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FLUCTUATION RESULTS FOR THE WIENER SAUSAGE

By JEAN-FRANGOIS LE GALL

Université Pierre et Marie Curie, Paris

Some fluctuation results are proved for the volume of the Wiener sausage
associated with a d-dimensional Brownian motion and a compact set of
positive capacity. In high dimensions, the limiting distribution is normal,
whereas, if d = 2, it is that of a renormalized local time of self-intersections
of planar Brownian motion. For d = 2 or 3, these limit theorems are closely
linked with the renormalization results for self-intersections of Brownian
paths.

1. Introduction. Let B = (B,, ¢t > 0) denote a Brownian motion with values
in R% d > 2, and let K be a compact set in R The Wiener sausage associated
with B and the compact set K, on the time interval [0; ¢], is defined by

S¥(0;¢) = U (B, + K)

s<t

={yeR% y=B,+aforsomes<tacK}.

Let m denote the Lebesgue measure on R® If d > 3, Kesten, Spitzer and
Whitman (see, e.g., [10], page 252) proved that

(La) lim ~m(S5(0; 8)) = C(K),

where C(K) denotes the (Newtonian) capacity of K in R? and convergence
holds a.s. and in the LP-norm (p < o0). In the case d = 2, the following result
holds, under the assumption that K has positive logarithmic capacity:
(1b) tim 8% (5X(0; £)) = 27,

t— o0 t
where convergence again holds a.s. and in the L”-norm.

Note that the limit in (1.b) does not depend on the compact set K. Results
(1.a) and (1.b) represent the law of large numbers for the volume of the Wiener
sausage. Our goal here is to investigate the corresponding central limit theorems.
We will also emphasize the fact that, for d = 2 or 3, these limit theorems are
closely related to some renormalization results for the self-intersections of
Brownian paths, which are essentially due to Varadhan [27] (d = 2) and Yor [29]
(d = 3). Heuristically, this relationship can be explained by the trivial observa-
tion that, if there are many self-intersections, then the volume of the Wiener
sausage will be small. In higher dimensions (d > 4), there are no self-intersec-
tions and a result similar to the usual central limit theorem for independent
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992 J.-F. LE GALL

variables is expected to hold for the fluctuation of the Wiener sausage. We obtain
the following results (see Theorems 2.1, 3.1 and 4.1 for more precise statements):

Ifd=2, (log 1)’ ;
08 K(n. — -
m(8%(0; t)) 2”10gt

=27(1+ C—log2 + R(K)) — 4=y,

i
(1.c) b

where convergence holds in distribution, C is Euler’s constant and R(K) is the
logarithm of the logarithmic capacity of K, and y is the random variable
formally defined by

T /'/(.053<t51)(8(0)(Bs B B‘) - E[s(O)(Bs - Bt)]) dsdt,

where §,, denotes the Dirac measure at 0. If d = 3,
-1/2

(1d)  lim (¢log t)V*(m(S¥(0; t)) — C(K)t) = - C(K)’N;
and, if d > 4,
(1.e) lim t~*(m(S¥(0; t)) - C(K)t) = A(K)N,

where in both cases convergence holds in distribution, N denotes a standard
normal variable and, for d > 4, A(K)) is some positive constant depending on K.

In lower dimensions (d = 2 or 3), it is interesting to compare our results with
the asymptotic developments of E(m(S*(0; t))), which were obtained by Spitzer

[25],

E[m(S¥(0; )] = 2WI£—£ +27(1 + C —log2 + R(K)) (log
(1.£)
+ o( 2), ifd=2,
(log ¢)
E[m(S¥(0; t))] = C(K )¢t + 4(27) > C(K)*t/2 + o(£?),
(1) ' if d = 3.

In particular, (1.f) may be considered as a special case of (1.c), once we have
noted that the convergence in distribution in (1.c) can be turned into a conver-
gence in the LZnorm through a change of scale. In fact, we shall use (1.f) to
prove (1.c). Note also that Spitzer’s result (1.f) suggests the correct normaliza-
tion factor for the fluctuation of the Wiener sausage if d = 2, but this is no
longer true if d = 3.

