (W) 8,(W,)dt, - dty,

where p is the (generalized) Radon-Nikodym derivative of A with respect to the
Lebesgue measure and §, is Dirac’s function (which can be interpreted as the
derivative of the unit mass concentrated at z with respect to the Lebesgue
measure).

1.6. Which o-finite measures A are characteristic measures? An answer is
well known for additive functionals of order 1: A corresponds to an additive
functional if and only if it does not charge any polar set. In the general case,
Dynkin (1986a) proved that A is a characteristic measure if, for every compact
set B,

pr(tl, Y= Xy sty Yy — Xy)

XA(dxy,..., dx,)A(dy,,...,dy,) dt, -+ dt, < .

This condition is satisfied if d = 1 and if A(B) < oo for all compact B. An
additive functional

(1.23)

(1.24) T(2,T) = jr 8.(W,) dt,

corresponding to a unit measure at point 2z, is concentrated on the set
{t: W, = 2z} and it is called the local time at z. This functional is not defined for
d>1.

The self-intersection local time is an additive functional

(1.25) T(k,T) = f dzf 8, (W,)de, -+ dty,
corresponding to the measure
(1.26) NB) = [ 14(z,...,2) dz.

Rd

(Here dz = dz, --- dz,.) The measure T(k,-) is concentrated on the set
{t: W, = --- =W, }. Note that T(1, dt) = dt. The measure (1.26) satisfies the
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condition (1.23) for all % if d = 2 and for & = 2 if d = 3. This condition does not
hold for all other pairs (d, k) with d > 1 and & > 1. This, of course, is closely
related to the fact that, with probability 1, the Brownian motion in R¢ has
multiple points of every multiplicity £ for d < 2, has only double but not triple
points for d = 3 and has no self-intersections for d > 4.

We concentrate on the case d = 2. Starting from this point on, a Brownian
motion is always a Brownian motion in R? and a random walk is a random
walk in Z2.

1.7. Suppose that 2 > 1. By symmetry, it is sufficient to study the self-inter-
section local time T(k,- ) in the region D, = {0 < ¢, < --- < t,}. We denote by
d,D, the part of the boundary which is located on hyperplanes {t: ¢, = ¢, .},
i=1,...,k— 1. It turns out that T(k,U) = o for every neighborhood U of
every point ¢ € 9,D,. We construct a one-parameter family of random fields
T (k; k, ¢) which coincides with T(%,- ) outside of d,D,. We call it the self-inter-
section gauge for the Brownian motion. [One of these fields appears in Dynkin
(1986b, 1988). It corresponds to k = C/2#, where C = 0.5772... is Euler’s
constant.] The fields J(«k; k,-) are defined for test functions of the form
o(W,; t,,..., t;), where ¢ is a function on R? X D, with the following proper-
ties:

1.7.A. ¢ has a compact support.
1.7.B. For every x € R?, ¢(x,-) is infinitely differentiable in ¢ on D, and all
partials are continuous in x, t.

Conditions 1.7.A, B define a functional space %, in which we introduce a
natural topology. For every k and every p > 1, I (x; k,-) is a continuous linear
operator from %, to LP. The fields J(x; k, @) can be continued to functions
which satisfy condition 1.7.B only near d,D,. Moreover, they can be continued

Our main goal is to show that a certain class of random fields related to
multiple points of random walks converges in distribution to J (k; k&, ).
1.8. Put
ay,...,a,) =1, ifa,= -+ =a,,
=0, otherwise.
Let A = {h,} be a sequence of real numbers. We call the family of functionals

y(h; k’ n, (P) = n_l Z {(p(Sml/\/’;; ml/n""’mk/n)
(1.27) 0<m;<--- <my
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the self-intersection gauge for the random walk S,,. We assume that ¢ has a
compact support and, therefore, the sum on the right side contains only a finite
number of nonzero terms. [If k£ = 1, then J(h;1,n,9)=n"' X, @(S,/Vn)
does not depend on A.]

By Lemma A.4 (see also the remark following the lemma),

k
(1.28) .7'(h+i~z; k,n,p) = Zfzﬁ"ﬂ'(h; l,n,B,’eq)),
=1
where .
(1.29) (Big)(ti,o-n ) = Xo(t,,..00t,,),

with o running over all mappings from {1,2,..., %k} onto {1,2,...,7) which
satisfy the condition o; < o; for i <.
Put

T(k,n,9)=n"' ¥ ¢(S,/Vn;my/n,..., my/n)
(1.30) O<my< - <m .
X 1(Sps--rSp,)-

) my

Note that T(k, n, ¢) = 7(—1; k, n, ¢) and by (1.28),
13

(1.31) T (ks kyn, @) = ¥ (h, + 1)*"'T(1, n, Blg)
=1
and
k
(1.32) T(k,n,9) = ¥ (=h,—1)*"'7(k; 1, n, Blg).
=1

If  =0o0n d,D,, then I (h; k, n, ) = T(k, n, ¢) for all A.

1.9. Weput ¢ € % if ¢ belongs to &, and if the support of ¢ is contained
in the region

(1.33) {lx| <ec,0<t, < -+ <t <c}.

We define a sequence of norms ||¢||;, /=0,1,2,..., in &, by setting ¢/, =
lloll = supl|f(x, t)| over all x € R? ¢t € D,, and by defining ||¢|[,, as the maxi-
mum of the uniform norms || - || of all partial derivatives of order less than or
equal to m relative to t. We introduce a topology in %, by setting ¢, — ¢ if all
@, belong to the same % and if ||, — ¢||,, = O for all m.

Put ¢ € £f° if ¢ is a bounded Borel function on R2? X D, and if the support
of @ is contained in the intersection of the set (1.33) with the region {¢, — ¢,_, > B8
fori=1,..., k}.

Denote by &, the union of &£° over all positive 8 and c and set ¢, — ¢ in &,
if all ¢, and @ belong to the same &£° and if ||, — @|| = 0.

Put &), = %, + &,. It follows from Lemma A.5 that ¢ € %, if and only if it is
a bounded Borel function with a compact support which satisfies, for some
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B > 0, condition 1.7.B with D, replaced by the region

k
(1.34) U=U{0<t,—¢t,_, <B}.

i=2
Note that BY(%,) c %, and By(&,) =0 for I < k.

THEOREM 1.1. Let q be a probability density in R? which is bounded and
has a compact support. Put

(1.35) q(y) = ¢ %q(y/¢),

k
(1.36) Te(k, ¢) = fl)<p(ml;tl,...,tk)1'£qe(m— W, )dt,
(3 1=

31 T(hikg) = X (k) T(1, Bly),
=1

where h® are constants and B!, are operators given by (1.29). For every ¢ € %,
and every real «, there exists a random variable I (k; k, @), independent of q
and such that

(1.38)  ET(h k,9) - T(x; k@) > 0
for everyp > 1 if
(1.39) he+ E [q{(W,) dt - .

0

For every ¢, k, p and B, there exists a constant C such that
17 (R, @)l Lr < Cllollk-1yp forall p € Z},

(1.40) \
< Clloll forall p € &F°.
For all x and a,
k
(1.41) T(k+a;k, @)=Y a*~'7(x; I, Blp).

=1

REMARK. Condition (1.39) is satisfied (with k depending on q) if and only if
h® + 1/7 In(1/¢) tends to a finite limit as ¢ —» 0.

1.10. We say that a function in R" is almost continuous if it is continuous
outside of a closed set of the Lebesgue measure 0.

THEOREM 1.2. Let g be an almost continuous density function subject to the
conditions of Theorem 1.1. If

(1.42) h, + Zn: P(S,, =0} = «,

m=0
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then for every k = 1,2,... and every almost continuous ¢ € %,
(1.43) T(h;n, k, @) >, T(x; k, ).

Moreover, for all almost continuous ¢; € &, , the joint probability distribution
of I(h; ki, n,@,),..., 7(h; k,, n,e.) converges weakly to the distribution of
T(k; Ry, ©1)y-+.5 T (x5 k,y @) and

(1.44) ET1T(h;kiyn, ) > ET1T(x; ki, ).
i=1 i=1

REMARK. Since P(S, = 0} ~ (27m)~' as m — o [see, e.g., Spitzer (1964),
P7.9], we have

(1.45)

ﬁM:

P(S,=0} ~Inn/27 asn— o
0
and h, ~ —In n/27 for every h subject to the condition (1.42).
1.11. Because of (1.28) and an analogous relation for J %(h; &k, ¢) which

follows from (1.37), it is sufficient to prove Theorems 1.1 and 1.2 for the case
x = 0 and

(1.46) he= —E fo 'q4(W)) dt,
(1.47) h, = — ¥ P(S,=0}.
m=0
To prove Theorem 1.2, we express J (h; k, n, ¢) in terms of the process X;*. Let
(148)  h,=- tez@ 1L P{X7 = 0) = —E [1,.,8,(X7)n(dt),

ﬂ;(ﬁ, k,(p) = /Dtp(Xg; tyeens tk)
(1.49)
X

—, §

(8( X — X&) + hd,(8; = ti_,))va(de).
2

l

Here
8,00=1/a, 8(y)=0 fory=+0,
is a discrete analogue of Dirac’s function. Obviously,
(1.50) hp=hiym  T(hik,n,9) =T, (ki k, ).
We show that I %(h; k, ¢) is a Brownian shadow of 7 ( h; E, p) with the link

%e(h;k,¢)=fb¢(X£I; tyeeon ty)
(1.51) "

k
[T (ae( X5 - X2) + Bt = ti) ol ).

<11
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Here ,

(1.52) ke = —E [1,.,92(X7)r.(dt)

and

(1.53) gy =at [ qi(x)an,
B(a, y)

with

(154) B(a, y) = [3 — Va /2,y + Va /2] X [ 3 — Va /2, %, + Va /2).

If Y is an R2valued random variable with the density ¢ and if ¢, is a
mapping which sends each point of R2 to a point of the lattice Z, at the
minimal distance from x, then ¢i(y) = a 'P{y(eY) = x}, x € Z .. Note that
Y (x) =0 for |x| < Va /2. If a is an upper bound for |Y], then q; = §,, A, = fza
and I =9, for e< Va /(2a). Hence, Z,%(k, ¢) with an arbitrary ¢ satisfies
condition (1.9). Assumptions which are sufficient for (1.8) are given by

LEMMA 1.2. If g and ¢ are bounded almost continuous Borel functions with
compact supports, then I, 5(h; k, ) =4 7 %0; k, p) as a = 0.

The hard part is to establish the relationship (1.10).

Obviously, (1.10) holds for ¢, + @, if it holds for ¢, and for ¢,. Therefore, it is
sufficient to deal with ¢ which belongs either to %, or to &,. The proof of
Theorem 1.3 occupies the main part of the paper.

THEOREM 1.3. Suppose that q is almost continuous and satisfies the condi-
tions of Theorem 1.1. Suppose that either ¢, € %, for alli=1,...,p or ¢;
belong to &, and are almost continuous for alli=1,..., p. Let {1,2,..., p} =
/U B be a partition of {1,..., p} into two disjoint subsets. Put

(1.55) 05 = T1| 72 ki i) 1 725(hs kis 0 |
ey €%
where h,, T, bt and J;° are defined by (1.48), (1.49), (1.52) and (1.51).
There exists a finite limit

(1.56) lim Ept,.
a,el0

For every ¢, k, p, B, there exists a constant C such that, for all sufficiently small
a’ 8’

p
|Epgl < Cl:[ll%llm, if o, €&y,
(1.57)

P
< CI:[“%”» if p, €6;°.

Here, m = LP(k; — 1).
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1.12. An explicit description of the limits (1.56) involves some combinatorics
and certain operators which map functions of several variables to functions of a
part of these variables. We give such a description in Theorems 2.2 and 2.3 after
necessary tools are introduced. In Section 2, we also outline the main steps for
proving results stated in Section 1. The first step—an investigation of the limit
behaviour of Green’s function and some other integrals related to the process
Xf— is done in Section 3. The proof of the main results is divided between
Section 4, which contains the combinatorial part, and Section 5, where we do a
passage to the limit. In Section 6, we review the literature and mention some
open problems. A few auxiliary propositions used in the paper are proved in the
Appendix.

