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CONVERGENCE TO THE SEMICIRCLE LAW

By Z. D. Ba1 aND Y. Q. YIN!

University of Pittsburgh and University of Arizona

This article proves that the spectral distribution of the random matrix
1/2ynp) (X,X;), where X, =[X;;],x, and [X;;: i, j=1,2,...] has iid
entries with EX}} < o0, Var(X,;) = 1, tends to the semicircle law as p — oo,
p/n— 0, as.

1. Introduction. If A is a p X p matrix with real eigenvalues A, < ---
A,, the distribution function

IA

FA(x) = %#{i: A <x}

will be called the spectral distribution of A. Here #{ - - - } denotes the cardinal-
ity of the set { --- }. .

Wigner (1958) proved that if A, =[X;;] is an n X n symmetric matrix such
that the entries X;;, 1 <i <j < n, are independent random variables, and X,
1 < i <j < n, are distributed as N(0, 6%) but X,;, 1 <i < n, are distributed as
N(0,202), then as n —> + oo,

EF /240 x) - w(x).
Here, w(x) is the so-called semicircle law, i.e.,

2

_Vl_x2, |x|<1’
T

0, x| > 1.

w(x) =

Many workers have been engaged in improving the above result. They either
relax the requirements on A, or strengthen the sense of convergence of the
spectral distributions.

On the other hand, many papers are devoted to studying sample-covariance-
type random matrices, i.e., matrices of the form A, = (1/n)X,X;, where the
columns of X, are iid random p vectors [cf. Grenander and Silverstein (1977),
Wachter (1978), Jonsson (1982), Yin (1984), Yin and Krishnaiah (1985), among
others]. They proved the convergence or computed the limits of F4» as p — o0
and p/n — y, y a constant. Most of them consider the case 0 <y < . No
limits are semicircle laws.
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864 Z.D.BAI AND Y. Q. YIN

In this article we consider a “sample-covariance”-type matrix

1
2\/np
where X is p X n with iid entries, and prove that the spectral distribution of A

tends to the semicircle law as p = o0, n = o and p/n — 0. More precisely, we
prove the following theorem.

A=

(XX’ — nI),

THEOREM. Let X = ({X;;: i,j=1,2,...} be an infinite matrix with iid
entries. Denote by X, the submatrix [X;:i=1,...,p; j=1,...,n] of X. Here
n=n(p)—> coandp/n—>0asp — oo.

If E\X;j|* < +o0, VarX;; =1 and A, = (1/2/np XX, X, — nl,), then as
p— o,

F4(x) » w(x) a.s.,
for any x. Here I, is the p X p identity matrix, and w(-) is the semicircle law.

2. Proof of the theorem. First, we state some lemmas; their proofs are
elementary and are omitted.

LEMMA 2.1. If EX? < o0, then for any ¢ > 0, P(|X| > en'/*) = o(1/n).

LEmMa 2.2. If E|X|* < o, 3 ¢, > 0 such that
(1) &,10, more slowly than any preassigned speed, and
@) P(X| = e,n*) < ¢,/n.
LEMMA 2.3. Let Y,,Y,,... beiid, P(Y,=1)=q=1— P(Y, = 0). Then
P(Y,+ -+ +Y,— ng > ne) < e "he-ahb,
foralle>0,n=12,..., and 0 < h<1/2.

LEMMA 2.4. Let F(x), G(x) be two empirical distributions of two samples of
size n. Then

1
JIF(x) = G(x)dx = — T =
where A\, < -+ <X, and p, < --+ < p, are the two sets of order statistics.

LEMMA 25. Let {(a;,b): i=1,2,...} be the set of all intervals with
rational endpoints and with lengths less than 1. Let

f;(x) = f_xool(ai,b,-)(t) dt
and

1

D(F,6) = T |[{x) d(F(x) - 6()| 7.
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for any distributions F and G. Then D(F,, F) — 0 implies F,, - F weakly.

LEMMA 26. If A, B are two p X p symmetric matrices with eigenvalues
(A, < -+ <A} and {n, < -+ < p,}, respectively, then

YA - ""i)2 <tr(A - B)2-

Now we prove the theorem.
At first we state a proposition. Its proof will be given in Section 3.

