The Annals of Probability
1988, Vol. 16, No. 3, 1063-1083

DOOB'’S CONDITIONED DIFFUSIONS AND THEIR LIFETIMES!

BY R. DANTE DEBLASSIE

Texas A & M University

We study the lifetime of a conditioned diffusion (or h-path) on a bounded
C* domain G in R? Making use of results of Donsker and Varadhan, we
show that the tail of the distribution of the lifetime decays exponentially; in
fact, the decay constant is the same as that for the exponential decay of the
tail of the distribution of the first time the unconditioned diffusion exits G.
In the case of Brownian motion and bounded domains (not necessarily C*)
we describe some sufficient conditions to ensure the previously described
asymptotic results hold here too.

Introduction. Let a*(x) and bi(x) € C*(R%), 1 <i, j<d, and for f €
C%(R?) define
1. oY of
==Y qi/ i(x)—
00 L) = 5 Tae) g () + Do) 5 (0

We will always assume that L is strictly elliptic, i.e.,, for some A >0,
T, ja(x)¢E; > N for x, £ € R% Here | - | is the usual Euclidean norm. We
will only be concerned with bounded domains in R¢ so that it will be no loss to
assume that a/(x) = 8"/ and b¥(x) = 0 for |x| sufficiently large. These hypothe-
ses guarantee that L uniquely determines a diffusion process {X,: ¢t > 0} on R¢
with a transition density p(t, x, y) (with respect to Lebesgue measure on R?).

For any bounded domain G ¢ R¢ with C*® boundary, define 7, :=
inf{¢ > 0: X, & G}. The process X obtained by killing X, at G is a diffusion

. with state space G. Under our hypotheses on L, X will have a (substochastic)

transition density pg(¢, x, y) with respect to Lebesgue measure on R¢. We call
h € C%G) harmonic for L on G if Lh =0 on G. It is well known that any
strictly positive function A harmonic for L on G is excessive for X°.

Furthermore, such an A determines a new diffusion Z! on G having transition
density (with respect to Lebesgue measure on G)

02)  pl(t,x, y) = h(x) 'pe(t,x, Y)R(y), (x,7) € GXG.

Doob calls Z! a conditioned diffusion or h-path. See his book [8, pages 566-567]

for more information. It is not hard to see from (0.2) that the generator L, of Z}
-is an extension of

1
(0.3) Lyf= ZL(hf), f e C¥G).
We will denote by 72 the lifetime of Z7.

Received July 1986; revised February 1987.

'Research supported in part by a grant from NSF.

AMS 1980 subject classifications. 60J60, 60J65.

Key words and phrases. Conditioned diffusions, h-paths, lifetime, large deviations,
Donsker—Varadhan I-function.

1063

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%

The Annals of Probability. STOR ®
Www.jstor.org



1064 R. D. DEBLASSIE

In the case of Brownian motion (viz. L = }A), several authors have studied
the lifetime 72 of the conditioned process. Cranston and McConnell [4] proved
that in dimension d = 2, there is a universal constant ¢ > 0 such that

Esl<cGl, x€G,

for any bounded open set G C R2 Here |G| is the Lebesgue measure of G and
E, denotes expectation for the process starting at x. Their proof was simplified
by Chung [1]. Cranston [3] extended the result to higher dimensions; he showed
that if G € R? (d > 3) is Lipschitz, then for some ¢(G) > 0,

Egsl<c(G), =x€G.

For a certain class of Lipschitz domains G € R? (d > 2), a series expansion for
P(7l > t) was obtained in [5]. As a corollary of this result, it was shown there
that

1 1
(0.4) lim —log P(wt>t)=-Ag= lim ~log P(7>t),
t— o0 t— o0

where A; > 0 is the first positive eigenvalue of ;A on G: for some mg €
C%G) N C%G), 1Amgz= —Agmgon G and mg > 0 on G.

In this paper we extend (0.4) to more general domains G and we also consider
the analogous problem for other diffusions (see Theorems 5.1 and 6.4). In essence,
we evaluate the Donsker—Varadhan I-function explicitly enough to derive our
conclusion. The interested reader should look at the Pinsky articles [13, 14]. In
[13] he evaluates the I-function explicitly for diffusions with boundaries and in
[14] he describes nice conditions that determine whether or not

Eexp( [“a(x(s)) a5

is finite [here D is a bounded C? domain and ¢ € Cc(D)].

We feel compelled to point out an intuitive connection between (0.4) and
Falkner’s conditional gauge theorem [10, Theorem 2.1, page 22]. This tie was
pointed out by the referee, to whom I am grateful. Since A; = sup{A: E,e Me <
o0} and since E.,e Mé < oo iff E,eM < co by the conditional gauge theorem, we
have A = sup{A: E,e < oo}. Thus Py(7/ > t) should act like e *o* when ¢ is
large.

The paper is organized as follows. In Section 1 we discuss some preliminaries.
Various properties of Donsker—Varadhan’s I-function comprise the content of
Section 2. Sections 3 and 4 give upper and lower bounds (respectively) for
log P(7% > t) in the case of general (non-self-adjoint) operators L. In Section 5
we prove the analogue to (0.4) for general L, and in Section 6 we extend (0.4) for

-Brownian motion and Lipschitz domains to more general domains.