At each stage, we explain the objective first and present technicalities later.
For this reason, propositions are not proved in the same order they are stated.
We hope that the following diagram of the logical relations between theorems
(T.) and lemmas (L.) will be helpful for the reader:

L11
l
L12 = T12=T.1.1
f
ft L33=T33 T13<T23
S B f
L.3.2 = T22<=T.21<TJ5.1
i f
L22<T5.2
f i
T.32=L51«<L31
f
T.3.1

2. Outline of proofs.

2.1. To evaluate Ep:, we consider a finite set S partitioned into disjoint
ordered subsets S*, i € &/ U %, with |S{| = k,. Let A and B stand for the unions
of S! over o/ and over #. We say that elements of S¢ have color i and we put
s ~ s’ if s and s’ are of the same color. Denote by /; the smallest element of S’
and put L = {l;, i €U B}, M = S\ L. Define a mapping s — [s] from S
onto L by the formula[s] =/, for s € S’. Foreveryset A C S,put A, = AN A
and Ag=ANB.If A CS, then [T, means the product over s € A. Writing ¢,
means the same as {¢,, s € A} and

(2.1) v(dty) = l;[va(dts).
Put

(2.2) o(z,t5) = T1 ‘Pi(zli»tsi)-
ieE/URB
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By (1.49) and (1.51),

o1 = [raldts)o( X, t6) TT[8.( X5 — X5) + RS2, - 1,2)]

(2.3) o M,

X Ll[q:‘(Xtas - Xto:') + hfxga(ts - ts*)]’
B

where D is the product of the regions D, and s* means the biggest element of
the same color as s which is smaller than s.

Let A, be the uniform measure on Z , which charges each point with « and let
p; be the probability density for X relative to A,. If A = {s,...,s,} and if
t;, < -+ < t,, then the joint probability density for X7, s € A, is given by the
formula

(2.4) p(ty, x,) = Up"‘(tst_l,xsl_l; tsl,xsl),

where ¢, = x, =0 and p*(¢, x; t', x") = py_(x" — x). Therefore, 1nvest1gat1ng
Ep;, involves various orderings of the set S and its subsets.

Denote by I' the set of all orderings y of S which are compatible with the
order within each set S*. Let y(s) mean the subordinate of s relative to y (that
is the largest element which is smaller than s). Consider an extra element d and
put y(s) = 9 for the smallest element of S. Denote by D(S, y) the set of all g
such that ¢ ) < ¢, for all s € S (with ¢, =0) and put ¢ € L(S,y,L)if pisa
function on (R2)L X D(S, y) satisfying conditions 1.7.A, B [with R? replaced by
(R2)L]. Put ¢ € £4S, vy, L) if the support of ¢ is contained in

(2.5) Q.= {|x, <cforallse L;0 <t ,<cforall seS}.

Note that the restriction of ¢ given by (2.2) to (R?)X X D(S,y) belongs to
Z(S, v, L) and that, for every integer m > 0,

p
(2.6) 9llm < TTl9lm-

i=
Moreover, if ¢, € Z; for all i, then ¢ € S, v, L).

2.2. Formula
(2.7) u,=t,—t

s s

Wy  SES,

defines a 1-1 linear mapping from D(S, y) onto RS. We denote by C, the inverse
mapping and we put, for every ¢ € #(S, v, L),
(28) (i)y(xL’ uS) ( ‘p)(xL’ uS) = (xL’CyuS)'

We work with the space 2(S) of all infinitely differentiable functions f(ug),
ug € RS, with compact supports. Put f € 29S) if f€ 2(S) and if f=0
outside of the cube {ug: 0 < u, < c for all s € S}.

We denote by D,f the partial derivative of f with respect to u, and we put

= ];IDS"s for k € Z5.
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To every | € Z%, there corresponds a norm in D(S) given by the formula
(2.9) IFll, = maX”Dkf”

A sequence f, converges to f in 2(S) if all f, belong to the same 2¢S) and if
| f, — fll; > O for all I. For every ¢ € #(S, v, L), formula (2.8) determines an
element ¢, of 2(S) depending on parameter x;. If ¢ €.£4S,v, L), then
¢, € 29S) for all x,. Note that

(2.10) I D@1l < IS™ Il 5
where
(2.11) k] = Y k,.
S
By (2.9) and (2.10),
(2.12) 801 < 1S1¥ll@ll

(the left side depends on x,, but the right side does not).

2.3. To every A C S there corresponds a linear topological space 2(A). [For
the empty set @, we put 2(2) = R.]

Let M c A CS. We denote by 2(A, M) the set of all continuous linear
operators n: 2(A) - D(M). In particular, Z(A, @) = D’(A) is the space of all
generalized functions of u,.

If AN K = g, then ¢ € 9(A U K) can be considered as an element of 2(A)
depending on a parameter u, € R¥. Usir.g this remark, an operator n € (A, M )
can be applied to a ¢ € (A U K ) yielding an element of 2(M) depending on
parameter uy, which can be interpreted as a function of u,,, .

LeEMMA 2.1.  The operator induced on 2(A U K) by n € 2(A, M) belongs to
RANUK, MUK). Forallpe 2(AUK) and all s € K,

(2.13) Dn(e) = (D).

Lemma 2.1 was proved in Schwartz [(1950), pages 103-105] in the case
M = @. We give a proof for the general case in the Appendix.

By Lemma 2.1, we can treat %(A, M) as a subset of Z(A U K, M U K).

Let A=A, U A, and M = M, UM, be partitions of A and M into disjoint
sets and let M C A, and M, c A,. Suppose that n, € Z(A,, M,), a =1,2.
According to Lemma 2.1, ny can be interpreted as an element of #(A, U A,,
A, U M,) and 7, can be considered as an element of Z(A, U M,, M1 U M,).
The operator

(2.14) n(e) =m(nx9)), @€2(A,UA,),

belongs to (A, U A,, M, U M,). We write n = 5, X 1, and we call 5 the direct
product of 1, and n,. The operation is commutative and associative and we use
I1, < o, for the direct product of a family of operators 7,,.
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Let 1 € 2(A, M). For every ¢ > 0 and every [ € Z%, we define a norm
(2.15)  |inll;, = suplln(e)|| overall p € 2°(A) such that ||g]|, = 1.
Obviously,

(2.16) In(@)ll < llnll, lipll, forall p € 2(A).

LEMMA 2.2. Let
A= U, M=UM,
acy [ 1=K-"4

be partitions of A and M into disjoint sets and let M, C A, for all a € &¢. If
Ng € #(Ay, M,), then n=11,..m, € Z(A, M) and, for every c >0, there
exist constants c,, a € &/, such that, for an arbitraryl e Z2,

(2.17) Il e < TTimally, e,
[ X=X
where 1, is the restriction of l to A .
Lemma 2.2 will be proved in the Appendix. Usually, we apply it in the

situation when all A, are one-point sets and, therefore, M, = A, or M, = &.
Typical examples of operators n, € 9(s, s) are D, and their discrete analogue

(2.18) Ao (u,) = [o(u, + @) — o(u,)]/a.
Note that
(2.19) Dl . <1,  ||A%,.<1  forallc.

We also deal with the following elements of 9(s, @) = 2'(s) (generalized func-
tions):

(2.20) 8,(p) = 9(0) (Dirac’s 8-function),
(2.21) £(9) = [ du,d(u,)/2mu,,

(2.22) £(9) = [ PEO§(u,)r(du,),

(2.23) £2(9) = [ai(x)pe(x)$(u,)r(du,)A (dr),

where

(2.24) ¢(u,) = 9(u,) — 1,_,0(0).

Obviously,

(2.25) I18llp,o <1 forall c.

We prove in Section 3, that there exists a function F(c) (depending only on the
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random walk) such that
(2.26) €11y, e + €%, ¢ + 1§y, . < F(c)

for all sufficiently small « and e.
It follows easily from Taylor’s formula that

(2.27) 1A% — D,|ly,. < a/2 forall c and a.

We prove in Section 3 that

(2.28) 62 = &llp, . < Fy(c,@), (£ = £l < Fa(c, a,¢),
where

(2.29) ii_rgFl(c, a) = a}ign_l)()ﬂ(c, a,e) =0 forall ¢c> 0.

2.4. The following result is the main step in proving Theorem 1.3:

THEOREM 2.1. Let p; be given by formula (1.55) with ¢, € £ and let ¢
and ¢ be defined by (2.2) and (2.8). Then

(230) Ept= ¥ [[No(dr)nlduy) i (x,, u)pg(x,) + R + Ry,
yel"
where

(2.31) g = [1;[5:[1&;"] é,,

Jp
(2.32) pi(xy) = 1:[}73,(36[3] — Xyen)

(2.33) I={s:y(s)*s}, J=8S\I={s:v(s)~s}
(withs ~ d foralls € S) and

1\¢
(234) Ry < F(c)a{n | ol

1\¢
(235) R < F(O){In | Iollons

for all sufficiently small a and e. A positive constant | and a function F(c) do not
depend on a, ¢ and o.

Proof of Theorem 2.1 is presented in Sections 4 and 5. Section 4 contains a
combinatorial part which involves removing brackets in formula (2.3), evaluating
the mathematical expectations by formula (2.4) and combining certain groups of
terms to compensate for infinities. In this way, we establish (2.30) and pre-
liminary bounds for R{® and R%. An estimate for R{* involves certain integrals
relative to A, over hyperplanes {t, = t,,} with s = s’. The term R%® is bounded
by “a decoupling error.” The bounds (2.34) and (2.35) are proved in Section 5.
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We use many times a discrete analogue of integration by parts:
(238) [ o(OR(O(d) = @(u()Hw) - [ Sp(O)H(D)n(db),
where
(2.37) H(u) = f R(t)v,(dt)
. [0, u]

and u(a) is the smallest element of @, which is bigger than u. In particular, if
¢(u) has a compact support, then

(2.38) Jo(Or()r(de) = [(=a)p(¢)H(2)(dt).

Let ¢(t,) have a compact support. By applying (2.38) several times, we get
(2.39) fo(u) [Th(u)rduy) = [T1(=83)0(un) [TH(,)r(duy),
with
(2.40) Hyu)= [ h(t)rdt,).
[0, u,]

2.5. Formula (2.39) is used also to pass to the limit in (2.30). We call
(2.41) Gi(x) = [ prx)n(at)
the (truncated) Green’s function for X;. By (2.30) and (2.39),

(242) Ep:i= X [[Ndx,)r(du)fo(x,, u,)Galx,) + R + RY,
yEF

where
(2.43) fie = [H(—Ai)]rb?*,
(2.44) Gi(x) = [;[G.Z(x[s] = Xpyon)-

As a — 0, the measures A (dx;) and v,(du;) converge weakly to the Lebesgue
measures on (R2)* and on R’, respectively. By the local central limit theorem,
p; converges to the Brownian density

(2.45) px) = (2mt) e /2,

It will be shown in Section 3 that G2(x) converges to the truncated Brownian
Green’s function

(2.46) G,(x) = -/o upt(x) dt.
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We also get bounds for G2(x) which justify a passage to the limit under the
integral sign in (2.42). Using Lemma 2.2, bounds (2.26)-(2.29) and formula (2.39),
we get

THEOREM 2.2. Under the assumptions and in the notation of Theorem 2.1,

lim Ep, = Z ff‘y(xL’ uI)Gu,(xL) dx; du;

a,e—>0

(2.47) v
= Z]" f¢y(xL’ ul)pu,(xL) de dul,
‘yG

where
(2.48) o, = [l‘lss]qﬁy,

J
(2.49) f,= [HDs]qby,

I
(2.50) pu,(xL) = l:[pus(x[s] - x[‘y(s)])‘

Moreover, for all sufficiently small a, € and for all ¢,
(2.51) [Epgl < Ci=l£[1||q9i|||S\L|,
with a constant C depending on c.

In a similar way, but much simpler, we prove

THEOREM 23. If ¢, € gk,’ i=1,...,p, then

(2.52) Jm Epi= X [oxr,u)py (e, dey duy

where p, is given by (2.50) and

(2.53) 6(x001) = [ TT p.(0)6(us) du.
Moreover, if ¢; € &, then

(250 803l < T T,

where C is a constant depending on c.

