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Using a Gaussian randomization technique, we prove that a random
variable X with values in a Banach space B satisfies the (compact) law of the
iterated logarithm if and only if (i) E(||X||2/LL||X|) < oo, (i) {|{x* X)|%
x* € B*, ||x*|| < 1} is uniformly integrable and (iii) S,(x)/a, — 0 in prob-
ability. In particular, if B is of type 2, in order that X satisfy the law of the
iterated logarithm it is necessary and sufficient that X have mean zero and
satisfy (i) and (ii). The proof uses tools of the theory of Gaussian random
vectors as well as by now classical arguments of probability in Banach spaces.
It also sheds some light on the usual law of the iterated logarithm on the line.

1. Introduction. Let B be a Banach space with topological dual B* and
norm || - |l. By a random variable X with values in B we will always mean a
measurable map from some probability space (2, #, P) into B equipped with its
Borel o-field with separable range. Given a random variable X, we denote by
(X,)nen @ sequence of independent copies of X, and for each n we set
S, (X)=X,+ --- +X,. We write Lt to denote the function max(1,log¢) and
LLt for the composition L(Lt), t€ R,. We set further a, = (2nLLn)?,
n €N.

Using a truncation argument to reduce to Kolmogorov’s remarkable law of the
iterated logarithm for independent but not necessarily identically distributed
random variables [13], Hartman and Wintner [9], in the early 1940s, showed that
for a real-valued random variable X such that EX = 0 and ¢2 = EX2 < oo,

S.(X) S.(X)
lim sup = — liminf
n— oo an n—oo an

=0 a.s.

Twenty-five years later, Strassen [26] proved conversely that if the sequence
(S(X)/a,),<n is almost surely bounded, then X has mean zero and EX? < co.
He proved moreover [25] that the set of limit points of the sequence
(S(X)/a,),en is exactly the interval [ —o, 0]. (For a recent fairly elementary
and self-contained proof of the Hartman—-Wintner result in Strassen’s formula-
tion which does not use Kolmogorov’s law of the iterated logarithm see, e.g., [2].)
Actually, in this fundamental paper [25], Strassen obtained a functional law of
the iterated logarithm as well as invariance principles which are in many
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respects at the origin of the study of the law of the iterated logarithm in the
vector-valued setting. For example, LePage [20] showed then (as a particular
case of a more general result) that for Brownian motion on [0, 1], considered as a
random variable X with values in the space C[0,1], almost surely the sequence
(S(X)/a,), ey is relatively compact in C[0,1] and

S,(X) s,,<x>) L«

n— oo a,

limd( ,K)=O and C(

where d(x, A) = inf{|lx — y||, ¥y € A} stands for the distance of a point x from a
set A and C(x,) for the set of limit points of the sequence (x,), K being
identified with the set of absolutely continuous functions x of C[0,1] such that
x(0) = 0 and [J%(s)?ds < 1, as described in [23].

These early results therefore motivated the study of the law of the iterated
logarithm (in short LIL) for Banach space-valued random variables, a subject
mostly developed through the impulse of Kuelbs. As a first definition, it is
natural to say that a random variable X with values in a Banach space B
satisfies the bounded LIL if the sequence (S(X)/a,),en is almost surely
bounded in B, or equivalently if the almost surely nonrandom limit

. 1S.(X )]
(1.1) A(X) = limsup ———

n— oo an
is finite. Strassen’s functional LIL also invites one to consider random variables
X for which the sequence (S,(X)/a,), < is not only bounded almost surely but
almost surely relatively compact in B. Kuelbs [14] (in a somewhat too restrictive
setting as was pointed out later by Pisier [22]) showed that when (S, (X)/a,), cn
is relatively compact, there is a convex symmetric (and necessarily compact) set
K in B such that

S.(X)
(1.2) lim d ,K|=0 as.
and

S.(X)
(1.3) C a— =K a.s.,

and of course then A(X) = sup, . g ||x||. The limit set K is the unit ball of the
reproducing kernel Hilbert space determined by the covariance structure of X
and, for completeness, we would like to briefly describe it (cf. [14, 8] for more
details). Assume that for each x* in B*, E|(x* X)|? < oo (a set of necessary
conditions for the LIL in view of the scalar case); ‘consider the operator U:
B* —» L,(Q, #, P) defined by Ux* = {(x*, X ). A closed graph argument easily
shows that

U= sup (E|(x*, X)|2)"*=0(X) < o0.

llx*)<1

Since X has separable range, the transpose U* of U maps L, into B. The
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completion of the image of B* by S = U*U with respect to the scalar product
induced by L, on S(B*) is called the reproducing kernel Hilbert space associated
to the covariance of X. Its unit ball K is convex and symmetric and
sup, < llx|| = 6(X). K is compact if and only if S is a compact operator and this
happens if and only if the family of real random variables {|(x*, X )|% x* € B*,
lx*|| < 1} is uniformly integrable. As examples, if X is real-valued, K is trivially
[—o0, 0] where 6 = (EX?)!/% if X is Brownian motion on [0, 1], it is easily seen
that K is the limit set of Strassen described previously.

According to Kuelbs’ result, a second natural definition for the LIL is that a
random variable X with values in a Banach space B satisfies the compact LIL
whenever the sequence (S,(X)/a,), < is almost surely relatively compact in B,
or equivalently therefore, that for some compact set K (1.2) and (1.3) hold. Of
course bounded and compact LIL are equivalent in finite dimension but exam-
ples of Pisier [21] in ¢, disproved this equivalence in general. Actually this
dichotomy appears even in Hilbert space [8].