1. Preliminaries, self-adjoint operators and smooth domains. We recall
some properties of the transition densities p(¢, x, y) and pg(¢, x, y) from the
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Introduction. First, for some positive constants M and a,

(1.1) 0 < pg(t, x, y) <p(t, x,y) < Mt~ %exp(—aly — x|?/t)

for ¢ > 0, (x, y) € G X G. The last inequality is valid for £ > 0 and x, y € R%
Both pg(¢, x, ¥) and p(¢, x, y) are jointly continuous on (0,00) X G X G and
(0, 0) X R? X R, respectively. Also, for fixed ¢t > 0 and y € G,

(1.2) J}i_r}r:lpa(t, x,y) =0 foranya € 4G.

(For these, see Dynkin [9, volume 2, Theorem 0.6, pages 230-231].)
For any topological space D define

C(D) := all continuous real valued functions on D,

B(D) = all bounded real-valued Borel functions on D,

Cy(D) == {f € C(D): f is bounded },

Co(D) = {f € C(D):supp f is a compact subset of D}.

For f: D - R we will write f(c0) = a if for each & > 0 there is a compact set
K C D such that |f(x) — a| < ¢ whenever x ¢ K. Then define

(1.3)

(14) ~ 6(D) = {f € C(D): f(») = 0}.
Now p(t, x, y) and p;(¢, x, y) define the semigroups
(1.5) Tf(x) = [p(t,x, »)f(»)dy,  feBR?),
(1.6) TEi(x) = [ po(t: %, M)i()dy, < B(G),
and these semigroups satisfy
(1.7) T,: B(R?) - C,(R9),
(1.8) T;: C(R?) - C(RY),
(1.9) TF: B(G) - C(G),
(1.10) T,°: B(G) - C=(G),
(1.11) for f € C,(G) and x € G, TSf(x) — f(x) as t - 0,
(1.12) for f € C3(G), lim sup |f(x) — T5f(x)| = 0.
—VUxeqd

For (1.7) and (1.8) see Dynkin [9, volume 1, Theorem 5.11 and its proof on pages
162-163]. (1.9) may be found in Dynkin [9, volume 2, Theorem 13.18 and its
proof, pages 53-54]. (1.10) is true because for any f € B(G)u(t, x) == T,%f(x)
satisfies du/dt = Lu for (¢, x) € (0, 0) X G (cf. I'in, Kalashnikov and Oleinik
[11, Section 4.3, pages 84-88]). Theorem 3 of II'in, Kalashnikov and Oleinik [11,
page 85] gives (1.1). Finally, (1.12) may be found in the proof of Theorem 13.18 of
Dynkin [9, volume 2] [see especially (13.76) on page 54].
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REMARK 1.1. In the case of Brownian motion (L = }A), (1.1), (1.2) and
(1.7)-(1.12) hold for any bounded open set G C R? with regular boundary.

LEMMA 1.2. Let h > 0 be harmonic for the operator L [in (0.1)] on G, where
G c R? is a bounded domain with C* boundary. Then [zh(x) dx < 0.

ProoF. Let E C R be closed with E C G. It suffices to show that for some
C >0, [ch(x)dx < C[gh(x) dx.
The formal adjoint L* of L is strictly elliptic on R? and it has C* coeffi-

cients. Moreover, the Green functions g, and g& for L and L*, respectively, are
given by

gG(x: y) = gg(y,x) = j(; pG(t’ X, y) dt.
Our hypotheses on L* and G ensure that for some C := C(E) > 0,
(1.13) [ga(x, y)dy < C[ ga(=, y) dy.
G E

This result may be found in Krasnosel’skii [12, Lemma 7.2, page 258].
For any f € B(G) write

gf = Lga(‘,y)f(y)dy and @*f = faga*(~,y)f(y)dy.

Since G is bounded with C* boundary, for some & > 0, sup, c ; E.e'G < o and
hence sup, . ; E,7; < 0. In particular, by Fubini’s theorem,

00 > fa[:lenc);ExTG dy > LLwLpG(t,x, y) dydtdx = LLgG(x, y) dx dy.

Hence if (-, -) is the usual inner product on L%(G, dx), then (9g, f) = (g, 9*f)
for any g, f € B(Q).

The rest of the proof is due to Falkner [10] (cf. his Lemma 2.11, page 26). For
any nonnegative ¢ € B(G),

[(#9)x) v = (99,1) = (3,9°1)

< C(v,9*1g) [by (1.13)]
(1.14)
= C(g‘P’lE)

= cfE (99)(x) dx.

But for any nonnegative harmonic function 4 on G, we may find nonnegative
Y, € B(G)sothat y,1 hon G as n — oo (cf. Port and Stone [15, Theorem 2.1,
page 164]). Hence by (1.14) and monotone convergence [;h(x) dx < Cfph(x)dx
as desired. O
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2. Properties of the Donsker-Varadhan Ifunction. Let Z(R?) be the
set of (Borel) probability measures on R? and let C*R?) = {f € C*R?): for
some C,,C,,0 < C; < f(x) < Gy forx € R9}.