Note that under the conditions of Theorem 2.3,

(2.55) t(9) = [P 0)9(u,) du,
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and, therefore, (2.48) defines the same function as (2.53). In general, for ¢, € &,
the integral (2.55) diverges and (2.21) is its regularization. '

Theorems 2.2 and 2.3 imply Theorem 1.3. In Section 5, we prove Theorem 1.1
using Theorem 1.3 and Lemmas A.2 and A.3. The same lemmas are used to prove
Lemma 2.2. As we already know, Theorem 1.2 follows from Theorem 1.3 and
Lemmas 1.1 and 1.2.

3. Asymptotic behaviour of Green’s function and functions £* and £*.

3.1. The probability density for X relative to A, is given by the formula
(31) pix) = a P(XF =x) = aplu(x/Va), teQ,xe,

where pl(x) = P(S,, = x}.
We investigate the asymptotic behaviour, as a« — 0, of Green’s function

(32) £(x) = [ pi(e)n ) = « X e "pi(2),

the truncated Green’s function G defined by (2.41) and the generalized func-
tions £* and £ [see (2.22) and (2.23)].
We note that

A

(3:3) ki = —EG{(Yy), h*= —EGy(sY), h,=-G¥0),

a

where Y? = ¢ (eY) (Y and v, are introduced in Section 1.11) and G, is defined
by (2.46).

3.2. The characteristic function of S,, is equal to ®™, where ®(0) = Ee',
and by the inversion formula

(3.4) 472pl(x) = /e-“’x@(o)”‘ de,
it
where II = [ -7, +7]% By (3.1) and (3.4),

(3.5) 4a2pi(x) = f e~ 0(0/a )" do,

Hﬂ
where II, = [—7/Va,+ 7/ Va 1% Under the assumptions 1.1.A-D, ® has the
following properties:

3.2.A. ® is twice continuously differentiable, ®(8 + 27z) = ®(8) for all z € Z?2,
v®(0) = 0and &) =1 — 116|> + 0(|6])®) as § — 0.

3.2.B. There exists a constant B > 0 such that |®(8)| < e A" for all §  II.

3.2.C. There exists a constant y > 0 such that re[l — ®(8)] > y|6|® for all
0 eIl

Property 3.2.A is obvious; 3.2.B follows from 3.2.A and the fact that |®(8)| <1
for all § € II except 0. A proof of this fact and a proof of 3.2.C can be found in
Spitzer [(1964), P7.5 and P7.8].
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We use the following elementary inequalities:

(3.6) |1 — e < |a| for allreal a,
(8.7) 1-e % >a/2 forO<acx<l.
3.3.

THEOREM 3.1. Let
(38) g(x) = ["e 'p(x) dt

be Green’s function of the Brownian motion [ p,x) is defined by (2.45)]. We
have

(3.9) g%x,) > g(x) asal0,x,—>x
and
(3.10) g%x) < CY(x|) foral0<a<l,x€Z,

where C is a constant and

T(r) =4logr™!, for0<r<3i,
(3.11) (r) g f 2

= (In2)r~2, fori<r,

is a monotone decreasing function.

Proor. Let
(3.12) a,=(1-e)/a, ®0)=[1-0(8/a)]/a
and note that
a[l — e ®(6/a)] "

(3.13) - (a,+ e70,) " = [“expl-s(a, + e7,)] ds.

By (3.2), (3.5) and (3.13)

(3.14) 47%g%(x) = .[)oodsexp[—aas]A“(e‘“s, x),
where

(3.15) A%(s,x) = fn exp[ —s®,(0) — ix0] do.
By 3.2.C,

(3.16) lexp[ —s®,(0)]| < exp[ —vs|6]?].
Hence,

(3.17) |A%(s, x) < Cis™ 1.
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Let A be the Laplacian in the #-plane. Since ®, is periodical,

fAexp[—scba(ﬂ)]e_wxd0=f exp[—s®,(0)] Ae % dp
Ha H“

(3.18)
= —|x|?A%(s, x).
We have
Aexp(—s®,) = exp(—s®,)(s%v®,|? — sA®,),
(3.19)

VO (0) = —a V2w d(Oa), AD(0) = —AD(6/a).
By 3.2.A, |[v®,(0)| < G,|0|, |A®(8)| < C, and, by (3.19),

(3.20) |Aexp(—s®,)| < C,lexp(—s®,)|(s%0)> + s).
It follows from (3.18), (3.20) and (3.16) that
(3.21) |A%(s, )| < Cylx| 2,

Formulas (3.7), (3.14), (3.17) and (3.21) imply that, for 0 < a < I, 47%g%(x) <
CsF(|x|?), where

F(u) = ‘[)me"’ﬂ(s‘1 Aut)ds=2(1-e"?)/u+ fwe's/zs'lds

u

and (3.10) follows.
Now we note that a, » 1, ®(x,) - |0|?>/2 as a« |0 and x — a. The estimate
(3.16) justifies passage to the limit in (3.15) and, therefore,

(3.22) A¥(s,x,) - /Hexp(—s|0|2/2 —ix0) d6.

Because of (3.7), (3.17) and (3.21), it is legitimate to pass to the limit in (3.14) and
we get (3.9). O
3.4. Consider a mapping f,: R — R such that f(—u) = —f(u) and
f(u) =k/a for0<(k-1)Wa <u<k/a.

The formula ¢ (2%, 22) = (f(2"), f(2?)) defines a mapping from R? onto Z,
such that ¢ (2) - z as « | 0. By Theorem 3.1,

(3.23) g%(ta(x)) — &(x),
(3.24) g%(ty(x)) < CT(x) forall0 <a <1.

The inverse image ¢, (2}, 22) is a square of area « if 2! # 0 and 22 # 0. It is
an interval of length Va if 2! # 0, 22 = O or if 2! = 0, 22 # 0. Finally, ¢;(0,0) =
0. Therefore,

(3.25)  [F(2)\(dz) = aF(0) + Va [F(s,(x))v(dx) + [F(1,(x)) dx,

where v is the linear Lebesgue measure on the coordinate axes.
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3.5.

LEMMA 3.1. Foreveryk > 1,0 < a < 1 and for an arbitrary positive mono-
tone decreasing function h(r),

(3.26) [e°(2) h(2D\(dz) < 27 jo “P(r)*h(r)rdr + Ch(0),
where C is a constant independent of h.

Proor. We apply (3.25) to F = h(g*)*. By (3.1) and (3.2),
(3.27) g0) = 3 e-mp(s, = 0}.

m=0

It follows from (1.45) that

1 1
(3.28) g%0) ~ Eln-‘;. ‘
Hence, the first term in (3.25) does not exceed C,h(0). The second term is
dominated by vVa A(0)/T(|z])*y(dz). The third term is dominated by the integral
in the right side of (3.26). O
3.6.

LemMmA 32. Ifu,—>u+0andx,— x # 0, then
(3.29) Gi(x,) = G,(x).

PROOF. By applying (2.36) to (t) = €%, h(t) = e ‘p}(x), we get

(3300 Gilx) = e"i(x) + (1 —eat [ ei(x)r(dr),
where

(3.31) gilx) = [e 1 upi(x)rdr).

On the other hand,

(3.32) G(x) = e'g,(x) ~ [ ‘ez (x) at,

where

(3.33) g.(x) = jo “e~ip,(x) dt.

Formula (3.29) will be proved if we show that
(3.34) ‘ &u(x.) — 8.(x)
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and
u“ ¢,
(3.35) I e tgo(x,)v(dt) - f e's,(x) dt.
[0, u
Note that the left side in (3.35) is equal to

Jlociculexpt,)gs(x,) dt + o(1),
where
(3.36) t,=ma for(m—-1a<t<ma,m=1,2,...

Since g/(x,) < g%x,) < CT(x,) » CT(x) < oo, formula (3.35) follows from
(3.34) and the dominant convergence theorem. Thus, we need only to establish
(3.34). Note that

(3.37) g.x) —g(x) + e [g(»)p(x —y)dy =0
and

(3.38) Bul¥a) —8%(x) + exp(-u,) Je(»)pe(x0 = YA (dy) > 0
as a — 0.

By (3.9), g%x,) — g(x). By the local central limit theorem [Spitzer (1964),
page 77],

(3.39) sup |pi(2) —pf2) >0 asa—0.

Put
al¥) =8%(w(),  B¥) = pi(x, — 1 ¥))-
By (3.25), the integral in (3.38) is equal to
aa,(0)b,(0) + Va [a,b,dy + [a,b,dy

The first term tends to 0 by (3.28) and (3.39). The same is true for the second
term since [T(|y|)y(dy) < o0 and p,(y) < (27u)~’. Note that

[(a. -2t flo. - gldysupe,

(3.40)

< const. f|aa — gl dy.
Since
(3.41) &(y) < const.T(y|) forall y € R?

[see, e.g., Dynkin (1984b), Appendix], the integrand in the right side of (3.40) is
dominated by an integrable function. By (3.23), the integrand tends to 0 as « | 0.
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We conclude from (3.40) that [a,b,dy — [gb,dy — 0 and, by (3.39), fa,b, dy
tends to the integral in (3.37). This proves (3.34). O

COROLLARY. A& — h®as a — 0.

Indeed, by (3.3), hi = —EGXY;). Obviously, Y - ¢Y as a — 0 and, by
(3.29), G{(Yy) — G(¢Y) if Y # 0. Since g is bounded above as a — 0,

EGY(Y;)" < e®Eg*(¥;)" < Cfg“(2)27\a(d2)~

By (3.26), the right side is bounded as a — 0. Hence, G¥(Y?) are uniformly
integrable and EG{(Ys) - EG(£Y).

3.7.
THEOREM 3.2. For every U > 0, there exists a constant C such that
(3.42) J16:(2) = Giz + 7))\ () = Cl
foralla >0, ye Z,anduc Q*n[0,U].
PROOF. By (2.41), (3.5) and (3.12),
(3.43) 472G %(x) = fn H(0)e = 4o,
where
(349) H(0)= [ 0(6/)"(dr) = [1 - 2(0/)™"] + 2, (0)"

and m =u/a. By 32C, |®,0) > v|6> and, by 3.2.A, |1 — ®@/a)"*!| <
Cy(10)% A 1) for all am = u < U (C, depends on U.) Therefore,

(3.45) H(0)] < C,(1 A 16]72).
By (3.43),
(3.46) 47%[GH(2) - Gz + y)] = fn H2(6)e i 40,

with H2() = H(0)(1 — e~ ). By (3.6) and (3.45),
(3.47) fn “|Hg(0)|2 dé < Cyly| fR (161 A 1617%) df.

The functions h,(0) = e**%, z € Z,, form an orthonormal basis in the space
L% 11, p,), where p (d6) = df a(47) 2. Therefore,

2

[ HOMED)

a

fn \H2(8) 1 (d8) = X

z2€Z,
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and, taking into account (3.46),
(3.48) [ 1HAO)* 0 = [A[(2)[Gi(2) - Gilz + )]
Formula (3.42) folulows from (3.47) and (3.48). O
3.8.

LEMMA 33. Forall0<a<1l,teQ,andx€Z,

(3.49) pi(x) < bt

(8.50) |pf(0) — pg(x)| < blx|t™?2,

where

(3.51) b= (472)“[ (1 + |6])e PP’ db < co.
RZ

(B is the constant in 3.2.B.)

Proor. Using (3.5), 3.2.B and (3.6), we get

4w2p;’(x)sf e BU” gg.
Ha

4n%p7(0) — pi(x)| < Ixl [ 16le™P" df
and we arrive at (3.49) and (3.50) by introducin,;.r a new variable 6Vt. O
3.9.
THEOREM 3.3. Let £, £* and £*¢ be given by (2.21)-(2.23). Then, (2.26) holds

with F(c) = 3bc,, where ¢, =c V 1 and b is the constant in Lemma 3.2. The
bounds (2.28) are valid with

(3.52) Fi(c,a) = [0 1tp(0) — t.p,(0)/ dt + 2(c, + 1)ba
and
(3.53) Fy(c,a,€) = Fy(c,a) + b(ae + Va)(6 + a)

if g(x) vanishes for |x| > a.
Proor. Note that

£(9) = [t (0)n(2) dt,
(3.54) £(¢) = [tp2(0)R(z,) db,

£2(¢) = E [t,pi(Y:)h(t,) dt,
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where Y, is defined in Section 3.1, ¢, is determined by (3.36) and

(3.55) h(t) = [@(t) — 1,.,9(0)] /¢ for t > 0.