The purpose of this paper is to investigate and establish necessary and
sufficient conditions for a random variable with values in a Banach space to
satisfy the bounded or compact LIL. The starting point is the Hartman-
Wintner—Strassen equivalence which asserts that a real-valued random variable
X satisfies the LIL if and only if EX = 0 and EX? < co. In this general question
of finding necessary and sufficient conditions for a random variable to satisfy the
LIL, we will give in Section 3 an elementary proof of this equivalence which thus
makes our work complete in this regard. The preceding characterization of
course easily extends to random variables with values in finite dimensional
Banach spaces but there exist however almost surely bounded mean zero infinite
dimensional random variables that do not satisfy the LIL. The first examples
(concerning actually the central limit theorem) were constructed by Dudley and
Strassen [5] in C[0,1] and by Dudley [15] in L, for p < 2; their relevance for
the LIL was pointed out by Kuelbs [14, 15]. In spite of these negative observa-
tions, much has been done during the last few years in order to obtain necessary
and sufficient conditions for a random variable with values in a Banach space to
satisfy the LIL, a problem that we solve in this article. For simplicity we only
discuss in greater detail the bounded LIL in the sequel of this introduction; the
characterization of the compact LIL (which is announced in the abstract and
actually follows from the bounded law) is given in Theorem 1.2 and discussed in
the proofs in Section 3.

Inspecting the necessary conditions for a random variable X with values in a
Banach space B to satisfy the bounded LIL, it first turns out that the moment
condition E||X||? < oo is unnecessarily restrictive and is actually necessary only
in finite dimensional spaces [24]. A moment condition on the norm that is
necessary and seems quite close to the preceding one but which induces a deep
difference is

(1.4) E(| X||?2/LL|| X||) < oo.

Indeed, if the sequence (S(X)/a,),cn is almost surely bounded, this is also the
case for the sequence (X,/a,),cn and thus, by the Borel-Cantelli lemma,



LAW OF THE ITERATED LOGARITHM 1245

Y, P{||X|| > Ma,} < o for some M, a condition which is clearly seen to be
equivalent to (1.4). To this strong condition however, we can add a set of weak
moment conditions since if X satisfies the bounded LIL, (x*, X) also satisfies it
for all x* in B*, and thus, by the scalar LIL,

(1.5)  foreach x*in B*, E(x*,X)=0 and E|{(x*, X)|* < o0.

As already mentioned, we note that (1.5) implies the finiteness of o(x) =
Sup||x*||sl(E|<x*’ X>|2)l/2-

As we have seen, these necessary moment conditions (1.4) and (1.5) are not
sufficient in general for a random variable X to satisfy the bounded LIL. They
are however sufficient in certain spaces. Say that a Banach space B is of type 2 if
there is a constant C such that for all finite sequences (x,,..., x,) in B,

n 2
)y £;X;
i=1

E <CY lx]?
i=1

where (¢,) denotes a Rademacher sequence, i.e., a sequence of independent
random variables taking the values +1 and —1 with probability §. For example,
L -spaces for 2 < p < o are of type 2. In an early result, Pisier [21] showed that
a mean zero random variable X with values in a type 2 Banach space such that
E||X||? < o satisfies the LIL. The weaker (and necessary) conditions (1.4) and
(1.5) are then shown to be sufficient in certain type 2 spaces (Hilbert spaces first
[8], then L, (2 < p < o) spaces [3] and 2-smooth spaces [18] and more generally
uniformly convex spaces of type 2 [19]). We show in this paper how (1.4) and
(1.5) characterize random variables satisfying the bounded LIL in any type 2
Banach space, but actually this result will appear as an immediate consequence
of a much more general property valid in any Banach space that we describe
now.

As moment conditions are insufficient to characterize the LIL in general, one
has to seek an additional necessary condition which could also be sufficient
together with (1.4) and (1.5). A trivial necessary condition for a random variable
X with values in B to satisfy the bounded LIL is that

(1.6) the sequence (S,(X)/a,),<n 1s bounded in probability.

Of course, this necessary condition is quite different from the previous ones
which only involve the law of the random variable X and not of the whole
sequence (S,(X)),en as in (1.6). However characterizations of the LIL seem to
require a condition like (1.6). In some spaces, like type 2 spaces, it is known [8]
and will be proved later, that for a mean zero random variable X such that
E(|X))%2/LL|| X]) < o, S,(X)/a, — 0 in probability and thus (1.6) holds in this
case. This observation of course relates to the previous results in type 2 spaces in
which the necessary condition (1.6) does not appear in the characterization of the
LIL, justifying thus the interest in them. We note concerning (1.6) that it
actually also contains the mean zero property (see Proposition 2.3) so that when
(1.5) and (1.6) are involved together, centering may be omitted in (1.5). When we
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speak of mean zero random variables, it always concerns random variables X
such that at least E||X|| < oo so that the centering EX = 0 is unambiguous.

Strengthening Pisier’s type 2 result [21], Kuelbs [16] showed that when
E||X||? < oo, X satisfies the bounded LIL if and only if (1.6) holds, a result at
the basis of the present study. On the other hand, the relation between the
central limit theorem and the LIL [22, 8 and 10] shows that when the sequence
(Sy(X)/Vn), <y is stochastically bounded, X satisfies the bounded LIL as soon
as E()|X||2/LL||X|)) < co. However, neither E||X||? < oo nor the central limit
theorem are necessary for a random variable X to satisfy the LIL, except in
finite dimension (cf. [24]). The three necessary conditions (1.4)—(1.6) therefore
appear as the optimal necessary conditions for the bounded LIL to hold and
their sufficiency was established recently in uniformly convex spaces [19]. We
prove here this equivalence, characterizing thus the random variables satisfying
the LIL, in any Banach space.