Define the I-function on /#(R¢) by

(2.1) I(p) = — inf fL—fdp, p € #(R?)
jeczmd? |

[here L is given by (0.1) and satisfies the hypotheses in the Introduction]. Then
0 < I(p) < oo and I(p) is lower semicontinuous with respect to the topology of
weak convergence on .#(R%).

LemMa 21. Let G CR? be a bounded domain with C* boundary. if
p € HM(R?) satisfies p(G) = 1 and p(dG) > 0, then I(p) = oo.

ProOF. Consider any f € C2(R?) and let G, € R? n > 1, be bounded open
sets with G, | G and suppose G, is C* for all n. Now

LTof _ (3/00)Tf _ 3 (T
TGf © IO ot | |

so that

LTS-f d TS f
_fthG—"f—d“ = zlzfln( f dp..

Since (¢, x) € (0,0) X G, > T,Gf(x) is C* and inf f >0, for each t > 0 we
may extend T,%~f|g by some g, € CTZ(R?). Thus
Lg, LTE~

—I(p) < f—gjdu= —,_,—,tan—fidu (suppp € G)

Integrating with respect to ¢ from 0 to 1 gives

- I(p) < fln( Tlfnf)dp

sup f
2.2 Guf du —
(2:2) < fGln et fmlnTl fdp faalnfdp.

sC+f In TS~ dp.
G

For any closed set B C R? let 7= inf{t > 0: X, & B} where X, is the
process determined by L as given in the Introduction. Then since G, | G, 7 | 7@
as n — oo. Together with the fact that TCrf(x) = E f(X)1ls, ¢ this yields

(2.3) TG f(x) E, f(X,)1,.5, asn—> 00, X € G.
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For x € 3G let K, be an open truncated cone with vertex x and K, ¢ R4\ G.
Such a cone can be chosen since dG is C®. Hence for x € 4G,

P (15> 0) < Px(TIR"\Kx > 0)
-0

(see Dynkin [9, volume 2, Lemma 13.3, page 40]). Combined with (2.3) we get
T,C+f(x)10as n = oo, x € dG. Then since u(dG) > 0, monotone convergence in
(2.2) yields —I(p) < — oo as desired. O

REMARK 2.2. If L = A, Lemma 2.1 and its proof still hold if we replace “dG
is C*” by the assumption that “G satisfies an exterior cone condition at every
x € dG.”

LEMMA 23. Let G C RY be a bounded domain and define lg =
sup, g1l — 1(#)]. Then for

Lf
Ug = {f € CP(RY): sup — < 1}
¢ |
we have l; = inf; c 4 supg Lf/f.

Proor. For convenience, write % = %;. From the work of Donsker and
Varadhan [6] (see the first part of the proof of their Theorem 2.2 on page 599),

_ . Lf
Ilo= sup [—I(p)] = inf sup—.
w(@)-1 feczmy g |

Hence it is clear that l; < inf; ., supg Lf/f. For the opposite inequality, let
e € (0,1) and choose g € CP(R?) such that supg Lg/g < I + & In particular,
since l; < 0, supz Lg/g < € < 1. Hence g € % and

inf Li Le I, +

inf sup— < sup— < e.

jev g [~ g & ¢

Letting ¢ | 0 gives the desired inequality and we are done. O

THEOREM 2.4. Let G C R? be a bounded domain with C* boundary. If
Hy = {Uc R*% Uis open, dU is C*, and U C U C G}, then

(2.4) sup sup [—I(p)] = sup [-I(w)].
UeXg p(U)=1 wG)=1
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ProoF. Clearly LHS(2.4) < RHS(2.4). As for the opposite inequality, note
that since I(p) is lower semicontinuous, the supremum on RHS(2.4) is actually
taken on, say at g, and I(po) < . Now py(G) =1 and by Lemma 2.1,
po(9G) = 0.

Let U € &, with po(U) > 0 and consider any f € %. Writing % = %y and
py(B) = po(U) 'po(U N B), we have :

sup [—I(p)] = I(po)
wmG)=1

Lf Lf
< fU’TdP*o"' fG\UTdHO
Lf L
= no(U) [ —diy + fG\Udeuo

< pO(U)sgp—I}—f +po(G\U)  (since f € Z).
U

Taking the infimum over f € % gives

i} L
sup [—I(p)] < po(U) inf sgp—f +po(G\U)
fé% U f

waG)=1
(2.5) = po(U) (s;_]u)pll—f(u)] + po(G\U) (by Lemma 2.3)
<po(U) sup sup [—I(E)] + po(G\U).
Vex; p(V)=1

Since po(dG) =0, po(U)Tpo(G) =1 as U 1 G, so letting U — G in (2.5) gives
RHS(2.4) < LHS(2.4) as desired. O

REMARK 2.5. 1. In the case of L = 1A, the conclusion of Theorem 2.4 is still
true if we weaken the assumption that G has a C* boundary to the assumption
that G satisfies an exterior cone condition at every x € dG (cf. Remark 2.2).

2. When L is self-adjoint and 4G is C®, it can be shown that the quantity
sup,g)-1[ —I(m)] reduces to the classical variational formula for the principal
eigenvalue A, of L on G (modulo sign, depending on the convention chosen).
Hence the conclusion (2.4) in Theorem 2.4 is essentially a statement about the
“continuous” dependence of the principal eigenvalue A on the domain G. It is
interesting to compare the proof of Theorem 2.4 in this case to a classical version
of it that may be found in Courant and Hilbert [2, Theorem 11, page 423].