Let us now state the renormalization results for self-intersections of Brownian
paths from which we will deduce (1.c) and (1.d). It is well known that a
Brownian path in R¢ will intersect itself if and only if d < 3. We now assume
that d = 2 or 3. The local time of self-intersections of B, on the time interval
[0,1], is the Radon measure on J= {(s,?); 0 < s < ¢t < 1} formally defined by

«(4) = [ L 80(B, — B,) dsdt,
where §, denotes the Dirac measure at 0 and A is any Borel subset of 7. We
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refer to Dynkin [4], Rosen [8] or Le Gall [13] for a precise definition of a. It
turns out that a(.7") = 0, a.s. Heuristically, this corresponds to the fact that
there are too many self-intersections near the diagonal {s = t}. If J, is the
compact subset of 7 defined by 7, = {(s,t) € J; t — s > ¢}, it follows that

lima(J, ) = w0, as.

e—0

This limiting behavior is better understood if we compute
1 1
= —_— _d/2 = — _—— 1 =
Ela(7)] ffz(mr(t ) “*dsdt 2ﬂ(log8 1+ e), itd=2,

= 2(27) X (e /2 - 2 + £/2), if d = 3.
The renormalization results give some information on the asymptotic behavior of
a(7;) — E[a(T)],

1 1
. li — —1
(1.h) ;g;(a(z) —log

€

! ifd=2
)—Y 277" 1 ]

-1/2

-1/2
(1) lin(x)(log%) (a(7;) - 2(2m) % 12) = N, ifd=3,
where convergence holds in the L2norm for (1.h), in distribution for (1.i). The
limit result (1.h) was obtained, in a slightly different context, by Varadhan [27],
whereas (1.i) is due to Yor [29].

Different approaches to (1.h) have been proposed recently by Dynkin [4],
Rosen [19], Yor [30] and Le Gall [13]. Note that (1.h) may be considered as a
definition of the limit variable y. The connection with our previous formal
definition becomes obvious if we replace (1.h) by the equivalent statement

(1) lim (a7, ) - E(a(7))) =

Let us now describe the relationship between (1.h) and (1.i) and our results
concerning the fluctuation of the Wiener sausage in R? or R3. First, we need to
introduce the Wiener sausage of small radius e associated with B and the
compact set K on the time interval [0; 1],

S¥= U (B, +¢K)

s<1
={y€R% y=B,+eaforsomes<1,a€K}.

An obvious change of scale shows that (1.c) and (1.d) are, respectively, equivalent
to

m(SK) - w(log%)_l)

- §(1 +C-log2 + R(K)) — n2y, ifd=2,

1 2
lim (log—)
(l.C') e—0 €

1 -1/2
(1.d) lin(l)s_z(log;) (m(SX) - eC(K)) == 'C(K)’N, ifd=3.

In order to study the asymptotic behavior of m(SX), we will use the following
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device. We first write S as the union of SX(0; 1) and SX(1; 1), where SX(u; v)
denotes the Wiener sausage of radius ¢ on the time interval [u; v]. This leads to

the identity
{m(sF)} = {m(8(0;3))} + {m(8X(3;1)))
—{m(85(0;3) n 8¥(3;1))},
where we use the notation {U} = U — E[U] (this notation will be frequently
used in the sequel). Then we divide SX(0; 1), resp. SX(3;1), into two pieces
according to the same device, but we do not modify the intersection term. After
n steps, we obtain the formula
(m(59)) = X {m( (225 )
€ € 2n ’ 2n

(14) =
| n 2P71 2¢-2 2¢-1 2g -1 2¢q
-5 L T o))
e W et
Now the key observation is that we can choose n large so that the first term of
the right-hand side of (1.j) is negligible in comparison with the second term.
More precisely, this is true if n is large, independently of ¢, when d = 2, if n is of
the same order of magnitude as log(1/¢) when d = 3. Thus we have reduced the
asymptotic behavior of {m(SX)} to that of a sum of intersection terms. Because
of the independence of Brownian increments, each of these terms can be
interpreted as the volume of the intersection of two independent Wiener sausages.
More precisely, take ¢t >0 and A < ¢. Then (B/=B,_,— B,; 0 <s < h) and
(B = B,,, — B,; 0 <s < h) are two independent Brownian motions starting
from 0. Using obvious notation, we have

m(8/%(0; k) N 8/%(0; b)) = m(8f(¢ - h; ) N SK(t; t + h)).
Moreover, the intersection local time of B’ and B”, as defined in [7], is related
to a by the equation