Taking into account that A(t) =0 for ¢ > ¢,, we conclude from (3.54) and (3.49)
that

(3.56) (@)l + 1€5(p)] + 1£°( )| < 3bey||Al|.
By (3.49),

€0) — £(9)1 = | dt[ep,0) - £,p,(0)] ()

(3.57) + [ dtt,prO)[A(e) - ()]

< |IBI7(c) + b [ dth(t) = h(z,),
with
(3.58) e) = [1tpd0) - t.p (O dL.
By (3.39) and (3.49), 7,(c) — 0 as a = 0. Denote by ||#/|| the supremum of |A'(t)|

on the open set B=(0,1) U (1, + ). If [¢¢,] € B, then |h(t) — h(t,)| <
l2|I(¢, — t) and, therefore,

[ dei(e) = Bt < [1oci< R(8) = h(t)lde + 10 [ (2, = 0) e

< a(2||All + eyl ).

(3.59)

Using Taylor’s formula for ¢, we establish bounds
|h(t) <|l¢/|| forO<t<1,
|h(¢)| < |lpll/t fort>1,

(3.60)
| (2) < 97|l for0<i¢<1,
() < llpll + llg’|l fort>1,

which imply that ||A|| < ||¢|l; and ||A'|| < 2||¢||.. The bound (2.26) with F(c¢) =
3bc, follows from (3.56) and (2.15). The bound (3.52) for || —§]||,, is an
implication of (3.57)—(3.59).

Note that

(3.61) £(p) = ¢%(9) + ES(Y7),

where

(3.62) S{(x) = [t[ pi(x) — P2O)] A(t,) dt.
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By using the estimate (3.49) on the interval (0, |x|) and (3.50) on (|x|, ), we get
00

(3.63) 1S.(x)] < bla| [2||h|| + [Ten(e,) dt]-
||

By (3.60),

(364) t;1/2|h(ta)| = ]-O<t<1”‘p,”t_l/2 + ]-t>1/2”q)“t_3/2 + 1t<1<tu'

Therefore,
[ “i2h(e) dt < (4 + @)llgll

and, since |fh| < ||| < |||,
(3.65) 1S.(2)] < Blx|(6 + a)lloll;.-

Since |Y;| < |¢¥| + \/a/2 < ae + Va, we get the bound (3.53) for [|£* — £, ,
from (3.61) and (3.65). O

REMARK. It follows from (2.22), (2.23), (3.3) and the relation -
Jow)o(u)r(du) = 9(0)

that
(3.66) £(9) = [[p2(0) + A8, (w)] p(u)r(du),
(3.67) §(¢) = E [ [ pa(¥s) + hes(w)] o(u)r,(du).

4. Proof of Theorem 2.1: Combinatorial part.

4.1. In this section, we manipulate the product (1.55) keeping a and e frozen
and, to simplify formulas, we drop all subscripts and superscripts a and ¢. For
the sake of brevity, we put

(4 1) A.S(t) = ﬁasa(t)’ qs(x) = sa(x) for s € A;

A (t) = R8(t),  ax) =qix) forseB.
For every K ¢ M, we set
(4’2) AK(tS) = ].I_(.[As(ts - ts*)’ qK(xS) = lI_([qS(xs - xs*)'
(See Section 2.1 for the definition of M and s*.) In this notation,

Q= j;)p(dts)(p(XtL: tS)].;I.[[qs(th - Xt,.) + As(t.s - ts*)]
(4.3)
= f”(dts)(P(XtL, ts) Z ‘IA\L(Xzs)AS\A(tS),
D Aes

where = (A: Lc ACS}.
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Note that
(4.4) AS\A(tS)qA\L(th) = AS\A(tS)qA\L( XtA),
where
(4.5) qA\L(xA) = }:Iqu(xs — Xgp)

and s*A = s* if s* € A; otherwise, s*A is the maximal element of A which has
the same color as s* and is smaller than s*. By (4.4),

AS\A(tS)E‘P(XtL’ tS)qA\L( Xzs)

(4.6) = AS\A(ts)f)\(dxA)p(tA’ EINLIETS tS)qA\L(xA)

= AS\A(tS)E‘p(VL’ ts)P(tA, Vi),

where p(¢,, x ) is the probability density for X, relative to A(dx,) and V, is a
family of random variables with the law §,\ 1(x,)A(dx,). The family V, has the
following properties:

41A. V,seL,and V, - V..,, s € A\ L, are independent.
41.B. V,, s € L, are distributed with the law A.
41.C. V, - V.., s € A\ L, are distributed with the law g (x)\(dx).

It follows from (4.1), (4.2) and 4.1.C that:

4.1.D. V, = V,., and, therefore, V, = V|, for s € A , (the mapping [s] is defined
at the beginning of Section 2.1).

41E. V, - V..,, s € Ag\ L, are identically distributed (with the probability
density g = q%).

For every A € & and every function f(x,, t5), we put

(47) M 1) = [ o(dts)do\ lt) EF(VL, t5)p (8, V3 ).
By (4.3) and (4.6),
(48) Ep= ¥ \(9).

Aes

To each ordering y of A, there corresponds a set
(4.9) D(A,v) = {ts: t,, <t foralls € A}.
By (2.4),

(4.10)  p(ty,x,) = l_IAp(ty(s), Xy tsr %) forall tg € D(A,Y)
se

(with t; = x, = 0). Put y € T, if y agrees with the ordering of each S* within A.
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Set

(4.11) M(N,y) =M \(Plps, )

(4.12) N=Y Y #(A,v).
AesyeT,

Obviously,

D= U D(A,y).

yeT,

Denote by D*(A, v) the subset of D(A, y) defined by the condition ¢, < ¢, if
y(s) + s. The sets D*(A,vy), y € Ty, are disjoint and D(A, y)\ D*(A,y) is
covered by the sets D(A, v, r) = D(A,y) N {t,,, =t,}, with r € A such that
¥(r) + r and y(r) # d. Therefore,

N2Ep> Y, Y M\(9lpws, )

AesyeT,

and

(4.13) O0<A#—-Ep<R,

where

(4.14) Ri= ¥ ¥ X|#(%lor. )]s
AesyeT, r

with r running over all r € A such that y(r) ~ r and y(r) # 4.
We set p(s, x; ¢, y) = 0 for s > t. By (4.11), (4.7) and (4.10),

(4'15) ‘/”(A’ Y) = /I;Dv(dtS)AS\A(tS)Eq)(VL’ ts)l;[l’(ty(s)» ‘/y(s); ts’ ‘/s)'

4.2. The characteristic set I for a pair (A, y) is a subset of A which consists
of all s € A such that y(s) ~ s. We denote by v, the ordering of I induced by 7.
Note that I D L and y;(s) ~ s for all s € I. Let # stand for the family of all
pairs (I,y,) with these two properties. For every (I,y;) € #, we denote by
&(1,v,;) the set of all pairs A € &, y € I, with the characteristic set (I, y,).
Note that if (I,y;) is given, then for every A D I there exists exactly one
ordering y € T, such that (A, y) € (1, v;). It follows from (4.12) that

(4.16) N= Y N(Ly),
(L, y))EF
where
(4'17) ‘M(I’YI) = Z ‘/”(AsY)'

(A, )L, )

There exists a 1-1 correspondence between the orderings y € T of the set S and
the elements (I, y;) of #: The set I corresponding to y is determined by (2.33)
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and v, is induced by y. Therefore, we can rewrite (4.16) and (4.17) as

(4.18) N= Y AN,
yeTl

(4‘19) ‘/V;= Z‘/”(A,YA):
ADI

where v, is the ordering of A induced by y. We claim that:
4.2.A. For s € A,

AS\A(ts)p(ty,\(s)’ xyA(s); ts’ xs) = AS\A(tS)p(ty(s), x-yA(s); ts’ xs)'

42B. For s € I, y\(s) ~ v/(s) and V, ,, =V, ), where N = I, U Ap.
42.C. For s € A\ I,

V.-V, (0y=0, ifseAa,

s YA
=‘/S_VS'AB’ ifSEB.
4.2.D. For every s € N, yy(s) ~ v(s).

To prove 4.2.A, note that, for s € A, the interval (y,(s), y(s)] is contained in
S\ A and is monochromatic. Analogously, 4.2.D holds because the interval
[Yn(s), ¥(s)] € S\ N is monochromatic.

Let s € I If y,(s) * v,(s), then there exists s’ € A such that y,(s) <s’ <
Ya(s) and y(s’) = s’. Since I is the characteristic set for A, this is impossible.
Hence, y,(s) ~ v,(s). If y,(s) € N, then the second part of 4.2.B is obvious. If
Ya(s) € AN N = A \ 1, then yy(s) ~ v,(s) (same arguments as at the begin-
ning of this proof) and 4.2.B follows from 4.1.D.

If s € A\ I, then y,(s) ~ s; hence, y,(s) = s*A and 4.2.C follows from 4.1.C
because s*A = s*Ap.

Taking into account 4.2.A, B, C, we conclude from (4.15) that

(4.20) M(A,vy) = jn;V(dtS)AS\A(tS)E‘p(VL’ ts)Ps,
where

p(t-y(s)’ Ve &, Vs) =Dy, (0) forse A\ 1,

()
21)  P={ Py, (Vo= Veun,) fors e Ap\Ip,
p(tv(s)’ Vinisys tss Vs) forsel

and

(4.22) P =112,
K

for every K C S.
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43. Fixaset IDL. Let & ={A Iy,cAyCA}and Fp={Ap [5C
A € B). Formula A — (A4, Ap) establishes a 1-1 correspondence between &
and % X %p. By (4.19),

(4.23) N,o= Y H(Ap),
AgESp
with
xy(AB)= Z "”(A’YA)
A €S
(4.24)
= 'Lv(dtS)AB\AB(tB)E‘p(VL’ts)'@N‘QJA’
where
‘QJA= Z AA\AA(ts)-@AA\IA
A ES
(4.25)

v(s)

= T1[ P, (0) + 8.(t ~ o)

[cf. (2.33)]. Let 9577(1\ p) be obtained from X (Ajp) by replacing the factors &
with

(4.26) P, = P tyioy Vot tor Vi) = Pty Vireors o Vi)
for all s € I ([yy(s)] = [Y(s)] by 4.2.D). Put

(4.27) A= L H(Ap), A= LA
Apep yeTl
We have
(4.28) W-A< Y ¥ Ph(Ap) —HA(Ap) = R,
YET ApeSy
Note that
/V;= Z 'i/(AB)
ApeSp
(4.29) B
= fDV(dts)QJAE‘P(VL’ tS)'@I’@JB’
with
(4-30) ‘QJB= Z AB\AB(ts)g’/\,g\lﬂ-

ApESy

By 4.1.A and C, &,, s € Jp, are mutually independent and independent of
o(V,, tg)#, and, taking into account 4.1.E, we get

(4.31) A= [n(dts)2,,9,,Ee(V,, )%,
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where \

gJ,, = E‘QJB = Z AB\AB(tS) H EZ,
ApESy Ap\Ig

(4.32)

v(s)

- 1| /M)a(p, . 5) + At~ 1)

By comparing (4.31), (4.32), (4.25), (4.26) and (4.1) with (3.68), (3.69), (2.31) and
(2.32), we get

(4.33) A= [v(du,)Ed(Ve, u)pg(Vy),

with the variables u, defined by (2.7). Formula (2.30) follows from (4.13), (4.28)
and (4.33).

5. Passage to the limit.

5.1. A random germ is a family of random variables W = {W*} defined for
sufficiently small positive « and e. Two germs are considered as indistinguishable
if they coincide for all sufficiently small a, ¢ and all statements about germs
should be followed by the words “for all sufficiently small «, &.” We drop these
words when it causes no confusion.

We call a germ W standard if random variables W** are Z ,-valued and if
there exist constants a, b independent of a, ¢ such that

(5.1) |[We| < ae,
(5.2) P{W* =2x} < bae™? forall x # 0.
We say that W is perfect if (5.2) is satisfied also for x = 0. If W and W are

standard and if W and W*¢ are independent, then W + W is also standard. If,
in addition, W is perfect, then W + W is perfect as well.

The germ Y[, described in Section 3.1, is perfect. Indeed, if |Y| < a/3, then
Y = 0 for 2a¢ < 3/a. For 2ac > 3/a, we have | Y| < ae/3 + Va < ae. Formula
(5.2) follows from (1.35) and (1.53).