3. Upper bounds. In this section we prove the following theorem. We
continue to use the notation and hypotheses of the Introduction.

THEOREM 3.1. Let G € R? be a bounded domain with C* boundary, and let
h > 0 be harmonic for L on G. Then for any open set D ¢ D C G,

limsupt Yog sup P,(7l > ¢t) < sup [-I(w)]-
t— o0 x€D ﬂ(6)=1

Here I(p) is defined in (2.1). If inf h > 0, we may replace D by G.
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For the proof, we need the following lemma.

LEMMA 3.2. Let G C R? be a bounded domain with C* boundary. Then

limsup¢ 'log sup pg(t, x, y) < sup [—I(p)].
t— oo x,y€G w(G)=1

ProOF. By (1.1) choose s > 0 such that sup, , ¢ Pg(s, x, ¥) < 1. Then for
each y € G, the function

u(t,x) =TE¢ Ux) —pg(t+s,x,5), (tx)e[0,0)xG

satisfies
u, € C,((0,0) X GU {0} x G) N C=((0,0) X G),
ad
(% - L)uy =0 on(0,0) X G,
(3.1) u(t,x) =0 fort>0and x € G,

u(0,x) =1-pg(s,x,y) =0 forxeG.

Hence by an extended maximum principle (Il'in, Kalashnikov and Oleinik [11];
see Notes 1 and 2 after Theorem 11 on page 18), u, > 0 on (0, o) X G. Thus

limsupt~'log sup pg(t,x, y) < limsup¢ 'log sup 7,¢ - 1(x)

t— o0 x,y€G t— o0 x€qG
= sup [-I(p)],
rG)=1

where the last equality is due to Donsker and Varadhan [6, Theorem 2.2, page
598]. O

Proor orF THEOREM 3.1. We have

sup P(1t=t) = suph(x)”’ fapa(t,x, ¥)h(y) dy

x€D xeD

-1

< [infh] [ sup pg(t, x, y)]fh(y) dy.
D x,y€CG G

Since [; h(y) dy < oo by Lemma 1.2, the result is an immediate consequence of

Lemma 3.2, and if inf A > 0, we may replace D by G. O

4. Lower bounds. Let G be a bounded domain in R? with C* boundary.
Let G* = G U {0} be the one point compactification of G. It is well known that
G* is metrizable. We will make free use of the notation of the Introduction.
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Define for ¢ > 0,

pG(t’xyy)’ (x,y)EGXG,
61 pole s y)mf THOETE 2B
1, (x,5) € {0} X {0},

‘where pg(t, x, G) = [;ps(¢, x, ¥) dy. Let B denote the measure on the Borel sets

Z(G*) of G* defined by B(A) =AMA N G) + 8, (A), A€ B(G*) (here A is
Lebesgue measure). Then it is not hard to show that p;.(t, x, y) is a transition
density with respect to dB(y) on G* and gives rise to a semigroup 7,0:
B(G*) —» B(G*) defined by

(4.2) TEH) = [ poltx, I(2) dB(y), [ B(G).

The next few lemmas will allow us to use the large deviation results of Donsker
and Varadhan [7].

LEMMA 4.1. The semigroup TC" maps B(G*) into C(G*). In particular, TS"
is Feller.

Proor. First note [by (4.1) and (4.2)] for f € B(G*)

fcpa(t,x, ¥)f(y)dy
+ [1-pe(t,%,G)] f(5) do(y), x€G,
TS (x) = o)

(4.3) fGO'f(y)dy

+] [V d8(), x € (oo},

_ {TLGf(x) +[1- 18- 1Ux)] f(0), x€G,
(), | x € {o0).
Hence by (1.9), T.¢°f € C,(G) and moreover,
TS f(x) — T9f(c0) = Tf(x) — f(0)T;¥ - 1(x) >0 asx > o, x € G.
Consequently, T.¢"f € C(G*). O

Now define

By = |12 0(6"):
(4.4)
tim sup [ 1f(5) - f(2)pe-(t, %, ) dB(3) = o).
-0 yeGg*7G*
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LEmMMA 4.2. Cy(G) € By,
PrROOF. Let f e C(G) and &> 0. Choose g € C3(G) such that 0 < g <
sup|f| and g(x) = supl|f| for x € supp f. If x € K = supp f, then
&(x) — T (x) = suplf| — (suplf|)pa(t, x, G)

= (suplf)(1 = T, - 1(x))
> 0.
Hence for any x € G,

(45) ()1 = T 1(x)) < lg(x) - T%(x)I.
By uniform continuity of f, choose § > 0 so that

(4.6) sup |f(x) — f(y)l <e.
x,y€CG
lx—y|<8

Then for By(x) = {y € R% |x — y| < 8}, by (4.6) and (1.1)

supflf(y) — [(*)lp(¢, %, ¥) dy

xeqG

~ sup [ [« ]
(4.7) xeG | YGNBy(x) G N By(x)°

< ¢ + 2(sup|f|) Mt~ /2 sup exp(—aly — x|2/¢t) dy
G YGN Bg(x)*¢

<&+ Mt~ 4% % /\(G).
Since f € Cy(G), f(o0) = 0, so by (4.1) and (4.3)

limsup sup f () = f(x)lpg(t, x, y) dB( )

t—>0 xeG*
= lir?falp fgg{falf(y) — f(x)lpa(t, x, y) dy + f(x)|[1 - T - l(x)]}
< hntnf(t)xp{HM £ /%m0t 4 sup lg(x) - ’-'}Gg(x)l}
[by (4.7) and (4.5)]
=¢ [by (1.12)].