THEOREM 1.1. Let X be a random variable with values in a Banach space B.
In order that X satisfy the bounded LIL it is necessary and sufficient that the
following three conditions be fulfilled:

(1.4) E(I1X)1?/LL||IX|) < oo;
(1.5") for each x* in B*, E|(x*, X)|* < o0;
(1.6) the sequence (S,(X)/a,) e is bounded in probability.

The compact LIL is characterized in a similar way (and actually follows from
Theorem 1.1).

THEOREM 1.2. Let X be a random variable with values in a Banach space B.
In order that X satisfy the compact LIL it is necessary and sufficient that the
following three conditions be fulfilled:

(1.4) E(I1X)?/LL] X]) < oo
(1.7) {KKx*, X)|% x* € B*, ||x*|| < 1} is uniformly integrable;
(1.8) S,(X)/a, = 0 in probability.

This result of course includes all the previous partial results giving sufficient
or necessary and sufficient conditions for the LIL to hold as surveyed previously.
In particular, let us mention the relation between the central limit theorem and
the LIL [22, 8 and 10] since the proofs of Theorems 1.1 and 1.2 appear even
simpler than the proof of this weaker result. Recall that a random variable X
with values in a Banach space B satisfies the central limit theorem (CLT in
short) if the sequence (S,(X)Vn),n converges in law to a Gaussian random
variable G. The CLT of course implies (1.7) since the Gaussian random variable
G which has the same covariance structure as X has a strong second moment by
the integrability properties of Gaussian vectors; it also clearly implies (1.8).
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COROLLARY 1.3. Let X be a random variable with values in a Banach space
B. Assume that X satisfies the CLT; then X satisfies the compact LIL if and
only if E(|| X||?/LL||X||) < co.

As announced, Theorems 1.1 and 1.2 take simpler forms in type 2 spaces. The
following result was actually obtained by the first-named author in an earlier
version of the present paper.

COROLLARY 1.4. A random variable X with values in a Banach space B of
type 2 satisfies the bounded (resp., compact) LIL if and only if it has mean zero
and (1.4) and (1.5) [resp. (1.7)] hold.

The proofs we present of Theorems 1.1 and 1.2 are quite different from the
previous approaches to characterization results, which use mainly the differen-
tiability properties of the norm in the spaces under consideration. The method
we follow relies on a simple Gaussian randomization technique, already used by
Pisier in [21] (and more recently with great success by Giné and Zinn [7] in the
study of limit properties of empirical processes), that is quite standard in
probability in Banach spaces. It also relies on some of the powerful tools of the
theory of Gaussian processes like Borell’s inequality [1] and the comparison
theorems based on Slepian’s lemma. Some of the now classical arguments of
probability in Banach spaces are also essential, especially Hoffmann-Jergensen’s
inequality [11] and Yurinskii’s idea [27].

The Gaussian randomization is presented in Section 2 after we have described
some useful and well-known integrability properties. For the convenience of the
reader and above all for the sake of completeness, and in order to make this work
accessible to a large number of readers, we chose to give the proofs of some of
these and other known results. As an illustration of the method, we present, in
Section 3, an elementary proof of the LIL on the line (the sufficiency part
reproducing Pisier’s argument [21]) and then we establish our main result.

To conclude this introduction, let us mention that while the Gaussian ran-
domization allows us to see in an elementary way that for a real nondegenerate
random variable X, 0 < A(X) < oo if and only if EX = 0 and 6% = EX? < oo, it
does not seem to be precise enough to check the equality A(X) = o which is
crucial in the various questions and results concerning identification of the limit
set of the sequence (S,(X)/a,),cn and clustering phenomena in finite and
infinite dimension like, for example, the equivalence between the compact LIL
and (1.2) and (1.3). In particular, the study of the cluster set C(S,(X)/a,) and
the computation of the exact value of A(X) (and not only a two-sided estimate)
when X only satisfies the bounded LIL does not seem to be accessible by this
approach. The results are in fact still very fragmentary in this area and some
questions are described in [4]. de Acosta and Kuelbs [3] have shown that in some
type 2 spaces, mainly L, (2 < p < o0) spaces, A(X) is equal to o(X) (but this
might not be the exact value in general — see [4]) when X satisfies the bounded
LIL. They have also proved, in any Banach space, that if X satisfies (1.5) and
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S,(X)/a, — 0 in probability, then
S, (X
(1.9) C( H(X)

an

but examples of Kuelbs [17] show that the cluster set C(X,(X)/a,), while
always contained in K, may be empty when S,(X)/a, - 0 in probability even if
X is bounded and satisfies the bounded LIL. In type 2 spaces however, this
result implies (by Proposition 3.7) that we have (1.9) whenever X satisfies the
bounded LIL. Combining these various conclusions, de Acosta and Kuelbs
moreover obtained a complete description of the LIL in Hilbert space by
showing that when X satisfies the bounded LIL, almost surely,

lim d(sn(X),K) =0 and C(S"(X)) =K,

n— o a,

) =K as.,

n

where K is the natural limit set, i.e., the unit ball of the reproducing kernel
Hilbert space associated to the covariance of X; if (and only if) K is compact, X
satisfies the compact LIL.