Consider the family of random germs V, = {V??}, s € A, described in Section
4.1 and put

(5.3) Ug = Vo= Vo, Zg = Vi
By 4.1.A-E we have:

5.1.A. If s ~ o, then U,, is standard.

51.B. If s o, then U, = U, - Z, + Z,, Z,, Z, are independent, U, is a
standard germ and Z, and Z, have the law A .

5.1.C. If s ~ 0, s # ¢ and if s € B, then U,, is perfect.

It follows from 5.1.B that if s * g, then

80

(54) EFU>Z,,Z,-Z,) = EfF(lZ":f +x, 2, % )A(d2)A (dx).
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In particular,
(5.5) E[F(Ug)Fy(Z7)] = N FONF).
We use letters C and [ for constants independent of « and e.

5.2.
LEMMA 5.1. If Wis a standard germ, then

(5.6) Ef[Gi(2) - Gilz + W)\ (d2) < Cre,

(5.7) EG2(W=)* < C2(log%)k.

If W is perfect, then

(5.8) EG2(W=)* < Cz(log%)k.

The constant C, is independent of u (but C, depends on k).

Proor. Formula (5.6) follows from Theorem 3.2 and (5.1).
By (5.1) and (5.2), the density function ¢*¢ of W relative to A, satisfies the
conditions

(5.9) g*(x)=0 for|x|>ae, g°(x)<be? for0 < |x| <ae.
By Lemma 3.1 [with A(r) = 1,_,,] and (3.28),

Ege(W;)" < g(0)* + be™ [1,.,.&8°(x)"A (dx)

(5.10) 5
1 e
< Cz'[(ln—) + e 2f T(r)*rdr + 1].
o 0
If ¢ < (2a) 7}, then by (3.11) the integral in the right side is equal to
4k/a£(—ln rYerdr = 4’“e2fa(—log ep)*p dp.
0 0

Since
(5.11) Gi(x) < eg*(x),
this implies that
1\% 1 k
(5.12) EGX(W=)* < c;[(ln;) + (m;) ]

If ae > Va, then In(1/¢) < In(a/ Ya ) and (5.7) holds. If ae < Vo, then by (5.1),
W2 = 0 and (5.7) follows from (5.11) and (3.28).

If W is perfect, then the first term in the right side of (5.10) can be dropped
and we get (5.8). O
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REMARK. By (3.3), (56.7) and (5.8),

n 1 1 1
(5.13) |hy < Cgln;, |he| < Ca(ln;) A (ln—).

o
5.3. We reserve the letter F for functions independent of a, & and o.

THEOREM 5.1. Let R, = R{® be given by (4.14). If ¢(x, tg) = 0 outside of
the set (2.5), then

1 l
(5.14) |RT| < [Fl(c)a(ln;) llell-
Proor. Put
(5’15) Us = ‘/s - ‘/y(s)’ Zs = V[s]’
where V,, s € A, are random germs introduced in Section 4.1. Note that
(5.16) [ T8t~ te)wdtsis) = 1.
S\A
Changing variables in (4.7) and (4.10) by the formula
(5.17) u,=t,—ty, SEA,
and taking into account (4.1), (4.2) and (5.16), we get
(5.18) | \(@Loa, v, )l < AN REIBNASIQas| |,
where
(5‘19) Qae = Efpa(duA)l(ur)l:.[p:s(Usae)]'Os ug<c l;[l|zg|s c?
where 1(z#) = 1 for u = 0 and 1(z) = 0 for u # 0. By (3.1),
(5.20) [ 1)pi(x)n(du) = 1(x).
By (2.41) and (5.20),
(5.21) Q= EY(U) 162U [ 11z <.
where M = A\ r. By (5.21) and Hélder’s inequality,
(5.22) Qe<9o][]e,
M
where
(5.23) ®? = P{|Z?| < ¢, U™ = 0},
(5.24) ok = EGH(U) 1 0, forse M,

with & = 2|M]|.
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By (5.5),
(5.25) 02 < 4c%.
Let s + y(s). Then by (5.5), Lemma 3.1 and (5.11),

(5.26) oF < 4czfxa(dy)G§(y)k <Fy(c) forse M.
If s ~ y(s), then by 5.1.A, U, is standard and by (5.7),
1 k
(5.27) o* < 4c2(1n—) .
o
The estimate (5.14) follows from (4.14), (5.18), (5.13), (5.22) and (5.25)—(5.27). O
54.

THEOREM 5.2. Let R, = R be given by (4.28). If o € £ (s, v, L) and if ¢
is defined by (2.8), then

5 1\!
(5.28) IR < F(c)e(ln;) [

ProoF. We change variables in (4.24), (4.25), (4.21) and (4.26) by formula
(2.7) and then integrate by parts by (2.39). Taking into account (4.1), (3.68) and
(241), we get

H e = ‘){;(AB)
(5’29) B a a a a
= (h8)™E [ (duy) £ 25, uy)T%(u,) [T Ga(U),
ML
where
H“(uL) = l;[pgs(U:E),
(5.30)
fu= [H (a1 IT o, (¢
N\L Ja  B\Ap
and
V, = Voup, forse Ap\Ig,
U =
(5.31) ° Vi— V, sy forsel

An analogous formula holds for 2% with U2 replaced by Z& — Z3 s fors el

N(S)
Therefore,

(5.32) e — o = (b)) VE [v(duy) f( 25, un)TT(u,)F,
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with

(5.33) []—[G“ Use) - HG“ Z3 = Zy s ] ]—[ G (Us).

The product (5.33) can be decomposed into terms of the form

(639 ¥ = [G5(U) - Go(2: - 24,0 | 116U 16222 - Z50),
where N\ L = {r} UK, U K, is a partition of N into disjoint subsets, r € I
and K, D Ag\ I.

If o €24S,v, L), then § € 29S) for all x;, and by (2.16), (2.19), (2.25),
(2.26) and Lemma 2.2,

(5.35) a2, un)l < Fo()lIGlly, [Te<e [T, <

By (5.35) and Holder’s inequality,
IEfVa(duN)fa(ZZ, un )T (u, )|
(536) < Fy(NBlhy, B [rdiuwn )T Lz G2(U)] TT L, <o
L ML

< Fy()lfllyg,, [1e,,

where

(5’37) (I)r2 = fva(du)luscE [G:(Urae) - G:(Zf - Z$N(r))]21|Z$|Sc’

®F is given by (5.24) for s € K, U L and

k
(5.38) ok =E [Gg(z; - Z% ) 1IZ§|SC] fors € K,.
Let sl By 42B, V, (s) =V,, where ¢ = y,(s) *s. By (5.31) and
51B, U, =V, =U,+2Z, - Therefore the bound (5.26) is valid for @
se K, Nl

By (5.37) and (5.4),
®2 = 4¢? [v,(du)1, . E[Ga(x + U) — G(x)]°A (dx)

[cf. (5.25)] and by (5.6),
(5.39) 2 < Fy(c)e.
If s € Ag\ I, then s*A ~ s and by (5.31) and 5.1.C, U, is perfect. By (5.8),

1 k
(5.40) ok < Cz(log;) .
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Finally, if s € K, then by (5.38),
(5.41) @F = [N (d)\(d2)Ge(2 = 2) "1y, <. < 4% [N (dx)G2(x)" < Fyf).

The bound (5.28) follows from (5.32), (5.33), (5.36), (5.13), (5.26), (5.39) and
(5.40).
Theorems 5.1 and 5.2 and formula (2.12) imply the bounds (2.34) and (2.35). O

5.5. The proof of Theorem 2.2 has been sketched in Section 2.4. Now, we fill
the gaps.

The notation F(c, a, €) with subscripts 1,2,... is used for functions with the
property, for every ¢ > 0, F(c,a,€) = 0 as a, ¢ > 0.

The restriction of ¢ to (R%)~ X D(S, y) belongs to £(S, v, L). Thus, for every
X, ¢, € 29S), and f,, f* given by (2.48), (2.49), (2.43) and (2.31) belong to
2<I).

First, we find a bound for f* — f,. Note that

(5'42) fyae = nae(ﬁy, f‘y = n(ﬁy’
where
(5.43) 7% = l;[n‘;‘”, n= I;Ins

and 75° equals —A% on I, £5 on J, and £3° on Jp; 7, equals —D, on I and £, on
J. Put pg® = 9%* — n,. By (2.19) and (2.26)—(2.28),

(5.44) lInglly,c <o,  |Ip¢lls,. < Fi(c,a,e) forall s € Sandall c> 0.
Note that
(5.45) N —n =) [l_[p;“ 11 ns],

A S\A

with the sum taken over all nonempty subsets A of S. We conclude from Lemma
2.2 that |[n* — 1lly, . < Fy(c, a, €) and by (5.42) and (2.16),

(5.46) |f~,ae(xL’ uy) — fy(xL7 ur)l < Fyle, a, 8)"‘57"2-

Denote by A4.%* and ., the terms in (2.30) and (2.47) corresponding to an
ordering y and put

(5.47) M= [No(dxy)v(dug) (s, 1) G (x,).

It is easy to see from (2.41) and (3.1) that [GX(x)A (dx) = »,[0,u] > uasa — 0
and, by (5.46),

(5.48) |‘A/;ae - '/V;;al < C'[F4(C, «a, e)ll¢y||2‘
Note that

(5.49) = [dry duy £ (x5, uf)Giy(x5),
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where x7 = {x, s € L} and uj = {ug, s € I}, xJ = 1,(x,), with ¢, introduced in
Section 3.4 and

(5.50) u?=ma for(m-1l)a <u, < ma

[cf. (3.36)]. As a — 0, the integrand in (5.49) converges to the integrand in (2.47)
by Lemma 3.2. By (3.24) and (5.11),

(5.51) G(xf) < CJLIT(xs)

in the region @, determined by (2.5) and by the dominated convergence theorem,
N> A, as a,e > 0. Therefore, the first equation (2.47) follows from (5.48).
Integration by parts yields the second equation.

By (2.26) and Lemma 2.2, ||T1; £:T1, 651, . = Fs(c) < oo and by (2.31) and
(2.16), |¢5°] < F5(c)l|$,ll1,- Therefore,

1574 < Fa(e)lidyll, [Naldes)ra(dur)Ga(xL) 1o %L, ur)-

By (5.51), |#.*| < Fy(c)|I$,ll, and (2.30), (2.34), (2.12) and (2.6) imply~ the bound
(2.51). 0

5.6.

PrRoOOF OF THEOREM 23. If ¢, € &f¢, i=1,...,r, then T %(h;k,p) and
I h; k, ) do not depend on & and % and we can put A% = A, = 0. Therefore,
A A(tg) = 0 for A # S and only terms with A = S remain in (4.8), (4.12) and
(4.14). By (4.13) and Theorem 5.1,

(5.52) |Ep:—A|=|Epi— X M(S,y) <R*>0 asa,e—0.

yel

By (4.15) and (5.15),

‘//lae(s’ Y) = Ej;DVa(dtsﬁP(Zﬁ, tS)I;[pg—t.,(a)(Usae)
(5.53)
= B[ dus,(25, ug)[1pa(Ur),
RS S

where u? is defined by (5.50).
Note that ¢ (x, ug) = 0 on the complement of Kz = {ug: u, >0 for s € I
u,> pforseJ). Forevery0 <o < B,put Kg, = Kg N {ug: u, > o0 fors € I}.
It follows from (3.1) and (3.39) that for every o > 0,

(5.54) sup  |pga(x%) — p(x)| >0 asa—0

xeR2 u>o

and

(5.55) pi(x) < C
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for all sufficiently small e and al x € Z ,, u € Q,, u > o. Put
(5.56) U=U,-2,+Z,,.
By (56.54) and 4.1.A, B,

lim B[ dug,(25, ug) [1p%(Us)
Kg, S

a, €0

(5.57) = lim E/K dusfde ¢, (xf, ug)l;[pus(ﬁs” +xfy— xf‘y(s)])
Bo

a,e—0

= E/ dusfde ¢(xp, uS)pu,(xL)npus(O)’

with p, (x1) determmed by (2.50). The second equality holds because (i) U2¢ — 0
as a,e—»Oby51A B and (5.1); (ii) & = x,, uX — u, for all s asa—>0 (iii)
(5.55) justifies passage to the limit under the 1ntegra1 sign.