PROPOSITION. For eachp let Y, = [X;;,] be a p X n random matrix with iid
entries, n = n(p) = oo, p/n -0 (asp — o0), such that

(1) EX,,, =0, EX?, =1+¢, %, > 0asp— «; and
@) |X15,] < g,n'4, wheres lObut D41 + 00, asp — 0.
11p

Let B,=[Z;;] bethep X p random matrix defined by
Zii = O’
n
ij 2‘/— lp le’ ifi#].
Then, the spectral distribution F P(x) of B, tends to the semicircle law w(x),
as p — oo for each x, with probability 1.

Now we show that the proposition implies the theorem.
Suppose the proposition has been proved. Choose ¢, | 0 such that ¢,p
and P(|X,)| > e,n/*) < ¢,/n. Define

= [Xij:i= 1,..., p; j= 1,‘~~7n]7

1/4TOO

where
X~ij = XL_]I(IX_]I <e€ n1/4)

I(-) denotes the indicator function. Note that Xi ; depend on p though this is
not explicitly indicated.

Let

. 1
A= —(X,X;-nl,).
2\/np

First, we prove that sup,|F4»(x) — F“ip(x)| —-0as p - o as.
Let n;; = 1 — I(|X;;| <&,n'/*), then by the Fan inequality [Fan (1951)],

sup |F4»(x) — F(x)| = sup|FXPX5(x) - F%%(x)| < —rank(X X )

1
P
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By Lemma 2.3, since P(n;; = 1) = P(|X,;| > ,n'/*) = g, (say), if § > 0,

P(sgp[FAP(x) — Fo(x)| > 8) < P(%Z;'%:mj > 8)

tJ

= P(ZZm, pra, an(i - q,,))
< exp(—nph(% e qph))

w007

Sh
< exp( _p-2_),

for ¢, < §/3; here h can be chosen to be 1/2. Thus, by the Borel-Cantelli
lemma,

sup]FAP(x) — F%(x)| >0 as.

~

By the Fan inequality, this is also true if we replac » bY Ap, where
= (1/2y/np XY,Y, — nlI), and Y, = [X EX i=1,...,p; j=1,...,n]
But by the proposition, we have
lim F2(x) = w(x), forany x with probability 1.

Here B, is defined in the same way as in the statement of the proposition
starting from Y,. Thus, in order to prove the existence of lim F4», it is sufficient
to show that

D(F4 FE

b (x) ~ FP(x))

7—’0

where { f;} was defined in Lemma 2.5.
By integration by parts and Lemmas 2.4 and 2.6, we have

D(r 1) < (50 -] 5 20wt s Sufd, - )

E(Eeti-o]

Y (X3 - EX2)

=1

,.
I

—

—

2

n
+ 5(1 - EX121)2

IA

N
S
(S
n
:—\

Here X,,=X,,— EX,, and {A;}, {n;} are eigenvalues of Ap and B, respec-
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For the second term on the right-hand side in the last inequality, we have for
p sufficiently large

n n 4
—(1 - EX2) < —EU{;‘1 - 0.

2p _2_

For the first term on the right-hand side of that inequality, we have

1 ¢ 52 2 ’
X;— EX
2np2 igl(lgl il zl))
L S (R-ES 455 L T (%4 - B2 )
= 22— EX? ; Xf EX,2
2np® 2 15 ! ! 2np2 i=1L#1, ! ! "
S, + S,
But
o0 o0 n 9
2 ES;, = (Xﬁ EX})
p=1 p=
© 1
< Zl 2—p3E2X{41< 0
p=
50 S,, = 0 as.
For S,, we have
1 i i( 2 2)2
S = Xi _E i
o2 5D l l
1 i i( 5 2 2)
< X5+ E2X]
enp® 2 :
1 &¢ 4 4 4
X:— EX;)+ —EX
< 2np2 ;gl lgl( il E zl) 11
K 4
=A,+ —EX],
for some K > 0, and
. 0 1 p n R 4 9
ZEAp_ Z 4n2 4 Z EE(le_EXLI)
p=1 p=1%MD =1 =1
© 2 4
Zl o (n ) EXf < w0
p=

Thus S,, — 0 a.s. So the proposition implies the theorem.
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3. Proof of the proposition. We know that in order to prove our main
theorem, it is enough to prove the proposition.