/0"/0"8(0>(B; — B/)dsdt — /t‘_hft”"s(o)(Bu _ B,)dudo

=a([t—h;t) X (t; t+R]).
Thus, at least when K is the unit ball, we can use Corollary 3.2 of [14] to obtain,

for any p, q,
1)\2 29—-2 2q-1 29 -1 2¢q
: - K . K ekl
3‘3(1°ge)m(s"( 27 27 )”Se( 27 2))
(1.k)
. ([2¢—2 2¢9-1 29 -1 2q .
=7ra([ Y ; Y ) ( Y ;F , ifd=2,
2g—-2 2q—-1 2g—1 2¢q
P K . K R
- lime m(S( 9p ' 2P ) ( 27 ’21')
(1)

2g—-—2 2¢q—-1 2g—1 2¢q
; ) ( 9p 52,;

=C(K)2a([ TEEY —), ifd=3,
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where in both cases convergence holds in the L2-norm. These results are proved
in [14], in the special case when K is the unit ball. We shall see that they extend
to the case of a general compact set K. Using (1.k), (1) and the remarks
following (1.j), the asymptotic behavior of {m(SX)} is reduced to that of (T ny)s
where

n 27 [2¢-2 2¢-1 2g-1 2
(1.m) - 0 U |20« (2,
p=1gqg=1
and n is large independently of ¢ if d =2, and n = log(l/¢) if d = 3. The
justification of this replacement is easy if d = 2, but for d = 3 we shall need a
precise estimate of the rate of convergence in (1.1) (Corollary 3.4). This estimate
makes it possible to improve some of the results in [14]. In particular, it shows
that the convergence (1.1) holds a.s. in the special case when K is the unit ball.
Once we have justified the replacement of {m(SX)} by {a(I(n))}, We may use
the “renormalization” results (1.h) and (1.i) to prove (1.c’) and (1.d"). In fact, it is
not hard to see that {a(7,,)} has the same asymptotic behavior as {a(J;-»)}.
The preceding method does not apply if d > 4 since the intersection local
time does not exist. In this case, the idea of the proof is as follows. Starting again
from (1.j), we note that we may choose n large, but not too large, so that the
intersection terms of the second member are negligible in comparison with the

term
2 k-1 &k
(s ()

I s
But this term is nothing but the sum of 2" independent identically distributed
random variables with zero expectation. Thus we can use the usual central limit
theorem for triangular arrays to study its asymptotic behavior. The only delicate
point of the proof is the estimation of the variance of m(SX).

Let us point out an important difference between results (1.c) and (1.d) on one
hand, and (1.e) on the other hand. The liimit random variables y in (1.c) and N
in (1.d) are the same for all compact sets K, in the sense that, if K,..., K, are
p compact sets, we can state a limit theorem for the joint distribution of
{m(Sg(0,¢))}, i=1,..., p, which involves only one limit variable, y if d = 2
or N if d = 3. This remark is an obvious consequence of the relationship between
(1.c) and (1.h) on one hand, and (1.d) and (1.i) on the other hand. Although our
method does not provide such a result, we believe that, if d > 4, the limit
variables corresponding to different compact sets are not the same. This observa-
tion is made plausible by the results obtained by Yor and Calais [31] on a
slightly different problem (see the end of Section 4).

There is a close connection between our results and some limit theorems for
the range of a random walk; it -was noticed by Spitzer [25] that the discrete
analog of the Wiener sausage is simply the range of a random walk. Thus it is
worth comparing our results (1.c)—(1.e) with the analogous results for random
walks, which were proved by Jain and Pruitt [11] (d > 3) and Le Gall [15]
(d=2). Let X = (X, n > 0) denote a random walk with values in Z¢. Assume
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that X has zero mean and finite second moments, and that X is adapted. Let
R, denote the number of distinct points visited by X before time n. Then

. (logn)® .
(1.n) lim ~ {R,} = —Cyxy, ifd=2,
(1.0) lim (n log n)"*(R,) = CyN, ifd=3,
(1.p) lim n %R} = CyN  ifd>4,

where convergence holds in distribution, Cy is some constant depending on X
and the limit variables y and N have the same meaning as previously stated. In
particular, the close connection between (1.d) and (1.i) provides some explanation
for the extra factor (log n)~'/2 in (1.0).