Note that K\ Kg, = U, ¢ ;Hg,,, where

Hy,, = {ugiu,>Bforse€dJ; u;>0fors € I\r; 0<u <o}.

If ¢ = 0 outside of @, [see (2.5)], then by (5.55) the part of the integral (5.53)
over Hg,, does not exceed in absolute value

B G20 162U Tty
IN\r L
By Holder’s inequality, this is not larger than C,I1,®,, where
(I)sp = E[]‘|Z"|sc C(Uae)p] q)rp = E[1|Z"|SC o(Uae)p]
with p = |I|. By (5.5), Lemma 3.1 and (5.11),

5.58 ®P < 4C,c® forseI\r, ®F <4Cypo?.
s 3 r 3

Hence, the part of the integral (5.55) over K\ K, can be made arbitrary small
uniformly in a, ¢ if we choose a sufficiently small o. This proves that (5.53) tends
to the integral in the right side of (2.52), and (2. 52) follows from (5.52).

By (5.53), (5.55) and (5.58),

|2 < |IG,IE [ Ly (us) [1P(Us)ra( due) oL, us)
< Gll¢IETIGE(U) < Cills

and the estimate (2.54) follows from (5.59), (5.52) and (5.14). O

(5.59)

5.7.

Proor oF LEMMA 1.2. We note that by Lemma A4

k
(5.60) T(h; ko) = X (ke + 1) 'TH(1, Blo)
=1
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[cf. (1.31)], where

(5.61) Ti(k,9) =7(-1; k,9) = fDPa(XZ‘, t)r,(dt),
k
with
k
(5.62) P2, t) = @(x; 8) I_Tzqz(x,~ —x;_4).
We rewrite (1.36) in the form-
(5.63) T(k,9) = [ o(W, 1) dt,
D,

where p(x, t) is defined by (5.62) with ¢¢ replaced by g By the Corollary to
Lemma 3.2, A2 — h® as a — 0 and by (1.37), Lemma 1.2 will be proved if we
show that Ti(k, ¢) =, Tk, ¢).

Put
(5.64) Fo= [ p(Xe 0y = [ o( X5 00 xl0))
where
Xaltis-oor ty) = (ma,...,mua) forma<t,<(m;+1)a,i=1,...,k.
First, we prove that
(5.65) Ti(k,p) — F, > 0 in probability as a — 0
and then, using Lemmas A.2 and A.3, we show that
(5.66) F, -, Tk, ¢) asa—0.

The function g°* is continuous outside a closed set B of the Lebesgue measure
0. We denote by Uj the §-neighborhood of B and by Vj; the complement of Uy. If
dUs has measure 0, then P{X; — X3 € U;} - P(W, — W, € U} as a > 0.
Therefore, for every 8 > 0 there emsts a & > 0 such that for all sufficiently small
a, with probability greater than or equal to 1 — ,B, x;— X €V, Since ¢° is
continuous on V; and has ‘a compact support, it is umformly continuous on V;
and

k
[ie( Xz, 8) = p(Xg, ) 1‘[21%()(;; — X )r(dt) >0 asa—0,
im

which implies (5.65).

Put Df = {t:0<t < --- <t, <c}. If cis big enough, then ¢(x, t) = 0 for
all x € R? and all ¢ ¢ D{. We apply Lemmas A.2 and A3 to T = Df and
X = (R?)* with the Lebesgue measures. If Y,, ¢ > 0, is a measurable stochastic
process in R2, then (Y,,...,Y,),0<¢ < -+ <, < ¢ is a stochastic process in
X indexed by T and its law is a measure on the space € of all measurable
mappings from T to X. We denote by P the measure on Q corresponding to the
Brownian motion W, and by P, the measure corresponding to the linearly
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interpolated random walk X! introduced in Sectlon 1.1. By the invariance
principle, P, converges wea.kly to P. By (1.1), |X f ~ Xmal < Va £, for ma <
t,<(m;+ l)a and condition (b) of Lemma A.3 holds since PZ" < k(a +
y/— E|¢,]) and E|§,| < oo by 1.1.A. The rest of the conditions are also satisfied.
Hence, (5.66) holds. O

REMARK. The same arguments show that

(5.67) Tk, ) =I5 (k@) >4 T(k,9) — T*(k,¢) asa—0.

5.8.

ProOOF oF THEOREM 1.1. Fix a ¢ which belongs to &, and put 7=
7,(k; h, p). The abbreviations ¢ and , have an analogous meaning. Since
1728 = TNl o < 1952 = Tall o + 19, — T3¢l s, we have, by Theorem 1.3, that

(5.68) E\Tf— TP >0 ase ¢,a—> 0.

Choose a sequence a, — 0. By (5.67) and Skorohod’s lemma, we can construct
random variables Y, Y on a probability space £ such that Y(&) - Y(&) for
every & € { and the probablhty distributions of Y, and Y coincide with those
of I -7 ¢ and J°— ¢, respectively. By Theorem 1.3, for every p > 1,
Y, ||L,, < ||J7'5||Lp + HY‘?”LP are bounded as n — oo. Therefore [see, e.g.,
Meyer (1966), Chapter "2, T22], |Y,|? are uniformly mtegrable and E|Y P -
E|YP=E|\T°—-J*P. By (568), E\T°— TP >0 as ¢ ¢ — 0. This proves
(1.38). The bounds (1.40) follow from (1.57) and (1.41) follows from (1.37). O

6. Survey of literature.
!

6.1. Lévy (1940) was the first to prove that almost all Brownian paths in R 2
have double points. The next step was due to Dvoretzky, Erdos and Kakutani
(1950) who discovered that the same property holds for the Brownian motion in
R3, but that almost all Brownian paths in R* have no double points. Dvoretzky,
Erdos and Kakutani (1954) proved that a Brownian path in R? has as.
k-multiple points for every finite k. Finally, the remaining case was settled in
Dvoretzky, Erdos, Kakutani and Taylor (1957) by proving that, with probability
1, a Brownian path in R3 has no triple points. An interesting addition to these
pictures was given in Dvoretzky, Erdés and Kakutani (1958): For the planar
Brownian motion, there exist a.s. points x such that the set {¢: W, = x} has
cardinality ¢ (continuum).

6.2. Intersection local times for & independent Brownian motions W1, ..., W*
can be introduced by a symbolic formula

tp—1

(6.1) frso(wtf — W) (WE - W)ty -
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[cf. (1.25)]. It can be defined rigorously by replacing §, with g, given by (1.35)
and by passing to the limit in L2 This is a much simpler subject than the
self-intersection local times for one Brownian motion which we discussed in
Sections 1.6 and 1.7. In particular, there is no explosion on hyperplanes (¢, = ¢,, ,}.
The intersection local times (6.1) first appeared in Wolpert (1978). Dynkin (1981)
developed a general theory of additive functionals of a family of independent
symmetric Markov processes. In Dynkin (1986a), this theory was applied to
construct additive functionals of order % for one symmetric Markov process. The
self-intersection local times are a particular case.

A different approach to the intersection local times for a family of indepen-
dent Brownian motions was given in Geman, Horowitz and Rosen (1984). It is
based on their theory of occupation densities. Let X(¢) be a Borel function from
R% to R". The formula

(6.2) pa(B) = [14()15(X(2)) dt

determines, for every Borel set A in R*, a measure on the Borel sets of RV

which the authors call the occupation measure of X. Its Radon-Nikodym
derivative a(x, A) with respect to the Lebesgue measure on RV —if it exists—is
called the occupation density or local time on A. Geman, Horowitz and Rosen
(1984) proved that, in the case of

(6.3) X(t) = (W2 - W,...,Wr— W),

ty tp1
a random kernel a(x, A) can be chosen in such a way that a(x, Q,) is continuous
in x, ¢ (here @, = [0, ¢,] X -+ - X[O0, t,]). Symbolically,

(64)  a(x, 4) = [8,(W2— W) 8,(W)- Wi t)dt, - dby.
By putting x = 0, one gets the intersection local time (6.1).

6.3. A new interest in self-intersections of the Brownian paths was inspired
by Symanzik’s idea that a “gas” of such paths can be used to construct
Euclidean quantum fields [Symanzik (1969)]. Problems of constructive field
theory stimulated, in particular, the work of Wolpert and of Geman, Horowitz
and Rosen. They also motivated introduction of regularized self-intersection
local times in Varadhan (1969).

Varadhan investigated the limit behaviour, as ¢ — 0, of

(6.5) Su) = [ “ds [ “dtp (W, - W,) - ho,

where p, is the Brownian density (2.45) and A, are suitable constants. He proved
that there exists an L%(Py) limit of S%(u) as ¢ — 0; here Py is the measure
corresponding to the Brownian bridge, i.e., to the Brownian motion conditioned
by the equations W, = 0, W, = y. In the notation of Theorem 1.1,

im S(u) =7 (k;2, ),

e—0

with (s, t) = 1 ,1(8)1}, ,3(¢) and with k depending on the choice of A,.
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6.4. For k > 2, the functionals .7 (k) appeared first in Dynkin (1984a, b) as a
tool for a probabilistic representation of P(¢p), fields.
Our objective was to define polynomials of the occupation field

(6.6) T() = [ ‘5,(X,) dt.

Here, X, is a Markov process with a symmetric transition density p,(x, ) and ¢
is the death time of X,.
We replaced the formal expression (6.6) with a random variable

¢
(6.7) T.= [z X,)dt

0
and we put

k

(6.8) ‘T2 /k!= Y By(e, 2)T,

=0
Our goal was to choose the coefficients B, in such a way that the limit
(6.9) :T:, = lim j A(dz):T,

exists. We were able to do this under the assumption that Green’s function
8(x, y) of the process X, has the singularity of the same type as Green’s function
of the planar Brownian motion [given by (3.8)]. Formula (6.9) holds in L?(P) for
all p > 1 and for all measures A subject to the condition

(6.10) /A(dx)g(x, ¥)™\(dy) < 00 form = 1,2.
The measure P is defined by “the finite-dimensional densities”
(6'11) atl(xl)ptz—tl(xl’ x2) e pt,,—t,,_,(xn—l’ xn)b(xn)
for0<¢ < -+ <t,, with

(612)  afx) = [w(d2)plz,%),  b(x) = [a(x,2)r(dz).

This means that the process X, is conditioned to be born at time 0 with the
initial law p and to die at a random time ¢ with the “final law” »

The functionals :T*:, are closely related to Wick’s powers : %", of the free
Gaussian field associated with X. In fact, we have arrived at the renormalization
(6.8) by using this relation.

6.5. In Dynkin (1986c), the functionals (6.9) are studied directly, without
using Gaussian fields. The process (X,, P) is specified as the Brownian motion in
R?2 with an initial law p.

We write Y, = LIM, Y., if, for every r > 0 and every p > 2,

-0

f due ™P|Y,,— Y|P >0 ase—0.
0
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Our starting point is the field

(6.13) T(e, 2,u) = [ q(W, - 2) dt,
0

where g° is defined by (1.35). For every k and every real-valued function & = h_,
we put

(6.14) Tk hye, N, u) = /}\(dz).?k(he, T(e, 2, u)),
where Z;(h, v) is a polynomial of degree k£ in Ak, v such that k!.%,(0, v) = v

We show that, with a proper choice of .%,, there exist functionals (A, u) such
that, for a wide class of measures p, A and density functions q,

(6.15) T\, u) = LIl\éI.?'"(hO, Au),
where

1
(6.16) h? = —Ine.

T
The polynomials %, are defined by the formula

[e2]
(6.17) exp{vZ [Y(w)]}) =1+ ¥ Zu(h, v)wk,
k=1

where
(6.18) FL(v)=v+ a0’ + - +ap" + ---

is a power series with coefficients depending on ¢ and
o0
(6.19) () = w/(1 - hw) = w¥ (hw)".
0
[In the notation of Dynkin (1986¢c), Z}(h,v) = ZF L, (—h)o'/l! and ¢, =
¢ 5l

Along with J%(e, A, u), we have investigated another class of functionals
which converge to J(A, u). Let Dy(u) = {(: 0 <t < -+ < ¢, < u} and

Ty(e, A, u) = fD( )p(m)q"(% -W,)---
(U

(6.20)
><q‘3(VVt‘b - VVtk_l)dt1 ceedty,.
Put
L TE—-1]5
(6.21) Tiehu) = T [* 7 R (e a0,
=1

where p is the density of the measure A relative to the Lebesgue measure and

(6.22) &, = %[ln e+ C+ fdyq(y)ln(|y|/\/§)] = —Eg(eY) + o(1),
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with g defined by (3.8). We prove that
(6.23) T\, u) = LIl\éI Ti(e, N, u).