Let Y, = [X,-j: i=1,...,p, j=1,...,n], where X,-j = X;,(p) are iid random
variables such that

(1) EX,, =0, EX=1+¢, §,—0 asp— oo,
(2) X, < Epnl/4,

where ¢, | 0, &,p'/* 1 0.
Let B, = [Z;;] be the random matrix defined by

0, iti=j,

=1
(3) Zij Y XX, ifi#].
2ypn ;o

The kth moment of the spectral distribution of B, will be denoted by M, =
M, (p). Then ’

1 1
— —_trBF = — _y .
(4) M, = JuBy = pevn) LXK Xy Xy, o X X
here ¥’ stands for the summation for i,...,Z, running over 1,..., p and
. 1 k o, . . .
Ji»-++» Jp Tunning over 1,..., n, subject to the conditions that i; # i,, i, #

Igyeneslp # 1.
We will prove

(I) EM, — [x*dw(x) as p — oo, where w(+) is the semicircle law, and
(II) X5_,var(M,) < oco.

The conclusion of the proposition is a consequence of (I), (IT) and that w(-) is
uniquely determined by its moments.

Proor oF (I). Definitions:

(5) ¥(eq,..., e,) = number of distinct entities among e, ..., e,
. i= (i, 0p), J=(Jis-ees Ji)>

(6) 1<i,<p, 1<j,<n, a,b=1,...,k,

(7 r=y(i), c=v(J),

(8) T'(i, j) denotes the multigraph defined as follows.

Let I-line, J-line be two parallel lines, plot i;,...,i, on the I-line, plot
Jis---»1; on the J-line; these are vertices. It has 2k distinct edges joining
Ly Jis Las Ji5 Loy Jos Uy Jas + 58k Jis b1s Jpe

If we merge two edges of I'(Z, j) together when they have the same end sets,
we get a new graph, denoted by I'(Z, j).
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Let »,, denote the number of edges in T'(i, j), each of which is obtained by
merging m edges of T'(Z, j). Evidently,
(9) vy + 205 + -0 +2kp,, = 2k.
Now define
(10) A(r,e) = {(i, j): (i) =r, ¥(J) = c,

iy # Qgy by # Ugye.n, iy # Bg; 7, = 0},
By the above definitions and (4) we can write

1

k
EM, = Z Z EXi'Xi'Xiz'in3'2"'X,~~X,~-
* p(2)/l$)k r,c=1A(r,c) ( e / / kIR ljk)
() k
= Y S(r,c¢),
r,c=1
where
1
(12)  S(rie) = ———=7 ¥ E(X; XXy, X, o XX,
p(2/mp)” Ao

Now we assert that
(13) S(r,c) >0, asp — oo,except r=4k/2+1,c=k/2.
By (1), (2) and (9) we see that

|E(X. X X, . X, - X, . X,

% it 79 Mt 7Y Pt 2V /% ) telk lllk)

< |EX || EXZ|" - |[EX2F|2
3— 2w+ (4= 2+ -+ +2k—2)
< (L4 1g,))7 7 T (g,nirt) 0TI o

<(1+ lipl)k(s‘,,nl/“)zk_z(y2+ e

when e,n'/* > 1. But I'(i, j) is a connected graph with r + ¢ vertices and
v, + -+ +p,, edges, so
re<y+ oo g+ 1

Since &,n'/* 1 + oo,

(14) |E(X. X, ... X, X

2k—2(r+c-1) k
) o 1/4)
WAtigd ik wk) = (8pn (1+ |£p|) .