Since & > 0 was arbitrary, f e By, O

Define .#(G*) to be the set of probability measures on G*, and give it the
topology of weak convergence.
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LEMMA 43. Let a € #(G*). Then every neighborhood N of a in M (G*)
contains a neighborhood of the form
[ fdn— )
G#

Na={p.€./ll(G*): <£,1§jsk},

where ¢ > 0 and f,,..., f, € By,-

Proor. Let a and N be so given. It is no loss to assume that for some 6 > 0
and h,,..., h, € C(G*),

[ A= )

Define f(x) = h(x) — hw) for 1 <i<p. Then f,...,[f, € C(G*)N
{f: f(o0) = 0} and hence we may choose fir-- f € Cy(G) satlsfymg

(4.8) S(‘;Plfi - fl<8/3

N - {pe/l(G*):

<8,1stp}.

[here we take f,(c0) = 0]. By Lemma 4.2, f,,..., f;, € By, so to complete the
proof it suffices to show that

N, = {ut !faf,-d(u - a)

But that is easy: Forp € Nyand 1 <i < p,

<8/3,1si3p}gN.

Jrid(p = )| =| [[Rix) = hy()]d(p — a)(x)
= /fid(ﬂ - a)
<|f(f,= F)d(p - a) +'fﬁd(u—a)
<28/3+8/3 [by (4.8) and that u € N,].

Hence p € N and we are done. O

LEMMA 4.4. For any p € #(G*) with u(G) = 1 and f € B(G*), there exist
f. € By = {f € C(G*):lim,_, o supg. |T,C'f — f| = 0}, n > 1, such that sup|f,| <
supl|f| and f, = f a.s. (p).

Proor. Denote by p the (Borel) measure on G induced by p. Since Cy(G) is
dense in LG, dpg), we may choose f, € Co(G) with f, = f|s in LYG, dpg)
and supg|f,| < supglf|. Extract a subsequence f, — f|s ae. (ng). Since f, €

Cy(G) C By, C B, (by Lemma 4.2) and u(G) = 1, the lemma follows. O

Now pg«(¢, x, y) is the transition density (with respect to the measure B) of a
Markov process Y, with compact state space G*. Define the random measure L,
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in #Z(G*) by 1,
L(A) = ; [Ta(Y.) ds,

where A is a Borel subset of G* and I, is the indicator function of A. Thus
L,(A) is just the proportion of time up to ¢ spent by Y in A. Denoting by &, the
probability associated with Y, = x, we see L, induces a probability measure @, ,
on #(G*) defined by :
Qx,t(‘M) = ‘@x(l‘t(') E&{)’
where 7 is a Borel subset of .#(G*).

Let .Z be the infinitesimal generator of the semigroup 7,¢": C(G*) - C(G*)
and 27 (G*) be the set of positive functions in the domain 9(G) of #. Then for
p € A (G*), set

, Zf
(49) Ip)= - _int [ —(x)du(x).

LEMMA 4.5. Let p € #(G*) with I(p) < o and suppp C U, where U is
open in G with C*® boundary and UC UC G. If x € U and E c U with
B(E) > 0, then for ¢ > 0,

(4.10) f0°°e-°@x(Ys cU0<s<tY,eE)dt>0.

PROOF. Since ECUcUCG and x € U,

LHS(4.10) = ‘/:oe“"pv(t, x,E)dt [see (4.3)]

= fowe“"prU(t,x, y) dydt.

But 0 < B(E) = M(E) = [z dy and py (%, x, y) > 0, so LHS(4.10) > 0 as desired.
O

The following proposition gives a sufficient condition on p € #(G*) for the
equality of I(n) and I(p) defined in Section 2.

PROPOSITION 4.6. Let U C R? be open with C* boundary and U c U C G.
Then for any p. € #(G*) with suppp € U, I(pn) = I(p).

PROOF. Let A be the infinitesimal generator of the semigroup T,°: (f(G) -
C(G) [cf. (1.9)] and denote the domain of A by D(A). Let L be the differential
operator (0.1) in the Introduction. Since CXG) € D(A) and Af = Lf for f €
CZ(G) (see Dynkin [9, volume 1, Theorem 5.10, page 159; volume 2, Theorem
13.18, page 53], by (4.3) we see that C2(G) € 2(G*) and Zf = Lf for f € CZ(G).
Then since T,.¢" - 1 =1,

C3G) +R={f+C: f€CHG),CeR} c D(G*),

(4.11)
L(f+C)=Li=%f forf+ CeCIG)+R.
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Now consider any f € C®(R?) and ¢ > 0. Extend f|z by f € CX(G) with

~

f = 0. Then f +e€ .@*(G*) Since suppp € U we have

+
dyp = f f f E) [by (4.11)]
2l [2iv 2+
f f+e fu{ f B f+ € dp

1 2(i+e) zf

=t el

= -1 - [F+eca(e")

= —I(p) - af' fl [(4.11) again].
Letting £}0 and then taking the infimum over f € C?(R?) yields —I(p) >

—I(p).