This aspect of the study of the LIL is not considered in this paper in which we
wish to emphasize from a functional point of view the Gaussian randomization
approach as a valuable and simple tool in the characterization of random
variables satisfying the LIL. The characterization we obtain reduces, under
necessary moment conditions, the almost surely statement of the LIL to a weak
boundedness or convergence of the sequence (S,(X)/a,),en Which in many
respects is close to the CLT. It can therefore be hoped that ideas developed in
the area of the CLT could also apply to yield better knowledge of this conver-
gence in probability and therefore also of the LIL.

2. Gaussian randomization. This section is devoted to a discussion of the
elementary Gaussian randomization that will be basic in the proof of our main
result. We however first recall some well-known integrability properties (and
prove some of them) that will be of help next. We start with the fundamental
inequality of Hoffman-Jergensen [11, page 164-165] (see also [12, page 16]).

PROPOSITION 2.1. LetY,,...,Y, be independent symmetric random variables
with values in a Banach space B; set S, =Y, + --- +Y,. Then, for all t > 0,

(2.1) P(|S,l| > 3¢} < 4(P(|IS,l| > £})° + P{max||Y;] > t}.

It follows that if p > 0 and E||Y||? < oo foralli=1,...,n,
(2.2) E||S,||” < 2 - 3?Emax|[Y;||” + 2 - (3¢,)”,
. i<n

where t, = inf{¢ > 0: P{||S,|| > ¢} < (8-37)71}.

Recall the usual conclusion drawn from that result [11]: Let (Y,) be a
sequence of independent random variables with values in a Banach space B and
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(b,) be an increasing sequence of nonnegative numbers; set S, = Y, + -+ +Y,
n > 1. Then, if (S,/b,) is almost surely bounded, for all 0 < p < oo,

E sup||S,/b,|” < oo iff Esup||Y,/b,|” < co.
n n

This result has a first consequence in our framework. Let X be a random
variable with values in B; set, for 0 < p < 0,

/
IL,(X) = (Esupl$,(X)/a,?) "

(finite or not). It will be convenient for us, in some respects, to work with these
IL, norms in the sequel.

PROPOSITION 2.2 ([20]). If X satisfies the bounded LIL, then IL,(X) < oo
forallp < 2.

Proor. By Hoffmann-Jergensen’s result recalled before, it is enough to show
that

Esup||X,/a,||” < oo.

But
¥

<1+ f°°2P{||X|| > ta,) dt?
1 n

n

Esup

n

n

=1+ E(Zfl Lia, <yxi dtp)

<1+ E

1
IIXII"Z _pI(an<||X||))y

an

which is finite under E(||X||?2/LL||X|)) < co whenever p < 2. Since we know
indeed by the Borel-Cantelli lemma that this expectation is finite when X
satisfies the bounded LIL, the proof is complete. O

We now state and prove the corresponding result for stochastic boundedness
of the sequence (S,(X)/a,),en-

ProposITION 2.3 ([20]). If the sequence (S,(X)/a,),en iS bounded in
probability, i.e., if for each € > 0 there is an M such that

sup P{[|S,(X)/a,)| > M} <,

then, forall 0 <p <2,
R,(X) = sup(E|IS,(X)/a,|?)"" < co.
n

Moreover EX = 0 and if S,(X)/a, — 0 in probability, then E|S (X)/a,| — 0.
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PrRoOF. Let X’ be an independent copy of X and denote by X the symmet-
ric random variable X — X’. Then the sequence (S, (X)/a,),<n is clearly also
stochastically bounded. Let m be fixed and set Sy(X) = 0,

1
Y,,m=a—[ oA X) = Spn(X)], n=12..,

which define independent identically distributed symmetric random variables.
Note that a,,, < Ca,a, for some numerical constant C. Since

Smn(X) =a, Z Ym,

by symmetry, Lévy’s inequality [12] implies that for all n and ¢ > 0,
P{max||Y"| > Cta,} < 2P(|ISpn(X)ll > Cta,a,}
<n

< 2P(|1S,.( X))l > ta,,,} -

By hypothesis, there is an M such that, for all =,

P{|IS,(X)I| > Ma,} < {.
Thus

P{max|[Y"| > CMa,} < }
and, by independence and identical distribution, for all n,

P{|IS,(X)/aull > CMa,} <1 - (1 - 4)" <1/n,
from which it is easy to deduce that
E|S,(X)/a,||” < D,

where D only depends on C, t and p < 2. Thus R (X ) < oo. In particular
E||X|| = E||X - X'| < o and hence E|X| < c. By the strong law of large
numbers,

S,(X)/n—» EX as.

and clearly we cannot have then ||EX|| # 0 when (S,(X)/a,),<n is stochasti-
cally bounded. Therefore EX = 0 and Jensen’s inequality then imply R (X) <
oo. The final conclusion is simply obtained by uniform integrability. O

In the following, we use the notation IL and R for IL, and R;.