If g(x)= (27) e *"/2, then the integral in (6.22) is equal to —C/2 and
h,=1/7(Ine + C/2).

6.6. We note that the operators B. defined by (1.29) act on the indicator
function I, of the region D,(u) by the formula

(6.24) B.I,, = [’; - 1]1,,,.
-1
By comparing formulas (6.20) and (6.21) with (1.36) and (1.37), we conclude that
Te, A, u) =T (h; k, ¢) with ¢(x,t) = p(x)I,,(t). Therefore, it is natural to
consider the limit (6.23) as the value of a Brownian self-intersection gauge:
(6.25) T\, u) =T (ko; b, ¢) = /D( )p(W'tl):S(W',l,...,W'tk):,,o dt.
RU

By (1.39),

) ~ 1

ko= lim A, + E/ q<(W,) dt].

e—0 0

Taking into account (1.46) and (3.3), we get
Ko = }if%[ﬁﬁ + EG,(eY)]
. 1 _ ®©

Goe) = ImE|['n(X)(1 - e d- [Tetp(e) at]

= (2w)_1[f01(1 —e )t ldt - flwe"t‘ldt] = C/2m.

For an arbitrary k, we put

. .
(6.27) T A u) = Y [’;_—11](.« e T ),
=1
We claim that:
6.6.A. If
1 C
(6.28) h,— —Ine+ — >k ase—0,
T 27
then
(6.29) T3\, u) = LIl\éI Tk(he; 65\, u).
6.6.B. If

(6.30) h,+ EG,(eY) >k ase >0,
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then

(6.31) Tu(w; A, u) = LIMZ(h,; e, A, u).

6.6.C. For every real k and a,
L k-1

(6.32) Tc+ahu)=Y [l_ ] ]ak_lﬁ}(x; A, u).
=1

Formula (6.30) is just another form of (1.39) and (6.32) is a particular case of
(1.41). To prove 6.6.A, we use the expression (6.17) for the generating function.

Since ¥, y(w) = ¥5[¥(w)], we have

1+ ¥ Za+ b, 0wt = exp(0 [y (4u(w))])
(6.33) -

—1+ lf 2,(b, )4 (w)"
=1
Taking into account that
o= 2175
we get from (6.33), |

k - -
(6.34) Z(a+b,v) = Z ];__ll_ak‘{.?,(b,v).

Therefore, for every function & = h, and for every constant a,

k 1 .
635)  THh+ase A u)= Y ”;__llja"‘lﬁ"(h; e\, ).
-1t

By (6.15) and (6.35), (6.29) holds for A° given by (6.16). It follows from (6.27) and
(6.35) that it holds for every A subject to condition (6.28).
Formula (6.29) and the identity

T(e,z,u)”/k!=f a (W, —2) -+ q(W, —2)dt, --- dt,
Dy(u)
suggest another symbolism,
(6.36)  T(k; A\, u) = /A(dz)/D( ):82(th) s 8(W, )i dty - dty,
A

and the fact that the limits (6.29) and (6.31) coincide finds a heuristic explana-
tion in the symbolic identity

(6.37) 8(W,) - 8, (W, ), = 8,(W,):8(W,,.... W, ):,
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and the formula

6.38)  [p(W)e(t)dt= [o(t)ANdt) = [Ndz2) [8.(W)e(e) dt,

where A, is an additive functional with the characteristic measure A [cf. (1.21)].

6.7. In Dynkin (1986b, 1988), we introduced a particular case of the Brownian
self-intersection gauge. In the present notation

(6.39) T 9) = [ o(W,):8(W,, ..., W, ):. (2) .

Fields studied in Dynkin (1984a, b) (and described in Section 6.4) can be
expressed by the formula

(6.40) :T*:,/k!= fx(dz)fw

if X,= W, is the Brownian motion in R? and { = §, is a random variable
independent of W,, with an exponential probability distribution P{{, > t} = e™"".

)dtl e dtkzsz(vvtl) e 8z(vvt,,):(c+lnr)/2ﬂ

6.8. Rosen has studied a different type of regularization of self-intersection
local times. He uses the notation {Y} = Y — EY for any random variable Y.
Rosen (1986b) proved that for every bounded Borel set B C D,,

k
(6.41) R(k, B) = fBlj[z{pe(W'tl - W, )}dt - at,
has an L%(P,) limit y*(B) as & — 0. It seems natural to write
k
(6.42) y*(B) = fB]:[2{3(W,i— W, ))dt, - dt.

It is established in Rosen (1986¢) that, under conditions 1.1.A, B, D,

k
(6.43) R(k,n) =n"" Y [T{1(Sn_,»Sn)}

O<ml< e <mg<n 1=

converges in distribution to y*(D,(1)). To get this result, Rosen introduces
functionals
k

Ri(k) = o r [1(@n)"

0<my< -+ <my<nJ=2
X fn df,{exp|iab(S,, — S,,,_,) — el61%/2]},

where a =n~! and II, is defined in Section 3.2. For ¢ = 0, this expression
coincides with R(k, n). Rosen shows that

(6.45) E|R: (k) — RY(k)|? < Cef

for some C < o0, 8 > 0 independent of a. In our terminology, R%(k) is a link
between R%(k) = R(k, n) and its Brownian shadow R(k, D,(1)).

(6.44)
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Dynkin (1985) proved the existence of L?-limits for
(6.46) j dzp(2) j f(s, £)¥:(s, t) dsdt,
D,

where

Vi(s, t) = pz, W) [ P2, W,) — E{p(2, W,)|W,}].
Since [ dz ¥i(s, t) = { po (W, — W,)}, the limit for p = 1 is equal to

szf(s, t)(8(W, — W,)} ds .
It is easy to see that

T(k;2,9) = [{a (W, = W))e(W,s s, ¢) dsdt
(6.47)

= [dsE [ dup,(e¥)é(s, u),
where

@(s’ u) = ‘P(VVS; s,8+ u) - lusl(p(vvs; S, S) = ‘i’(u) - luslq’(o)’
with ¢(u) = (W,; s, s + u). Passing to the limit, we get

T(0;2,¢) - f{S,(Wt - W,)}o(W,; s, t) dsdt
(6.48) = j dsdu(2mu) '$(s, u)

= [ds&()(s),

where £(§) is defined by (2.21). Note that the right side is equal to EZ(0; 2, ¢)
evaluated by (2.47). One expects that, in general, the field (6.42) can be expressed
through the fields of the type :8(W, ,..., W, ): and £, , but this remains an open
problem. ' ! ’

6.9. For k = 2, the Brownian self-intersection local times and gauge can be
evaluated in terms of stochastic integrals. The first formulas of this type are due
to Rosen [see Rosen (1985a) and (1986a)]. More results in the same direction
were obtained by Yor (1985a), (1986a, b) and Dynkin (1987). In particular, it is
shown in Dynkin (1987) that

w [ (8(W,— W,)}i(s, 1) dA, dt

(6.49) - - fD (fUdA, dW, + {VdA, dt)

—frldeAs+ ;nzfrfdAs.

2
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Here,
U= (W,- W,)/|W,- W%,
(6.50) V={|W,- W|/t-s},

f,=91(s, t)/9t,

D is a domain which is contained in D,={0<s<t}, I, =0DnN {s<t},
I,b=dDN{s=1t} and A is an additive functional with the characteristic
measure A. Formula (6.49) is proved for a wide class of domains D, measures A
and functions f(s, t). In particular,

C - ln2]
dA,,

(6.51) ij{s(W,— W,)} dA, dt = —fTUdAdet+ fou[v+ 5

where T, = Dy(u).
By applying (6.48) to ¢(x; 8, %) = p(%)1g <5 <¢<ur We get

1 ,u
(6.52) fTu:S(W;,Wt):dAsdt= fTu{s(W,- W,)) dA, dt + Er-folmu—sldAs,

with dA, = p(W,) ds.
By (141),

(6.53) T(x;2,9) =7(0;2,9) + xfmqa(W;; s,s)ds.
0
1t follows from (6.50)—(6.53) that

wj :8(W,, W,):, dA, dt
Dy(u)
(6.54)

= - [ UdA, W, + [lm|W, = W) + (C - n2)/2 + 7x] da,
T, 0
and, by (6.40),

(655) —.T*: =-[ U dW+/"[—1n|W - W) +C+ A
2" gy - & T 2 2]

Yor (1985¢) has proved that

fD(u){a(th - W) H8(W, - W,,)} dt, dt, dt,
(6.56) ) , . |
- [faw, [ d_w;z[ [ Q. (W= W)@, (W, - W),
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with
(6 57) Q.(x) = —xm x| exp(—|x|*/2u) forx # 0,
=0 forx=0.

Here d_W, refers to the backward It6 integral.

6.10. Le Gall discovered another type of functional which converges to the
self-intersection gauge of the Brownian motion. With every compact set K ¢ R?2,
a Wiener sausage SX is associated: this is the set of all points y € R? such that
W, — y € K for some ¢ < 1. Let m be the Lebesgue measure on R? and let A% be
given by (6.16). Le Gall (1986¢) has proved that

W[L+ Wm(SK)] > - [ (3(W,~ W,)) dsds

cap K
+(C’ + 1+ lnT) 2

in L%, where capK is the logarithmic capacity of K. For the case K =
{x: |x| < 1}, this was obtained earlier in Le Gall (1985, 1986b).

A discrete analogue of the Wiener sausage is the set of all point of Z? visited
by a random walk S,,..., S,. Let R, be the cardinality of this set. It is proved in
Le Gall (1986a) that, under assumptions 1.1.A, B, D,

(6.58)

(659  (Inn)’n"Y(R,- ER,) >, — 4w"’fT{8(Wt — W,)} dsdt.

In the same paper, the case of k& independent random walks S,..., S* is
investigated. Let I* be the number of points z € Z? visited by all random walks
before n. Then all moments of n~'(In n/27)*I* converge to the corresponding
moments of the intersection local time (6.1) with T = [0,1]%.

Le Gall (1986b) proved that (6.1) is also the LP-limit of L* =
m(S! N --- NS¥), where S},..., S* are Wiener sausages for W, ..., W/. These
functionals seem to be “Brownian shadows” for I*. But the work of establishing
links between I* and L* remains to be done. At present, the convergence of I*
in distribution is proved only for 2 = 2 and 3 in which cases it follows from the
convergence of the moments.

It looks plausible that an asymptotic expansion for m(S¢) should involve the
Brownian self-intersection gauges of higher order. However this is also an open
problem. [Recently Le Gall (1987b) succeeded in giving a positive solution to this
problem. See the Addendum for the exact statement of his result.]

6.11. Le Gall (1985) proved that for every bounded Borel set B, there exists a
version of

(6.60) a(x, B) = fB 8,(W, — W,) ds dt,
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which is continuous a.s. on R2\ {0} and a version of
(6.61) v(x, B) = (a(x, B)} = [ (8.(W,~ W,)} dsdt,
which is continuous a.s. on R2. Since
Ea(x,T dsdt = “ln— + Su(1+ C—1
(6'62) a(x, u) - Lupt—s(x) L= ; ix_l + Eu(l +C - l’l2),

there exists a.s.

(6.69) 7(0,T,) = lima(x,T,),
x—
where
u 1
(6.64) a(x,T,) =a(x,T,) — —In—.
T x|

Yor (1986b) demonstrated that
(6.65) V(@ T) = = [ Qu-dW,= W, x) dsdW,

for all x € R? [here Q is defined by (6.57)].
In Yor (1986a), a Holder condition for a(y, T,) has been established:

(6.66) lim S‘I[Inl] s sup |@(x,T,) — a(y,T,) <o as.
§-0 é u<t,|x—y| <8
Yor (1985b) investigated the limit behaviour of the stochastic process
&(x’ Tu) - 7(0’ Tu)
% [In|x|

as x — 0. He proved, in particular, its convergence in distribution to a Brownian
motion. An analogous result was established for

(668)  Z(u)= [ fT {qe(m—vvs)}dsdt—v(o,Tu)] /(eﬂnl/e)

as ¢ = 0.