For the opposite inequality, consider any g € 2%(G*) and ¢ > 0. By (1.10)
and (4.3), for each t > 0, T%'g € C*(G) and LT g = (d/dt)TC'g = ¥TC g =
TS %g on G. Then since T,.°g >0 we may extend (T,%g + ¢)|g by some
g € C?(R?). Thus

_ Lg Lg
-1 < |—dp= —d
(») 7 fU z
LT g
uT g +e *
TS %g
= —G,.—dp..
vT g +e
Now g, Zg € C(G*) c Cy(G); hence, by (1.11) and (4.3),
im 7,7 (%g)(x) = Zg(x), =x<G,
t—

(4.12) =

lin(l)TtG*g(x) =g(x), x€G.

t—

Using dominated convergence in (4. 12) with ¢t - 0 yields
s [ b=/ g

Letting ¢ — 0 and then taking the infimum over g € 2 (G*) gives —I(p) <
—I(p) as desired. O

g+e

Now we are ready to apply the results of Donsker and Varadhan to obtain the
main result of this section.
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THEOREM 4.7. Let G C R? be a bounded domain with C* boundary and
suppose the differential operator L is given by (0.1) in the Introduction. Let
h > 0 be harmonic for L on G. Then for & and P, as defined in the Introduc-
tion, for any x € G,

1 _
liminf —log P,(7% > ¢) > sup [—I(p)].
tooo w(G)=1

REMARK 4.8. In the case when L = }A, rather than require G to be C*, we
may assume G satisfies an exterior cone condition at every x € dG. The
conclusion of Theorem 4.7 holds and the same proof works (cf. Remarks 1.1, 2.2
and 2.5).

PROOF OF THEOREM 4.7. Let U C R¢ be open with C® boundary and
U c U c G. Extend the coefficients of L,z to be in C*(R¢) such that the
resulting differential operator L on C%(R?) satisfies the same hypotheses as L.
Thus the analogues of Lemmas 4.1-4.5 and Proposmon 46 for L continue to
hold. For convenience we will write Qx, » 1), I(p), X,, etc., for L analogues of
Q.. »» I(p), I(p), X,, etc. Note that X, and Z} (as in the Introduction) have the
same law on U. .

Consider any p € A ,(G*) = {p € #(G*):suppp C U} with I(p) < oo, and
let N be any neighborhood of p in #(G*). By Theorem 8.1 of Donsker and
Varadhan [7, page 446],

1 - .
(4.13) lim inf—logQ,, (N NMy(G*)) = —1(p)
t— o0

provided their hypotheses H,~H, hold. By our Lemmas 4.1 and 4.2 for L
analogues hypotheses H, and H, hold. Hypotheses H; and H, are only con-
cerned with the measure p. appearing in the statment of Theorem 8.1 of Donsker
and Varadhan. In the present context, p € 4 (G*), and hence by our Lemmas
4.4 and 4.5, the hypotheses H, and H, hold for this particular p. Hence (4.13) is
indeed valid.

Letting N = #(G*), and taking the supremum over p € 4 ;;(G*), we get from
(4.13),

(4.14) lim inf — 10ng (My(G*) = sup  [-H(w)].
t— o0 neAy(G*)

But for Uc U c G:n=inf{t > 0: Z! & U} and 7, = inf{¢ > 0: X, & U}, we
have for x € U,

P(rlk>¢t)>P(n>t)=B(#>1)
=2(L(:) e#y(G*))
Q.. (A y(G*)).
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Hence using the elementary equality

Lf L,f Lf
4.15 inf —dp = inf —dp = inf —d,
(4.15) fec:°<nd)ff # feczmd? f : IEC’f(R“)/f #

for any p € A ,(G*), we get

\

1 1 ~
liminf ;log P (1l >¢t) > liminf ;log Q.. (A y(G*))

t— o0 t— o0

sup [-1(n)] | [by (4.14)]
neMy(G*)

sup [ oy ( p)] (by Proposition 4.6)
pEMAY(GY) .

sup [—I(p)] [by (4.15)]
nEMAy(G*)

sup{ —I(p): p € #(R?),supppc U}, x€U.

Taking the supremum over all open U € U € G with C* boundary and then
applying Theorem 2.4, we get the conclusion of the theorem. O

v

5. Asymptotics. We continue to use the notation of the Introduction. The
main result is the following theorem.

THEOREM 5.1. Let G be a bounded domain in R¢ with C*® boundary. Let
h > 0 be harmonic for L on G. Then for any open set D C R¢ with D c D C G,

1 -
lim —log sup P,(7% > t) = sup [—I(p)]
t— o0 t xeD "’(6)=1

(5.1)

1
lim —log sup P,(7; > t).

t—> o0 x€D

If inf h > 0, we may replace D by G.

REMARK 5.2. In the case when L is self-adjoint, it can be shown that the
sup-inf in (5.1) reduces to the classical variational formula for the first eigenvalue
of L on G with Dirichlet boundary conditions.