These preliminaries being described, we now discuss the Gaussian randomiza-
tion. The following notations will be kept throughout the article. Whenever X is
a Banach space random variable, g will always denote a standard normal
random variable independent of X. The sequences (X,),cn and (&,),en ©of
independent copies of X and g, respectively, will also therefore be understood to
be independent. We will also need sometimes a Rademacher sequence (¢,), <n
both independent of (X,),n and (g,),cn- The idea behind the Gaussian
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randomization is simply that for every B-valued mean zero random variable X,
(2.3) IL(X) < CIL(gX),

where C denotes a numerical constant. Indeed, letting (X)) be an independent
copy of (X,) also independent of (e,), we have, for all N > 1, by centering,
Jensen’s inequality and symmetry,

E su
n<N n<N

ZX X/

i=1

< 2Esup —
n<N

£

Using independence and Jensen’s inequality one more time,

1 n 1 n
Esup —|| ¥ Xl < (Elgl) 'Esup —| ¥ elgilX; ’
n<N Q| i=1 n<N Qp|li=1
1 12
= (Elgl))  Esup —| ) g,X,||,
n<N Yn|i=1

where the last step follows from the fact that the sequences (¢,|g,|) and (g;) have
the same distribution. Letting N go to infinity yields (2.3).

The IL norm actually satisfies classical contraction type inequalities (cf. [12,
11]); for example, as can be checked easily by independence, IL(agX) < IL(gX)
for all X-measurable real random variables a such that |a] < 1 a.s. Let us also
point out that many inequalities we will obtain concerning this norm or related
quantities should actually be written first for a supremum over n < N < o (as
before), letting then N tend to infinity. For simplicity, this will always be
understood.

The important point to mention at this stage is that (2.3) is actually an
equivalence.

ProOPOSITION 2.4. There is a numerical constant C such that for all mean
zero B-valued random variables X,

(2.4) CUL(X) < IL(gX) < CIL(X).

Proor. The left-hand side was established previously and the right-hand
portion follows from Theorem 4.1 of [19]; we reproduce here the argument and
centering is not required in this part. Let ¢ be the indicator function of some
measurable set A independent of X. Checking Fourier transforms, it is easily
seen that the sequences (S,(£X)), <y and (X3®X,), .y have the same distribu-

tion. Hence
S.(¢
Z

Su(§)LLS,(£) |2 3P Xl
=E sup( nLLn

IL(¢X) = Esup —

@s, %)
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and therefore by independence of X and ¢,

(M)l/2)IL(X)

IL((X) < E
(6) < | s 222

< E(sup( Sil(£) )1/2)IL(X).

n

(2.5)

According to the strong law of large numbers (and its maximal inequality or the
results and methods of [11]), there is a numerical constant C, such that for any
real-valued random variable £,

E(sup|S,(¢)/nl2) < C(Elg)"

Therefore, if £ = I,, we have by (2.5)
(2.6) IL(¢X) < C(P(A))?IL(X).

For each ¢ > 0 let g° = X_,el .. ) so that lim _ ,g°=g" as., where g* is
the positive part of g. Clearly, for each £ > 0,
kile(P{g > ek})"? < /OOO(P{g >t})?dt <2
and therefore, by the triangle inequality and (2.6),
IL(gX) < i sIL(I(g>sk)X) < 2CIL(X).
k=1

Letting ¢ go to O then implies IL(g*X) < 2C,IL(X) and hence the result by
symmetry. O

Equivalence (2.4) thus rests on the fact that in spite of the type of an /_, norm
(for which usually Gaussian and Rademacher averages are not equivalent), IL is
constructed over a sequence of independent identically distributed random
variables allowing such an equivalence. In the sequel, we actually make use of
the right-hand side of (2.4) only for a proof of the LIL on the line, but still it
clarifies things. However we use the corresponding result for stochastic bounded-
ness which is proved entirely analogously and really goes back to [7, Lemma 2.9]
in this form.

PROPOSITION 2.5. There is a numerical constant C such that for all mean
zero B-valued random variables X
(2.7) C'R(X) < R(gX) <CR(X).

3. Proofs. Having described the Gaussian randomization in the preceding

section and before turning to the proof of our main results, we would like to
show how this Gaussian approach can be utilized to provide a simple proof of the
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characterization of the LIL on the line (but without identification of the lim sup)
which almost reduces the LIL to the strong law of large numbers. We begin with
an elementary and classical lemma concerning blocks which is also valid for
vector-valued random variables. This argument is actually at the origin of the
iterated logarithm in the LIL: Indeed, the LIL will be established by an
exponential inequality (Gaussian in our context) which requires one logarithm
for the convergence; the fact that, thanks to the regularity of the normalizing
sequence (a,), we are allowed to look at blocks of exponential size of the
sequence (S,(X)) shows that an iterated logarithm is enough. Let ¢ be an
integer greater than or equal to 2 and, for each k, I(k) be the set of integers
(gF+1,...,q%"1).

LemMmaA 3.1. For any symmetric random variable X,

(3.1) —IL(X) < Esup —
r Q q*

(g +1)IL(X).

iel(k)

PROOF. Only the left-hand side requires a proof. Let n € I(k); we have

1 1 AL
—IS,(X)Il < — I X,]| + by
a, a

q* g% 1=0

n

X X

i=gf+1

L X

e l(l)

aq/«

1 kla,,

< —|IX| + |sup—|| X X,
aqo 1 ieI(l) j=0 aqk

m
+sup sup —| Y X,
I mell) Qg i=gl+1
so that
1 1 n
IL(X) < |1+ Esup “ + E sup sup Y x;
\/6 ko Qgk zel(k) ken I(k) Qg* i=gh+1

and hence the lemma is proved since by Lévy’s inequality and independence

Y X,

zq+1

< 2Esup

1
Esup sup —
r Q q*

k nel(k) Qgk

lEI(k) “

THEOREM 3.2. In order that a real random variable X satisfy the LIL, it is
necessary and sufficient that EX = 0 and EX? < oo.