Therefore, by (12), (14) and |A(r, ¢)| < (’r’ )rk('c‘)ck < p'nerkck,

1S(r, )| < ————pn(e,n*)"* V(1 + 18, 1) ek

1
(15) p(2ynp)

_ 2k—c—r+1),r—k/2— 2—r/241/20—k k_ k. k
—sp( e-r+pr—k/2-1pc/2-r/2+1/29 (1+|§p|)rc.
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We still need another inequality for S(r, ¢). Suppose (i, j) € A(r, ¢), and let
l,..., 1, be the different values of j,..., j,. Then

E= E(X X . X, .X XX)

L2Vl 7% /it P Pt Y Y Lk Wk

= HE n( iada taHJa)

o

I(EXﬁblEXlnlbz e EXlnlbs)’

b

where ng,,..., n,, are all > 2 (otherwise, E is 0 and the following inequalities
are trivial) and s > 2 depends on b. So

c

T (epn /)" 7 (1 + 14,1’
(Ep 1/4)252 alba™ (1 + |§pi)k

< (e )" 1+ 18,)"

|E]

I/\

(16)

IA

and

1 2k—4c k
S(r,c)| < ——=p'n(e,n** 1+ ¢,
- |S(r, ¢)| s (e,n4)" (1 + 1&,1)

_ 11— _ k
=€127k 4cpr 1 k/22 k(l + |€p|) rkck

Now suppose r # k/2 + 1 or ¢ # k/2. Consider the following cases.
Casel. r>k/2+1.Sincec+r<k+1,
k c r 1 1
r—§—1+§—§+§ 5(7‘+C—1—k)30.

By (15) and p/n — 0, we get |S(r, c)| = 0.

Case 2. ¢ > k/2. Any j-vertex of I\(i, j) cannot have degree 1 (since i, #
iy,..., 1, # iy). Since every j-vertex has degree > 1, then there would be at least
4c edges in I'(i, j). 4c > 2k, in our case. This is impossible.

Case3. r<k/2+1,c<k/2,butnotr=~%k/2+ land c = k/2. S(r,c) — 0
by (17).

In the following we compute lim, _, ,S(r, ¢) for r = k/2 + 1, ¢ = k/2. In this
case k must be an even number k£ = 2m, say, and then r =m + 1, ¢ = m.
For (i, j) € A(r,c) = A(m + 1, m), since v, = 0, and

E+l=r+c<vy+t - +r,+1<12vy+ - +2kv,,) + 1=k +1,

we can conclude that
vg= o0 =p,, =0, vptl=r+c=%k+1.
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So, each edge of I(, j) is obtained by merging two edges of T (i, J), and I‘(z J)
is a tree, since the number of edges equals the number of vertices (r + ¢) minus
one. Counting these facts,

1
— T (1+4)
p(2\/@)k A(m+1,m)( p)

——|A(m +1, m)|(1+£ )

S(m+1,m)

p(2¢_ )

where |[A(m + 1, m)| is the cardinal number of the set A(m + 1, m).

Two sequences (a,,..., a,),(b,,..., b,) will be said to be equivalent iff a,=
a,=b,=b, uv=1,...,s, and we write (a,,..., a,) ~ (bl, b)Buttwo
sequences (i, ]) and (7/, ]’) are said to be equivalent iff i ~ i’ and ] J'. Suppose
in A(m + 1, m) there are N,, equivalence classes with respect to the equivalence
relation just defined. Then we have

S(m + 1’ m) = ( ‘/—)2m(p)m+1(n)m (1 + |£ |) = 2_2mNm(1 + 0(1));
here (a), = a(a—1)---(a— b+ 1).
Next, we compute the number N,,.
To any j = (jy,..., J;), we define a sequence h(j) = (hy,..., h;) of +1 as
follows:
b = 1, if j,isnew,ie., j, & {Ji,..., Ju_1},
-1, if Jyisold,ie., j, € {Ji,..., Ju_1},

Let @ be the set of all those sequences (g, ..., q,) such that

foru=1,2,..., k.

k s
(1) eachg;= +1, (2) Y ¢;=0, (38) Y q,=0, fors=1,...,k.
i=1

i=1

LemMa. N, = |Q| = (27)/(m + 1).

PRroOF OF THE LEMMA. For any (i, j), let H(i, j) = h(j). If (i, J), (i, j') are
in A(m + 1, m), and i ~ i/, j~ j/, then evidently H(i J)=H(#, j) (in fact,
j ~j is enough) If (i, ]) € A(m + 1, m), then since Y(j) =m = k/2,

Yk _h(j)=0,and ¥5_ A (j) = 0forany s =1,.

Thus H can be regarded as a function defined on the quotient set A(m + 1,
m)/equivalent, with values in Q.

It is sufficient to show that H is a bijection.