PRrROOF OF THEOREM 5.1. All the hard work has been done. The first equality
in (5.1) is an immediate consequence of Theorems 3.1 and 4.7. As for the second
equality, observe P(1; > t) = P71} > t), and hence another application of The-
orems 3.1 and 4.7 with A = 1 does the trick. O

“REMARK 53. It is clear from the preceding that we may replace
sup, e p P17 > t) by sup, ¢ g P(75 > t) in (5.1).

6. Brownian motion. In this section we restrict our attention to Brownian
motion, so L = ;A. Our main result is Theorem 6.4 which generalizes (0.4) in the
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Introduction. Let G € R? be a bounded domain satisfying an exterior cone
condition at every boundary point. For each ¢ > 0 and n € G we may condition
the Brownian motion killed at dG (written {XC: s > 0} as in the Introduction)
by the event {XC = n}. This gives rise to a new sample continuous and time
inhomogenous Markov process {X/(s): s € [0, t)} with nonstationary transition
density (from {; € G at time s, to {, € G at time s, with 0 < s, < s, < ?):

pG(s2 — 8, {1, §2)pG(t — 89, §2’ '1)
pG(t ) {1, n)

(see Doob [8, Section 2.V1.14, pages 567-568]). With the help of the tied down
process X[(-) we obtain the following upper bound.

(6.1) p,:(sl,fﬁ 32a§2) =

THEOREM 6.1. With G as before, suppose for any open D C D C G there
exist positive numbers 8 and T such that

M o= sup| [ pi(0, 8 5, i, € D, > 2,
(6.2) ¢

nGG,T<s<t—T}<oo.

If h is positive and harmonic for 1A on G and h € L?(G, dx) for some p € (0,1],
then

1 _
(6.3) limsup —log sup P,(7% > t) < sup [-I(w)].
t— oo xe€D w(G)=1

REMARK 6.2. 1.If G is a Lipschitz domain, then the condition 2 € L*(G, dx)
for some p > 0 is automatically satisfied (see [5], especially Theorem 2.4 and the
proof of Lemma 3.2).

2. By (6.1),

pG(s’ §1’ fz)pa(t - S, §2’ 7’)
Pa(t, ;1, "l)

The trouble is for ¢ large and/or n near dG the denominator p(t,$;, n) is
small; however, for s small and 7 near dG the factor p;(¢ — s, {,,n) in the
numerator is also small. Also, if ¢ — s is small and ¢ is large, both pg(s, {;, {,) in
the numerator and pg;(¢, {;, 1) in the denominator are small. So we hope when
the denominator is small, the numerator is small enough to “cancel” the
denominator in some sense. In fact, hypotheses (6.2) is just a way of making this
idea precise: It says for ¢ large with s and ¢ — s bounded away from zero, the
denominator does not go to zero too much faster than the numerator. Also note
it.is possible to show that in the case when 4G is C®, we have for some T > 0,

sup{ pX(0, $;; 5,8,):t> 2T, 4, €D, §, € G, T<s<t—T,n€ G} < .

P;(O’ §158,8,) =

To prove Theorem 6.1 we need the following proposition.
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PROPOSITION 6.3. Letr,y € (0,1). For some positive numbers § and C, we
have

x x"a" !

<
1+ ax 1+ artiy”

forx > 0anda <€ (0,9).

PROOF. Let a > 0 and define

xr

) = 1) = | o= || T

We need to find C;, >0 and & > 0 depending only on y and r such that
f(x) < C,a™ ! for any x > 0 and a € (0, §).
First observe we may write

f(x)=(x"+a*")/(x"'+a), x>0.

-1
] , x> 0.

Then

(6.4) f(x)=[(1-r)/a+ax" —m]x " 2a/(x"' + a)’
= [ -r)/a+g(x)]x"%a/(x7! + a)’,

where g(x) = a'x” — rx. Since r <1, it is routine to show g is strictly
increasing on (0, a”®~") and strictly decreasing on (a¥®~", ). Moreover,
g(a/ 1~ Np=1/-1y = 0 = g(0). Hence there is a unique x, > ¥/ -"r-1/0-1
(> a®~") such that g(x,)= —(1—-r)/a<0. Now x € (0, x,) = g(x) >
&g(xy) = f’(x) > 0 and also x € (x,, ) = g(x) < g(x,) = f'(x) < 0. Thus
(6.5) f(x) < f(x), x>0.

We wish to obtain upper and lower bounds on x,. Firstlet 0 < 8, < (1 — r)/r.
Then

g(Ba™!) = Blar" —rBa”! = a”Y(Bja"' " — 1B))
>a (-1 -r)),
provided a > 0 is small, say a < 8, := §,(r, B,,v). Thus B,a™! < x, for a < §,.
Similarly, if 8, > (1 — r)/r, then for some 8, := 8,(r, B;,7) > 0, Bya™! > x, for

a < §,. As a result, for a < min(§;, 82), B,a ! <x,< By,a”!, and so we may
choose B € (B, B,) satisfying x, = Ba~ . Hence

f(xo) = (%" + a'*7) /(x5! + @)

=(B7a"+a'*") /(B la + a)
=(B " +av)/ (,B +1)

<(Bia ' +a?) /(B +1)

< Cia™!

for a sufficiently small, say a < § (remember, r < 1). From (6.5) the desired
conclusion follows. O
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PrROOF OF THEOREM 6.1. Let T, 8, D and p be as in the hypotheses. Let
U c U c G be an open set with C® boundary where D C U. Extend h|y by
some i € CP(R?). Consider any ¢ > 0 and f € CP(R?) with Af < 0 on G. Then
with g:=f/h + eand V= — A(hg)/2hg, the Feynman-Kac formula (cf. Stroock
and Varadhan [16, Problem 4.6.7, page 114]) yields

(Fg)(x) = E,(he)(X)Jexp| [vx) ds)

> B (X)L, exp( - [[A1/2(f + (X)L, ., ds).