Let us now mention various results about the Wiener sausage, which have
been proved since the pioneering work of Kesten, Spitzer and Whitman. Some
large deviations results for the volume of the Wiener sausage have been estab-
lished by Donsker and Varadhan [1]; it is worth noting that similar results for
the range of a random walk have also been proved by the same authors [2].
Asymptotic theorems for the Wiener sausage have often been motivated by
physical problems (see, e.g., [12] and [23]). In particular, Kac and Luttinger [12]
use both the law of large numbers for m(S¥(0, ¢)) and Donsker and Varadhan’s
result, which was only a conjecture at that time. In this connection, Eisele and
Lang [6] have recently extended Donsker and Varadhan’s result to the case of
the Wiener sausage with drift. Sznitman [26] considers the Wiener sausage
associated with an elliptic diffusion and proves analogs of (1.a) and (1.b).
Sznitman’s results suggest that an analog of (1.¢’) and (1.d’) also holds for general
elliptic diffusions. Note that the local time of self-intersections for smooth
elliptic diffusions in R2 or R? has been studied by Rosen [21]. In the Brownian
case, Weinryb [28] obtains interesting extensions of (1.k) and (1.1) by replacing
the Lebesgue measure m by an arbitrary measure satisfying some integrability
conditions. Some extensions of the previous results may also hold for general
Lévy prccesses; see Hawkes [9] for an extension of (1.a) and Shieh [22] for a
construction of the intersection local time of Lévy processes.

In Section 2 we investigate the case d = 2. The arguments are similar to those
given in [13] for the special case when K is the unit disk. However, details are
provided for the sake of completeness. Section 3 is devoted to the case d = 3.
The main ingredient is the technical estimate of Lemma 3.3. We also give an
elementary proof of Yor’s renormalization result (1.i) (Yor’s original method was
based on his Tanaka formula for the intersection local time.) Finally, Section 4
deals with the case d > 4 and contains the proof of (1.e).

2. The two-dimensional case. Throughout this section we assume that B
is a two-dimensional Brownian motion starting from 0, and that K is a compact
set of the plane of positive logarithmic capacity. We will use the same normaliza-
tion of logarithmic capacity as Spitzer [25], so that the capacity of the unit disk
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is 1. We denote by R(K ) the logarithm of the logarithmic capacity of K. Our
goal in this section is to prove the following theorem.

THEOREM 2.1. Let SX denote the Wiener sausage of radius ¢ associated with
K on the time interval [0,1]. Then

1 1 T ‘
lim (1og—)((1og—)m(s§) - 77) = 5(1 +C-1log2 + R(K)) — =%y,
e—0 € €

where convergence holds in the L:-norm. Here C is Euler’s constant and v is
the renormalized local time of self-intersections of B, formally defined by

v /Lss<t51(8(0)(33 - B) - E[S(O)(Bs - B,)]) dsdt.

The simplest way to define the limit variable y is to replace the Dirac
measure by an approximating sequence §,, and to take a limit as n tends to .
This approach was used by Varadhan [27]. One can prove (see [13]) that the
limit does not depend on the approximating sequence. In the course of the proof
of Theorem 2.1, we shall give an alternative construction of 7y.

Before we proceed to the proof of Theorem 2.1, we will state a few preliminary
results. Without loss of generality, we may and will assume that K is contained
in the closed unit disk D. Our first lemma shows that, for any y # 0, P[y € SX]
is of the same order of magnitude as P[y € SP]. Let us recall the following
result due to Spitzer [24]: For any y # 0, ¢t > 0,

(2.a) lim (log%)P[y € 820, )] = ﬂfotps(O, y) ds,

where p,0, y) = (27s) 'exp(— |y|?/2s) is the Gaussian density. Moreover,
according to [14], there exists a constant ¢ such that, for any y # 0, € € (0; ),

(2.2") lo —I—)P[ eSP| <e 10—1— V ex _o
. g£ Yy . 1 = glyl p 16 11
LEMMA 2.2. Foranyy € R? y+0,
1
lin})(log—a—)(P[y e 8P| - P[ye S¥]) =o.

REMARK. We could improve on the result of Lemma 2.2 by showing the
convergence of

1 2
(log—e—) (P[y < 8P| - Py SX]).
That kind of result would lead to a proof of Spitzer’s result (1.d).