First, we show that H is injective, i.e. for two vectors (i, j),(i’, j') of
A(m + 1, m), if H(i, j) = H(i', j'), then (i, j) and (i, j') are equivalent. We
prove this by induction. We suppose H(i, j) = h(j) = h(j") = H(?, J').

Evidently, (i), i,, j,) and (i, i}, j{) are equivalent since i, # i,, i] # i}.

Now suppose we have established that (i),...,%) ~ (i';,...,%/) and
Uy eoos Jim) ~ J'ysevvs Jioy). By H(i, j) = H(i, j'), J,, j/ are both new or
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old. Suppose j, and j; are both new, then (j,,..., j;) ~ (j{,..., j/). In this
case i;,, and i;., must also both be new. For, suppose i,., = i,, for some
g< [, then we would get a cycle contained in the graph with edges
g]g’ lg+1]g’ ll l.ll 1 ll.]l 1 ll]l, g.]l’ since lg.]l, ll]l are new, it cannot be
reduced to a tree by the merglng process. This is impossible since I'(i, j) is a
tree. The same is true for i;, ;. Thus (iy,...,8;.1) ~ (.. o5 8[11)- _

Suppose jj, j;/ are old. First, we note that each j-vertex of the graph I'(z, j)
cannot have degree 1, since i, # i,, iy # i3,..., i, # i;. But there are m = k/2
J-vertices, and & = 2m edges, and the total sum of degrees over all j-vertices is
the number of edges (= k). Therefore every j-vertex of I'(i, j) for (i, j) €
A(m + 1, m) has degree 2.

So, all j,’s are classified into pairs, two j,’s are equal iff they are in a pair.

Suppose g is the largest integer g < I such that j, has not been paired among
.11’ .y jl 1 thus jl?&jl 1 jl 25 ’jg+1 We assert that jl jg OtheYWise if
] ], for some new j; with f < g, we would get that ],z,], Lt g+1]g PREE
i 1 J; contains a cycle since iz, g, Jglg are smgle For j’, since ( ]1, o Jio) ~
(Jiseees Ji=1)s Ji=15-++» Jg+1 are also palred and ]g is single. So Ji{ = Jg- Therefore
(]1’ 2 ]l) (](1’ * ]1) Thus ll = lg or ll l g+1° If ll then il+1 = ig+1’
and if i,=i,,,, then i, =i, The same for v Therefore Gryeeeslpyy) ~
@yenes i)

Thus we have proved that H is injective.

Now we show that H is surjective. Given any (h,,..., h,) € @, we will
construct a (i, j) € A(m + 1, m) such that H(i, j) = (hy,..., k).

Let i, =1, j,=1, 12—2

Suppose i,,...,%; Jis---5 Ji-1 have been defined. If A, =1, let ],
max, ;. J; + 1, il+1 = maxlsfslz, + 1. Suppose h; = —1. Since Zl_lh
there is a largest g < ! such that ©,_,h, = 0. Let j; = j, i;,, = i,

Evidently, ¢(j)=m, ¢(i) = m+ 1. We note a simple property that if
h,+ -+ +h, =0 and the partial sums are >0, then i, =1i,,,. If b-a=1,
this is evident from definition. If ha+ ceo+hy=h,+---+h, +h ,+

. +h,,, and h,+ -+ +h,h .+ -+ +h, have the same properties as
h,+ - +hb, then by the 1nduct10n hypothesis, i,,; = c“, loo1=1Lg SO

lpp1 =i, If B, + - +h,, cannot be spht by definition, i, 1=
Now We show that iy # igyq, SUPPOSE &y # Ig,...,lq ) # i, If h =1,i,#
i,4q IS true, by definition. If h,= -1, and g<a is maximum such that

hg+ -+ +h,=0,theni,, = ig..Wemu‘sthaye hg =1, hg+} + .- 4+h, ;=0
and partial sums > 0.S0i,,, =i, but iy #i,,,807,., # 1,
v, = 0 is evident.
So H is surjective. And the lemma is proved. [|Q| = (%Z’) /(m + 1) is evident.]
o O

By using the lemma,

EM, - 2;—mm11(2,;n)=kadw(x), k=2m. O
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Proor oF (II). Recalling that M, is the kth moment of the spectral
distribution of B,, we have

k):X X, X, X, - X, X,

Mk p(2‘/— L1 i 2 g2 79 eV /%
where the summation is taken over all vectors (zl, vy py Jis--+5 Jp) subject to
the conditions that 1 <i,<p, 1<j,<n, a=12,...,k, and i, # iy, i, #
lgyeeny iy # 1.