PrROOF. Recall that for q > 2, we let I(k)={q*+1,...,q%""}, ke N.
Throughout the proof, C,, C,,... will denote positive numerical constants inde-
pendent of g. Assume first that EX = 0 and EX? < . By (2.3) and Lemma 3.1
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and independence and Gaussian distribution,
IL(X) < CIL(gX)

< 6CEsup—
r Q q*

)y th,I

iel(k)

=6CE(s 'gk'( )y XZ) )

k aq" iel(k)

&l [ 1 2
k
sup Y XZ) .
V2LL2* ( icI(k)

Since E sup,(|g,|/ V2LL2*) < o0 and, by the strong law of large numbers,

n 1/2
sup( PO ¢ ) )scl(EXZ)“,

< 6CE

n i=1

we get
IL(X) < Cy/q (EX?)"* < o

and this establishes the first part of the theorem. Conversely, let X =XI (1X)<tp
t > 0. The contraction principle and (2.4) imply that

IL(gX) < IL(gX) < CIL(X) < 0.
Using the right-hand side inequality in (3.1) and arguing as before,

(g +D)IL(gX) > E( |8l ( 5 )_(?)1/2)
k. Gqk iel(k)

18|
sup
k aqk

> E

1/2
x|

i=1

|8l 1

> /q E| limsup ———
Ve k—w J2LLg* |\ q*"!

> (Vg - G,)(EX?)"*

since limsup, _, . |gxl/ V2LLqg* = 1 a.s. Letting g be large enough so that ﬁ > Cy
and ¢ go to infinity shows that EX? < oo whenever IL(X) < oo and therefore
concludes the proof of the theorem since EX = 0 by the law of large numbers. O

We now turn to the proofs of our main results.

PrRoOOF oF THEOREM 1.1. The necessity of conditions (1.4)-(1.6) has been
discussed in the introduction; note that (1.5) also follows from Theorem 3.2. We
turn to their sufficiency. Take I(k) = {q¢* + 1,...,¢**!} for ¢ = 2, for example,
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and for each & and i in I(k) set
u;=u,(k) = Xil(x1 < any» v;=v(k) = X; - u,.

As a consequence of (2.3) since EX = 0, and of (3.1) since gX is symmetric,
IL(X) < CIL(gX)

<6CEsup— Y gX ‘
ko Qokllepr)
L
<6C|Esup—| Y gu; +Esup—-— Y gl
k a2"|tel(k) B Qorllicr(r)

Now

Z 8iY;

iel(k)

£

k

> 0} < Y 2*P(| X|| > ax)
k
and this last series is finite under (1.4) so that by the Borel-Cantelli lemma,

Y g

iel(k)

sup — < oo as.

ko Qok

Hoffmann-Jergensen’s integrability theorems as used in Proposition 2.2 then
ensure, under (1.4), that

Y &

rel(k)

Esup —
k azk

hence the proof of the theorem will be complete once we show that

Y g <

iel(k)

(3.2) Esup —_
k a2k

In order to establish (3.2), we will make use of the next lemma which is an
elementary consequence of the Gaussian isoperimetric inequality of Borell [1]
and constitutes the main argument in the proof of our result. It describes the
usual exponential inequality argument which is at the basis of any result on the
LIL and this is its only appearance in this proof.

LEMMA 3.3. There is a numerical constant C such that for every sequence
(Gp)ren Of symmetric Gaussian vector-valued random variables

(3.3) EsuplGy | < C(sup EIGyl| + Esuplgyloy )

where, for each k, o, = 6(G,). Note that (3.3) is two-sided if the G,’s are
independent.

ProoF. For each k, denote by m, a median of ||G,||. Borell’s inequality [1,
Theorem 3.1] applied to the sets {x: ||x|| > m,} and {x: ||x|| < m,} easily implies
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that for all ¢ > 0 and integer Z,
(3.4) P{JIIGill — my| > t} < P{|gylo, > t}

since each point in the unit ball of the reproducing kernel Hilbert space
associated to G, has norm less than or equal to o,. Using that m, < 2E||G,||, an
integration by parts yields (3.3). O

REMARK. The deviation inequality (3.4) of a Gaussian random vector from
its median or mean is actually a corollary of the more precise form of the
isoperimetric inequality of [1] and can be proved directly in an elementary way
as was shown recently by Maurey and Pisier (see [23]). Lemma 3.3 should
therefore be considered as a basic but accessible fact about Gaussian random
vectors.

We will use Lemma 3.3 conditionally and therefore denote by E, and Ey
expectations with respect to the independent sequences (g;) and (X;), respec-
tively, when it will be necessary to distinguish them. By (3.3) and Fubini’s
theorem,

1
Esup — Z 8U;
ko Qokll e pep)
1
(3.5) < C|Ex|sup—E,| Y gu;
ko Qok ieI(k)

+E(sup 184 sup( Y |<x*,ui>|2)l/2)).

ko Qok x*<1 \iel(k)

In order to simplify the notation, let us denote by (I) and (II), respectively, the
two terms inside the parentheses on the right-hand side of (3.5). We first study
the quantity (I).

LEMMA 3.4. Assume that (1.4) and (1.6) hold; then (I) < co.

Proor. Under (1.6), by Propositions 2.3 and 2.5, the contraction principle
(cf. [11, 12]) and homogeneity, we may and do assume that

Z 8u;

iel(k)

(3.6) forall k,, E

< Qgk.