(6.67) Y(u) =

6.12. The functionals (6.60) and (6.61) exhibit similar properties for some
other stochastic processes:

(a) the Brownian motion in R® [see Rosen (1983, 1985a), Yor (1985a, d, 1986b)
and Le Gall (1986a, b)];

(b) the diffusion processes in R? and R® [Rosen (1987)];

(c) the fractional Brownian motion in R? which is a Gaussian non-Markovian
process [Rosen (1985d)];

(d) certain stable processes in R? [Rosen (1985b, c, 1988)];

(e) certain R%valued Gaussian random fields over RM (2N < d < 4N)
[“Brownian sheets”; Rosen (1984, 1985¢)].
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Rosen (1985c, 1986c¢) investigated also functionals (6.1) and (6.42) with % > 2 for
stable processes in R? of index greater than or equal to 2 — 2/(2k — 1). In
particular, he proved that the invariance principle holds for these functionals if a
random walk belongs to the normal domain of attraction of the corresponding
stable law.

Le Gall (1986a) investigated the limit distributions of I’ (see Section 6.10) for
random walks on Z¢ (with the finite second moments) for all pairs (d, k), such
that I* - oo as n - oo. He proved that

n V21?2 >, ca(0,T,), ifd=3,
(Inn)"'I2 >, cT, ,, ifd=4,
(Inn)'I3 >, ¢'T,,, ifd=3,

where constants c, ¢, ¢” depend on the random walk and T, means a random
variable which has the gamma distribution with parameter a.

For the range R, of a random walk on Z ¢, the limit distribution is normal if
d > 3 [see Jain and Orey (1968) and Jain and Pruitt (1971, 1974)].

6.13. A remarkable connection between the self-intersection local times and
Hausdorff measures was established in Le Gall (1987a). Let D, be the set of all x
such that W, = --- = W, = x forsome 0 < ¢ < --- <¢,. Let h, — m(B) be
the Hausdorff measure corresponding to the function

1 1\*%
(6.69) hy(r) = rz(ln;lnlnln;) .

Then there exist two positive constants C,, C; such that
(6.70) C,T(k,B) < h,— m(BnD,) < C{T(k, B)

for all Borel sets B. Here T(k, B) are local times defined by (1.25).

In Le Gall (1987c) the measure T(2,- ) has been used to give a precise meaning
to the following heuristic statement: Between the two times when it hits a
double point a Brownian motion behaves like a Brownian bridge.

APPENDIX

1. Here we prove various auxiliary lemmas used in the article.

LEMMA A.l. Let L be a complete metric space with a metric p. Suppose that
an element F? of L is given for every sufficiently small ¢ >0 and a > 0 and
suppose that

(A1) for eve;:y sufficiently small ¢, Ff — F* as a|0;
(A.2) for every sufficiently small o, Ff > F, as€|0;
(A.3) , p(F:,F)—>0 asa,e— 0.

a’ T a
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Then there exists a limit

(A.4) F= lim F¢
g,al0
and
(A5) F = limF® = limF,.
el0 al0

ProOF. By (A.3), for every 8§ > 0 there exists 8(8) > 0 such that
(A.6) p(F5 FY) <8 ife,y,a < B(8).
By (A.1), there exists (8, y) > 0 such that
(A7) po(EY,FY) <8 ifa,a <¢(d,v).

Let o, o, ¢ ¢ < n(8) = min[ 8(8), ¥(5, B(6))]. Then, for y = B(8), p(Fs, FJ

and p(F?, FY) are smaller than & and, therefore, p(F, F?) < 38. This iglplfes

the existence of the limit (A.4). Formula (A.5) follows from (A.1), (A.2) and (A.4).
]

2.

LEMMA A.2. Let Q be a space of measurable mappings from a measure
space (T, o, 1) to a metric measure space (X, B, v) and let p be finite and v be
o-finite. Suppose that % is the o-algebra in Q generated by the sets
{w: w(t) € B}, t€ T, B <€ %, and that P is a measure on F whose “one-di-
mensional distributions” a,(A) = P{w: w(t) € A} are absolutely continuous
relative to v. Let p be a bounded Borel function on X X T with the following

property: There exists a set D € B X o/ such that (v X p)(D) =0 and p is
continuous in x on the complement of D. Then the functional

F(w) = fT p(w(t), t)u(dr)

is continuous P-almost everywhere with respect to the pointwise convergence
in Q.

PROOF. Choose a density function p(x, ¢) of a, with respect to » which is
& X Smeasurable. We have

(A8) [u(de) [P(do)ip(a(t), £) = [(de) [r(dx)p(x, O)1n(x, £) = 0.

By Fubini’s theorem,

(A9) [u(de)p(e(t), ) =0

for P-almost all w. Suppose that w, () = w(¢) for all £. Then p(w,(¢),?) —
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p(w(t), t) for (w(?),t) € D. By (A.9) and the dominated convergence theorem,
F(w,) = ¢(w) for P-almost all w. O

LeEmMMA A.3. Suppose that conditions of Lemma A.2 are satisfied and that,
in addition:
(a) P, converges weakly to P as a — 0 (relative to the uniform norm in Q);
(b) x, s a family of measurable transformations in T such that P,Z? — 0, where
Z} is the distance in X X T between (w(t), t) and (w(t), t*) with t* = x (t);
(c) p has a compact support;
(d) D is a closed set.

Then the probability distribution of F w) = [p(w(t%), t*)u(dt) relative to P,
converges weakly to the probability distribution of F(w) = [p(w(t), t)u(dt) rela-
tive to P.

Proor. It follows from Lemma A.3 and (a) that the probability distribution
of F relative to P, converges weakly to its probability distribution relative to P
[Ethier and Kurtz (1986), page 103]. Thus, Lemma A.3 will be proved if we show
that

(A.10) Paan(t)p.(dt) -0 asa—0,

where A (¢) = |p(w(2), £) — p(w(2%), t%)|.
Let C be an upper bound for |p|. By Fubini’s theorem, Chebyshev’s inequality
and (b),

(A11) P, an(t)lzgz a(dt) < 2C [P{Z5 = BYu(de) > 0 asa—0

for every 8 > 0.
Let U; be the §-neighborhood of D. The function

f(8) = [P{(w(2),t) € Us}p(dt)

is monotone decreasing and by (A.9), f(8) > 0as 8 — 0. If f(8 + ) = f(8), then
fA8) = [P{(w(?), t) € Us}n(dt) = f(8) as a = 0 by (a) and

(A.12) P, f A (&)1 (w(2), t)u(de) < e

for all sufficiently small a.

Since p is continuous on the complement V; of Uy, it is uniformly continuous
by (c). We choose a B < 8 in such a way that |p(x, t) — p(x’, t')| < e if (x, ¢) and
(x’, t') belong to Vy and the distance between them is smaller than 8. With such
a choice,

(A.13) A (t)1z, < ply,(w(2),t) <e.
Formula (A.10) follows from (A.11)-(A.13). O
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3.

LEMMA A4. Let A be a finite set and r be a mapping from A2 to R. Put

k
(A.14) T(h; k, )= X ¢(t)i=l_12["(ti—1, t;) + h1(t; 1, 8],

te A*

where ¢ is a function on A* and h is a constant. We have
k
(A.15) T(h+hik,¢)= Y h*'7(h; 1, Blp),

=1
where Bl is an operator given by formula (1.31) with o running over all
mappings from {1,2,..., k},onto {1,2,...,1}.

Proor. Note that
k
1:[2["(ti—1’ t;)) + (h+ h)1(t_y, ti)]

=) 1_[ [r(ti_y, t) + B1(E_y, 8)] 1_[ R(t; 4, t),
A IEM €A
where A runs over all subsets of the set {1,..., %k} which contain 1 and
M = A\ {1)}. Therefore,
T(h+ h;k,¢) =Y h*!
(A.16) A

> {¢A(tA)il€—1[W["(tiA: t;) + hi(t;,, ti)]

te A*
X ].—I l(ti—l’ ti)}7
tEA
where [ = |A|, i, is the largest element of A which is smaller than i and ¢,(¢,) is
obtained from ¢ by replacing ¢, i € A, by ¢;,. Formula (A.15) follows from
(A.16). O

REMARK. Formula (1.28) follows from (A.15) if we take a sufficiently large N
and put A = {1,2,..., N} and

o(my,...,my) =1 p < ... Smk«p(Sml/\/;; m,/n,..., mk/n),

my,...,m, €A.
4,

LEMMA A.5. Suppose that @ is a bounded Borel function which satisfies
condition 1.7.B with D, replaced by the region U, [see (1.34)]. If 0 <o < B,
then there exist functions ¢, € &5 and ¢, € &5° such that ¢ = ¢, + ¢, and
19all < Cligll, g where ]l g is defined in the same way as |||, with D,
replaced by Ug and C is a constant independent of ¢ and c (but dependent on

m, o, B).
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ProOOF. Let o <k < B. There exists a function A(t) of class C* which is
equaltolonU N{0<t < -+ <t,<c)andisequal to 0 on W=NE,{¢, -
t,_, = k} [see Gel'fand and Shilov (1966), Chapter 1, Appendix 1]. The functions
Pix, t) = p(x, t)h(t) and @u(x, t) = @(x, £)(1 — h(t)) have the properties stated
in Lemma A.5. 0

5. To prove Lemmas 2.1 and 2.2, we use the following property of a
continuous linear operator n: 2(A) - 2(M): For every c > 0, there exists a
¢’ > 0 such that

(A.17) n[2°(A)] c 2¢(M).
[See Gel’fand and Shilov (1968), Chapter 1, Section 8.]

PrROOF OF LEMMA 2.1. For every ¢ € 2°(A U K), we consider a family
%K(UA) = @(u,, ug). Obviously, ¢, € 29(A) and, therefore, Vu = NPy, ) €
29°(M). Let s € K and let A% be deﬁned by (2. 18) We note that A, =
n(A%9,, ) and that ASp, — D, in 2(A). Hence, A W, = 1Dy, ) in Q(M)
and Dy, = n(Dg,,) € 2(M). This implies that Dyy, = n(D*p,) for every
k € Z}. We conclude that (uy, ug) = ¥, (1)) belongs to 2°V (A U K) and
(2.13) holds |

Proor oF LEMMA 2.2. We prove the lemma for two factors and then apply
the induction. Let 7 = 1, X 1,, 7, € Z(A;, M), 1, € Z(A,, M,), and let ¢ €
D(A, U Ay). By (A17), ¢ = ny(p) € 2°(A, U M,) and by Lemma 2.1, f =
(@) = m(¥) € D(M, U My). By (2.16),

(A.18) NN < limlly,, Al

where [, =1l{ =1l on A, and I, =0 on M,. For an arbitrary m € Z%, D,y =
M2(Dype) by (2.13) and ||D, |l < |Imally,, || Duolly, With I, =13=1 on A, and
13 =0on A,. It follows from here and from (A.18) that

In(@)ll < lImilly, elimallz,, Al

This implies the inequality ||n; X n,ll; c < |n4ly, clIM2lly,, o O
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Addendum. Recall (cf. Section 6.10) that the Wiener sausage S: of the
radius ¢ associated with the Brownian motion W on the interval [0, u] is the set
{y: |W, — y| < ¢ for some ¢ € [0, u]}. Let A(dx) = p(x) dx be a measure on R?2



SELF-INTERSECTION GAUGE 55

which is absolutely continuous with respect to the Lebesgue measure and such
that p(x) is locally bounded. Then, for any integer n > 1,

*) A(SE) = - él(he)‘%(x, u) + R, (e 1),

where h, = —g(e) = 1/mn(log e + C — log2/2) (C is Euler’s constant), J,(A, u)
can be defined by (6.15) or (6.23), and the remainder R (¢, ©) satisfies

lin(x)(hs)"Rn(e,- u)=0 as.

Formula (*) gives an asymptotic expansion for A(S), which involves the
negative powers of log e. The kth term of this expansion is a corrective term
which takes into account the fact that W hits a 2 multiple point at % distinct
times. Similar expansions can be obtained for the sausage associated with a
general compact set K, thus extending (6.58).
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