Proor. For any ¢ > 0, set
T(y) =inf{t >0, B,€ y — eD},
TX(y) =inf{t>0; B,e y — ¢K}
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(y — €K is the set {y — e2; z € K}). Note that T\(y) < T.%(y) and that
P[yesP] - P[yesf] = P[T(y) <1< TX(y)].
Moreover, '
P[T(y) <1< TX»)] < P[1 -8 < T(y) <1]
+P[T(y) <1-8<1<TX(y)
Now it is obvious from (2.a) that

1
lim (limsup (log—)P[l -8<T(y)<1]|=0.
-0 em0 €

Thus we need only verify that, for any § > 0,
1
(2.b) lin(l)(log;)P[Te(y) <1-8<1<TXy)]=0.

We now apply the Markov property at time T)( y) and denote by P, the law of B
starting from z. Using (2.a) again, we get, for some constant C(y),

1
(log—e—)P[Te(y) <1-8<1x<TX(y)]

(2.c) <C(y) sup (P[TX(y)>3])

z€y—eD

< o) su (2|70 > ).

zeD
where the last bound follows from an obvious change of scale. Now, since K has
positive capacity, it is clear that

(2.d) lim (supPz[TlK(O) > t]) - 0.
t>oo\zeD

Putting (2.c) and (2.d) together, we get (2.b). O

COROLLARY 2.3. Let B’ denote another Brownian motion, independent of B,
and let S!¥ denote the corresponding Wiener sausage. Then

1 2
linz) (log;) m(SX n §/%) = =?8([0;1]%),

where convergence holds in the L%norm and B([0; 1]?) is the intersection local
time of B and B’ on [0;1]?, formally defined by

B0s1T) = [ [[00(B, ~ By) dsck
(see [3] or [7] for a precise definition of B).

PRrOOF. The result of the corollary is known to hold in the special case
K = D (see [14]). In order to extend it to a general K, it suffices to prove that

1 2
(2.e) lin}) (log;) E[m(S? n §/?) - m(SX n 8/%)] = 0.
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The proof of (2.e) is easy. We first write
E[m(S?n §;°) -~ m(Sf n S;%)]
~ [ay(P[y e sP]Py e 5;°] - Py e 5f]P[y e 5/7]).

Then we use Lemma 2.2 together with (2.a’), which allows us to apbly the
Lebesgue dominated convergence theorem. O

LEMMA 2.4. There exists a constant C, such that, for any 0 <& < 3,
1 —4
B[(m(s) - E(m(s?)] < (1067 -
ProOOF. Let

1 2
F(e) = [log | B((m(s%) - E(m(s))
We aim to prove that F is bounded. We start from the trivial identity
m(8K) = m(8X(0;3)) + m(S/(3;1))

~m(8/(0;3) N 8¥(3;1)-

Note that m(SX(0; 1)) and m(SX(}; 1)) are independent random variables. Using
(2.f) together with a suitable change of scale and Corollary 2.3, it follows that,
for any p > 27'/2 and any e sufficiently small,

(2.g) F(e) < pF(2"%) + C,

where C is some constant not depending on e. Taking p < 1, we obtain that F is
bounded when ¢ is small. O

1/2

(2.£)

PROOF OF THEOREM 2.1. We will use the notation (U} = U — E[U]. We
start from formula (1.j) and we first notice that, for n > 1 and ¢ < 277,

Bttt el

=9n. 272 [{m(s,fén/e(O; 1))}2]

E

1 —4
sCﬂ"‘(log' ) s

£2n,/2

where the last bound follows from Lemma 2.4. Thus we see that, if n is large
enough and if ¢ < 27", the L%-norm of

o {5 {252
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will be small. Then we fix n and apply Corollary 2.3, which implies that

1 L 29-2 2¢g-1 2¢ -1 2¢q
K . p——
lim (log ) { X X m(S ( ' 9p ) N SeK( 9P ’2p))

e—0 p=1 g=1

= 7’2{"‘(y<n))}

where convergence holds in the L*norm and « and J,, are defined in the
Introduction. Then, if n is large, {a(,,)} is close to y in the L?norm. In fact, it
is extremely easy to prove the L2-convergence of the sequence {a( Tiny)}> and ¥
may be defined as the limit of this sequence (see [13]). The preceding remarks
together with formula (1.j) imply that

(21) tim 08 | {m(55)) = -7y,

with convergence in the L%norm. On the other hand, Spitzer’s result (1.f) and a
suitable change of scale yield that