We first note that following Hoffmann-Jergensen’s argument to establish (2.1),
we easily obtain that
2
> Sa2k})

Z 8u;

iel(k)

Z gu;

iel(k)

> 3sa2k} < PX{Eg
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for all s > 1 since ||u|| < ay, i € I(k), k € N. Here Py, denotes probability with
respect to the sequence (X;). It follows that

® 1
()=6| P {sup —E,| Y gu> Gt} dt
'[0 X k Qg £ iel(k)
<6(1+ waPX{Eg Y gl > 6ta2k} dt
k1 iel(k)
2
[oe]
<61+ Zf PX{Eg Y gl > 2ta2k} dt
k1 iel(k)
and thus, by (3.6),
<61+ %" PX{Eg Y gu
k1 ieI(k)
(3.7)
2
—-FE Z 8:U; >ta2k} dt|.
iel(k)

We now apply to the averages E||Z; c 1z, &;u;|| 2 technique due to Yurinskii [27],
already exploited in the context of the LIL in [16]. For each k&, let %, i € I(k)
denote the o-field generated by the random variables X, ,..., X;, and F
denote the trivial field. They actually depend on % but we suppress this as well
as in related quantities. Set, for all i € I(k),

d; = E)?'Eg E giuill — E}?—'v‘Eg Z 8iu;|,
JEI(k) JeI(k)
so that -
Z d,=E, E gu;,|—E Z 8u; ‘
tel(k) el(k) e l(k)

Since by independence (cf. [27]),

ESE,) Y gu| =EXEl ¥ gu,
JEI(k) jel(k)
J#i J#i

we see that

(3.8) d;, = (E)?' - E)?‘")( f),

where for each i in I(k),

fi= Eg Z 8l — Eg E iUl
Jel(k)
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It is plain that
(3.9) 0<fi<llul, i€lI(k).

The bound of f; by ||u,| is not enough to conclude. We need the following
observation which together with the positivity of the f,’s that is proper to these
averages will allow us to complete the proof.

LEMMA 35. Let Y,,...,Y, be independent identically distributed B-valued
random variables such that E||Y|| < o0, i=1,2,...,n. Set S,=Y, + --- +Y,
fori < n. Then

1
ElIS,Il = ENlS, -1l < —ElIS, |l

Proor. We have

Then by the triangle inequality and identical distribution,

E|S,|| <

1 2 " n
Y|=—
T L E| LY = —E|S,_ll,

which is the result. Note that the lemma and its proof actually express a form of
the reverse martingale property of (S,/nr). O

We can now conclude the proof of Lemma 3.4. Lemma 3.5 and (3.6) imply
that, for all i € I(k), )

Ef,=E Z 8iu;| — E Z 8il;
JEI(k) JEI(k)
J#i
1 Q gk
< EEE Z gjuj < —27

JEI(k)
Now, by (3.8), (3.9) and this estimate, for i in I(k),
Ed? < Ef? < E(||u|¥%2)

Qagr\1/2
7

< (Blui®)(Bf)"" < (ENu®)”(
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Finally, if we turn back to (3.7) and apply the preceding for each &,

1+ Zk:flw(PX{~ Y d,> ta2k})2dt)

iel(k)

36(1+2kjf°°dt . ( y Ed2))

4
1 t* ag icI(k)

I) <6

(by orthogonality of the martingale differences d;)
12 @gk\1/2]2
<6|1+ Z"‘[2k (Ellugesqll®) ( oF )

1
=6{1+ ZT2kElluzk+1ll3)
r @

ok

k \/?(21,[,2”)3/2 (Xl < azk)

[Bgk 5 I
(LL”X”)3/2 i ¢2—k_ {aqzk > |IX|I} ’

which is finite under (1.4). This completes the proof of Lemma 3.4. O

<6|1+E

We turn to the control of (IT). We first simply observe that

In < E(Sup LL sup | X (I<a*, upl® - E|<x*,ui>|2)|l/2)

Qok Yx*||<1 jeI(k)

|8l
VeLL2k’

where o(X) = sup,«, <1(E|[{x*, X)|?)'/? < oo under (1.5) as already observed in
the introduction. This is, by the way, the only place where the weak moments
(1.5) are used. Let a > 1. For simplicity we let in what follows C = C(a) be some
constant possibly changing from line to line. Since E|g|?* < oo for all a,

)

At this point the second Gaussian argument of this proof appears through an
application of the Gaussian comparison properties (cf. [6]). For each &, by

+a(X)Esup

Y (¢x*, u)|? = E(a*, u)|?)

ieI(k)

an <c

o(X) + (Z—%E( sup

r Q Ix*l<1
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independence and Jensen’s inequality, as in the proof of (2.3),

E( sup | Y (|<x*yui>|2_E|<x*’ui>|2) )
e <1l iel(k)
sCE( sup | Y el{x*, u;)? )
le*i<1lie1cr)
sCE( sup | X gl{x*, u)? )
lx*li< 1! ieIk)

We now look, conditionally on (u,), at the Gaussian process
{ T el uplix e BY < 1),
icI(k)

Its corresponding metric (to the square) given by
LI u) P = 1, uy P
i€I(k)
for x*, y* of norm < 1in B* is easily bounded by
40 lludPiCx®, w) = (vF, )l
i€ I(k)
so that, by [6, Théoréme 2.1.2],
E( »

llx*|I<1

Y gllulx*, u)

rel(k)

)y 8il{x*, u)?

iel(k)

) < CEg( sup )

llx*ll<1

a

= CEg Z gi“uz“uz
tel(k)
We therefore have obtained that
1 a\ 1/2a
(I) < Clo(X) + (Z sk > &lluu, ) .
PR )

Taking a = 3, the conclusion will then follow from the next lemma. O

LEmMA 3.6. If (1.4) and (1.8) hold, then

1
L—E

k a2k

3
< o0.