Now we prove that ©%_Var M, < co. We have

var M, = E(Mk EM,)’ = EM? — E°M,

- z - X, X,

2(4np) L lzh 79/t V) lk+1}k+1Xik+2jk+1

~X.

‘2Ai2kXik+ J2k

—EEXX . X, . X, . EX,

Wh e 79/ %0/ LAY AT S A

izkakXik+ J2k ) :
Here 1’ means the summation over all vectors (iy,..., iy, Ji,---, Joz) Subject to
the conditions that 1 <i,<p, 1<j,<n, a=1,2,...,2k, and i, # i,, i, #
Igyeneeybp Fhy, by Fippos bppo® Lpig---sbop # ipyp. Let S be the set of all
such vectors.
By independence, we can delete all terms in the above sums for which the

graphs T = T(iy, .., 445 Jis- -+, J4) @0d T = T(igyr, . vs i Jouss-- - Jox) do not
have common edges Thus

1 144
var M, = —_4kpk+2nk(z EX X Xy XXy X inaion,
) XizkakXiknjzk
144
- E EX‘:JlX X‘k]thJkEXlk+1Jk+1Xik+2jk+1

X, X, )

Lar2r” h+1J2k

Here the summation L is over S subject to the condition that T and I", defined
above, have common edges. L

Let the number of vertices of I', I',T* =T U I'” on the I line be r, r’, r*
respectively, and the number of vertices of T, I”, T* on the J line be ¢, ¢/, c*,
respectlvely If T and TV have common edges, we must have c + ¢’ > c*,
r+r' >r*

Now we estimate

1 ’”
Vl = 4kpk+2nk Z EXillei".’jl o X X X

e W e 1T 1 kv 2 k1 tordor " th+ 12k
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and

1
V2 4k k+2pk E E thXlzh ) X‘k]leX‘leFX‘IH1/k+1Xik+2jk+l e Xizkiszik+1jzk’

First, we have inequalities similar to (14) and (16), namely,
q
21 7%/ "l.lkX"k+1]k+1Xik+2jk+l e i2kj2kXik+lj2k)
4h—2(c*+r*—1 k 4h—dc*
< (e,n'* 0 418 ) or (e nt/ “(1+ 18,
b p P p
In the same way
‘E Xthlzh ) X‘UthJk) ( lk+1jk+1Xik+2jk+1 Tt Xizlcjszik+lj2k)

< (Epn1/4)4k—2(c+r—1)—2(c’+r’—1)(1 4 |§p|)2k

‘EXX X, . X,

or
(Epnl/4)4k—4c—4c’(1 + |€p|)2k
So, if we write
vaer = 4k k+2y, ko kt2, k Z E [E(Xilleizjl Tt Xik+lj2k)

r*,c* iy, .., igp)=1"
¥(i, . o Jar)=c*

-E(X,

awh Xiljk)E(Xik+1jk+1Xik+2jk+1 e Xikn.fzk)]

Y S*(r*, %),
r*, c*
we have

1/4)4k—2(c*+r*—1)

C * *
(18) Is*(r*’c*)l < Wpf n¢ (epn
< Cpr*—k—2n1/2(c*—r"+1)
—_ ’
by noting ¢ + ¢’ > ¢*, r+r' > r* or

19 S*(r*, ¢*)| < —L—p"n” e n/4) ¥ < Cp™ %2,
4rphiepk P

Casel. r*>c*+ 1. Thenc—r*+1<0,and
(r*—k-2)+i(c*—r*+1)=3r*+3c* - k-3< -
So, by (18),

e

|S*(r*, c*)| < Cp~*~.

Case 2. r* < c* + 1. Then since r* + c¢* <2k, sor* <k,and r* + k— 2 <
—2. Using (19) we get

|S*(r*,c*)| < Cp~2 < Cp~ %2
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So
varM, < C(k)p =%
and .
Y var M, < . O
I3
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