(24) ot (1°g1) ((log%)m(sgf) - ,,)

ko
= 5(1 + C —log2 + R(K)).
Theorem 2.1 follows from (2.h) and (2.i). O

REMARKS. (i) Theorem 2.1 yields a simple proof of the almost sure conver-
gence in (1.b). Taking a, = exp(n®*™*), we note that the series

ZE((( 1°ff"’)rn(§‘(0; a,)) - 2,,)2)

n n

converges, and this is enough to get (1.b), since m(S¥(0; t)) increases with ¢, and
linl(an+ l/an) =1

(ii) Dynkin [5] has shown recently how to define a renormalized local time for
k-multiple intersections, for any %2 > 2. Note that y corresponds to the case
k = 2. Dynkin’s results can be used [17] to obtain higher asymptotic expansions
for m(SX(0; 1)), thus improving the statement of Theorem 2.1. The expansion at
the order (log(1/¢))~* involves the renormalized local times for p-multiple
intersections, for p = 1,2,..., & (Theorem 2.1 is the case k& = 2).

3. The three-dimensional case. We now assume that B is a three-dimen-
sional Brownian motion and that K is a compact subset of R® with positive
capacity C(K ). We use the same notation as in the Introduction. In particular,
a(-) denotes the local time of self-intersections of B, formally defined by

o(F) = ffF.s«»(J_f;s - B, dsdt,
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for any Borel subset F of 7= {(s,t); 0 <s <t<1}. Forany ¢ >0, J, is the
set {(s,t)ET; t—s=>¢}.

THEOREM 3.1. There exists a constant C, such that, for any ¢ € (0, }),

(3.0) E((e*{m(8X)) - C(B)*{a(72)})) < C,.
In particular,

1)\-1/2 1 R
(3.b) lgrz)e_z(log;) (m(SK¥) - eC(K)) = ;C(K) N,

where convergence holds in distribution and N denotes a standard normal
variable.

Before proving Theorem 3.1, we need to establish a few technical estimates.
Without loss of generality, we may and will assume that B, = 0 and that K is
contained in the closed unit ball, which we denote by D. We shall sometimes use
the probabilities P,, y € R?3; under P,, B is a Brownian motion starting from y.
For ye R3 ¢> 0, weset

TX(y) =inf{t > 0; B,y — eK },
LX¥(y) =sup{t>0; B,ey — ¢K},
where sup @ = 0. Our estimates will involve the function ¢ defined by
Y(r) =r ',y + exp(-r?/16), r>0.

If p(y, z) is now the three-dimensional Brownian transition density, we have,
for some constant c,

1
fops(y, z)ds < cy(lz — ).
LEMMA 3.2. (i) Assume that |y| > ¢> 0. Then, for anyt > 0,

Bc) P[T (y) <t] = (Iyl f (2ms) e ( (Mzs ))

Moreover, we may choose a constant C, such that, for any y,z € R3,
g, & € (0;1),

(3.d) e 'P[TP(y) < 1] < Cy(y),
(se’)_lP[TD(y) <1;T?(2) < 1]

< C(¥(l) + ¢(|z|))¢( nti )

" (ii) Let ey denote the equzlzbrzum measure of K. Then, foranyy € R3, ¢ > 0,
t>0,

(3.) Plo<LK(y)<t] = sfeK(dw)fOtps(O, y — ew) ds.

(3.4
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In particular, we may choose a constant C, such that, for any y, z € R3,
g, & €(0;1) with |y| = 2(e + ¢), |2| < ¢,

e P[0 < LX(y) < t] - C(K)/ps(() y)d8’<C4(s+g)¢(|y|)

Proor. Formulas (3.c) and (3.e) are well known (see, e.g., [10], pages 247250,
for the definition and main properties of the equilibrium measure). The bound
(3.d) is easily derived from (3.c). In order to prove (3.d’), we note that it suffices
to bound P[T’(y) < TP(z) < 1] and then we apply the Markov property at
time T'°(y) and we use (3.d) twice. This method yields the desired result when
ly] > 2¢, |2 — y| > 2(¢ + €'). The remaining cases can be handled without dif-
ficulty.