Y &gllulu,

iel(k)

PROOF. Since in the Hoffmann-Jorgensen inequality (2.2), t, < 8.3”E 1S, Ils
applying this inequality for p = 3, it is enough to show that

1
3.10 ——E( It .6) <
(3.10) Zk:agk Jnax |g|%|u 0
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and
1 3
(3.11) ZT(E Y gillully, ) < 0.
g Qok iel(k)
Now

F & mex gl?) < BEPE o T B’

k age \iclk k o icI(k)

and this last series is finite under the integrability condition E(|| X||?/LL|| X)) <
oo as in the very final step of the proof of Lemma 3.4. To prove (3.11), since we
have (1.6), we may assume from Propositions 2.3 and 2.5 that for all %,

3/2

< a3/2.

> 8u;

iel(k)

Independence, the contraction principle and Hoélder’s inequality then indicate
that

Z 8.U;

rel(k)

Y &u,

iel(k)

Z &illu|lu;

( max ||u|
ieI(k) I(k

s a/2\2/3
< (E max ||ui||3)
icI(k)

1/3
s( ) Enu,-n?’) ag,

iel(k)

and hence

> &l

iel(k)

yalr

k

) Z—— Y Elul?

2" iel(k)

which is finite under (1.4). This finishes the proof of Lemma 3.6 and therefore
that of Theorem 1.1. O

Proor orF THEOREM 1.2. We first prove the necessity of (1.7); that (1.8) is
necessary follows from the fact that if X satisfies the compact LIL, the sequence
of laws of the S, (X)/a, is tight with only 0 as limit point. Assume that
{I{x*, X)|?, x* € B, ||x*|| <1} is not uniformly integrable; then there is an
¢ > 0 such that

limsup sup

f I(x*, X)|2dP > e.
c—oo  lx*<1 Y{I{x*, X)|>c}

Therefore, one can construct a sequence (c,) of positive numbers increasing to
infinity and a family (x}) of linear functionals of norm less than or equal to 1,
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such that, for each &,

(3.12) j I(x*, X)|2 dP > f " Kx*, X)2dP > .
U1X11> ce) (1¢x, X1 > )

Let (x ) be a weakly convergent subsequence of (x}) converging to some x*. By

compactness,
S(X

an

=0 a.s.

lim sup
k>0 ,

The scalar LIL, for example in the form of Theorem 3.2, then implies that
k!im El(xp — x*, X)|>=0,

which contradicts (3.12) and thus establishes the necessity of (1.7).
We turn to sufficiency. Let ®(¢) = t2/LLt, t > 0, and define

| X|lp = inf{a > 0: E®(||X||/a) < 1}.

It is a norm on the Orlicz space of all B-valued random variables satisfying
E(|X||2/LL||X|) < co. By the closed graph theorem, Theorem 1.1 implies the
existence of a constant C such that for all random variables X with values in B,

(3.13) IL(X) < C()| Xl + o(X) + R(X)).

Given X satisfying (1.4), (1.7) and (1.8), consider an increasing family (% )y en
of finite o-fields generating the o-field of X (remember that we assume that X
has separable range) and let XV = E#*~X, It is easily seen that

Jim (X ~ X"y + o(X — X) + R(X ~ XV)) =0,

indeed, that lim_, _|| X — X /||, follows from the martingale convergence theo-
rem as well as limy_, o(X — XV) =0 together with uniform integrability.
Since E||S,(X)/a,|l = 0 by Proposition 2.3, and since, by Jensen’s inequality,
for each N,

E|S(X — XVN)/a,|l < 2E|IS,(X)/a,l,
we also have that lim,_,  R(X — XV) = 0. Applying (3.13) to X — X" for each
N yields
A}im IL(X-XN)=0
and this approximation property by finite-valued random variables (satisfying
thus the compact LIL) easily establishes the almost sure relative compactness of

(Sn(X)/an)nEN’ ]

PROOF OF COROLLARY 1.4. The corollary is an immediate consequence of the
following proposition [8, Proposition 7.2].

PROPOSITION 3.7. Let X be a mean zero random variable with values in a
Banach space B of type 2 satisfying E(|| X||2/LL|| X|)) < oo; then S(X)/a, = 0
in probability.
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PROOF. Let X’ be an independent copy of X and X =X - X'. Since
E(|X||?/LL|| X|) < oo, clearly

lim nP{||X|| > an} =0.
n—oo
For each n, define the symmetric independent random variables
Yi=XiI(||X,||sa,,)’ i=1,...,n.

For each ¢ > 0,

P(|IS, (X)) > ea,} < P{ ; Y,

> ean} + nP{| X|| > a,}.
Now, since B is of type 2,

A

n

C n
> ean} E|Y;|®
1

Y, <
igl l e’a, im
C ~
= oty B0 s,
cet | co[ X
<szrr.t 3 —_— 5
T 2¢2LLn &\ LL| X (X1>9

for each ¢ > 0. Letting n and then ¢ go to infinity yields that S(X)/a, - 0in
probability. By Proposition 2.3, E||S,(X)||/a, — 0 and since EX = 0, Jensen’s
inequality furnishes the conclusion. O
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