Next, choose r € (0,1) so that
(6.7) p=r(1+8)/8,

where p and § are from the hypotheses of the theorem. By Proposition 6.3, given
vy € (0,1), for any x € G and ¢ small,

h(x)/(inf f + eh(x))
= (inf f) "h(x)/(1 + (e/int f )h(x))
< (inf f)"'Cyh(x) (e/inf ) "' /(1 + [e/inf f 17" h(x)")
< Cye™ h(x),

where C, is independent of ¢, x and the open set U. Since Af|; < 0, on G we
have, for & small,

Af/2(f +eh) =Af/2f — ehAf/2f(f + eh)
= Af/2f + ehlAfl/2f(f + eh)
(6.9) < supAf/2f + [sup|Af|/2f Jeh/(inf f + eh)
G

supAf/2f + Cye'h” [by (6.8)],
G

(6.6)

(6.8)

IA

where C, is independent of x, ¢ and U. Thus for ¢ > 2T (T as in hypotheses) and
¢ small,

[1a172(f + (X)L, -, ds
< [TTTAL/2f + (X)L, 5 o ds
T
< (t-2T)supAf/2f + Coe" [ (X)L, ds,
G T

where we have used Af|; < 0 in the first inequality and (6.9) in the second.
Using this in (6.6) gives, for ¢ > 2T and x € D c U,

sup (f + eh) = suphg > hg(x)
D D
> eE (X1, . texp{ —Cyer [ TR(X),, - ds}
T

Xexp{—(t - 2T)supAf/2f}.
G
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Letting U 1 G, after some rearrangement we get for ¢t > 2T and x € D,

e‘l[sup( f+ eh)]exp{(t - 2T)supAf/2f}
D G
(6.10) > B (X)L, o{ ~Coe [ Th(X,) L, )

- Exh(Xf)exp{ e [TR(X0) ds}
T

(here X€ is Brownian motion killed at dG).
Now we use the tied down process X/(-) to study the right-hand side of (6.10).
We have by the conditional Jensen inequality

RHS(6.10) = Ex[h(Xf)Ex(exp{ — ey [ h(x0) ds}lx")]

(6.11) T
> Ex[h(X,G)exp{—C3e’th—TEx[h(XsG)r|XtG] ds}]

ButforT<s<t—T,n€ G and x € D,

E(h(XS)1XF =n)

= th(y)’pj(O, x; s, y)dy

8/(1+98)
< /'h(y)r(l+8)/8 dy fp;(o’ xS, y)1+8 dy
G G

]8/(1 +8)

1/(1+8)
< M1/<1+8)[fch(y)" dy [by (6.2) and (6.7)]

=M, < [since h € L*?(G, dx)].
Combined with (6.10) and (6.11), this yields

s"[sup( f+ sh)]exp{(t - 2T)supAf/2f}
D G

> E h(XE)exp{ —M,Cye’(¢ — 2T)}
= E .h(X,)1, . exp{ —MCye’(¢t —2T)},  esmall, x € D.

Hence for & small,

1
lim sup —log sup P,( 7 > ¢)

t— oo xeD

1 _
lim sup ?log sup [h(x) lExh(Xt)l'TG>¢]

t— o0 x€D
1 -1
< limsup —{log'[ infh] + log[:s'1 sup( f + sh)]
t— o0 t D D

+(t— 2T)supAf/2f + MCye'(£ - 2T)}
G

supAf/2f + M,Cse’.
G
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Letting ¢ — 0 and then taking the inf ovel: f e CP(R?) with Af < 0on G gives
lim sup llog sup P(7% > t)
(6.12) trw b zep
< inf{s%pAf/2f: fe C?(R?),Af <0on G}.

But for L = }A, we have [; = supn(c—;)ﬂ[—[-(p)] < 0, so an argument similar to
that in the proof of Lemma 2.3 shows

lg = inf{supAf/2f: feC*(R?Y),Af <0on G}.
G
Using this in (6.12) yields (6.3), as desired. O

Notice by Remark 4.8, Theorem 4.7 is valid in the present context. Hence just
as in the proof of Theorem 5.1, we may use Theorems 4.7 and 6.1 to obtain

THEOREM 6.4. Let G C R? be a bounded domain whose boundary satisfies
an exterior cone condition at every point. Suppose the hypothesis (6.2) holds for
any open D € D C G. If h > 0 is harmonic for 1A on G and h € L*(G, dx) for
some p > 0, then

1 -
lim —log sup P,(7& > ¢) sup [—I(n)]
tmoo x€D mG)=1

1
lim —log sup P,(75 > ¢).

t— o0 xeD
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