We now proceed to the proof of (3.f). We start from (3.e) and note that ey is
supported by K and that ey (K) = C(K). Then (3.e) implies

e P[0 < LE(») < 1] = C(K) [0, 5) s

<CE)[* sp (|p0,y +w) = p,(0, 7)) ds

0 |w|<e+e

The assumption |y| > 2(e + ¢’) implies that the following bound holds:
sup | p,(0, y + w) — (0, y)|

lw|<e+¢

< (2773)_3/2(3(3 + e')l;z—| A l)exp(— %)

By integrating with respect to ds, it follows that, for some constant c,

e P[0 <LX(y) < t] - C(K) [P0, ) ds|

L ly?
< c(e+ €)ly| %exp| — 6|

which yields (3.f). O

LEMMA 3.3. Let K’ be another compact set in R3, also contained in the unit
ball. There exists a constant C; such that, for anyy, z € R3, ¢, ¢ € (0;1),

}p[TeK( y) = TX(2) 1] - wC(K)C(K) jo '5.(0, y) ds fo (3, 2) dt}

< Cyee(w(lyl) + \P(Izl))rb( 2 ')

(o) A 1+ ewlap) a1+ (e g B30 aa,
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Proor. We may restrict our attention to the case |y| > 2¢ |2| > 2¢
|z — y| > 2(e + ¢). Indeed, if one of these bounds is not satisfied, the statement
of Lemma 3.3 is a trivial consequence of (3.d") and the remark preceding Lemma
3.2.

Throughout the proof, ¢ will denote a constant that does not depend on y, z,
¢, ¢/, but may vary from place to place. The first step of the proof is to establish
the bound

|P[TX(y) < T¥(2) < 1] - P[T¥(y) <15 z € SX(TX(y); 1)]|
— oyl \2
< cee (e 52
[note that the definition of SX(a; b) makes sense even if a and b are random
variables]. We have
|P[TX(y) < TX(2) < 1] - P[TX(y) < 1; 2 € SF(TX(5);1)] |
= P[TX(2) < TX(») < 1; 2 € SK(TX(5);1)]
< P[TX(2) < 1]sup{ P, [TX(5) < 1]; |2, - 21 < &)
xsup{P, [TX(2) <1]; |y, - 5| <

=< Ca‘?/‘!/(‘zncaf‘!/( i ; ed )Cael\l/( 2 ; id ),

using (3.d), the fact that K, K’ are contained in the unit ball and the
assumptions |z| > 2¢/, |z — y| > 2(¢ + ¢). Formula (3.g) follows immediately,
with ¢ = (Cy)3.

The second step is to prove

|P[TX(y) < 1; 2 € SK(TX(5);1)] - P[TX(y) < LE(2) <1]|

(3.8)

(3.h)

< cee (¥ ¥ (12 — y1)”.
We have

P[TX(y) < 1; z € SX(TX(5); 1)] - P[TX(y) < L¥(2) <1]
= P[TX(y) < 1; 2 € S¥(TX(y); 1) n 8K(1; »)]
< P[TX(y) < l]sup{Pye[Tf'(z) <t<LEQR)];ly.-y <& te0; 1]}
< Cyey(lyl)sup{ P, [TP(2) < t < L2(2)]; Iy, — ¥l <&, t € [0;1]}.

Then we use (3.c) and (3.e) to bound, for y, such that |y, —y| <& and for
t e [0;1], '

P,[TP(2) < t< L2(2)]
< (27)_1/2e’ftdss‘3/2eXp k — oA (277)_1/26'_/00 duu=3?
- 0 8s t—s

k—ﬂv

_ =12 [t —3/2(4 _ \~1/2 _
2(27) e fodss (t—s) exp( 5
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Using this bound, it is an easy exercise to verify that
sup({P, [TP(2) < t < LA(2); Iy~ Yl <&, t € [051]} < (12 - y1)’,

from which (3.h) follows immediately.
The next step is to prove

[PIT5() < L) <]

(34) ~E[TX() = 15 40(K) [, (5,2) as|

< cee(e + s')¢(|y|)¢( 'z =2 )2.

By applying the Markov property at time T.%(y) and using (3.f), we obtain

’ 7K
‘P[TLK(J’) <L¥(z)<1] - E[1@;(0,SD&:’(J(K')fO1 Op (9, 2) ds”

Py, [0 < LE(2) < ¢]

<E [I(T‘K(y)sl)sup
t<1

~¢C(K") ['p(,2) ds]]

|z — ¥
2

)QP[T:‘(y) <1]

Iz—yl)2

< C,e(e+ s’)n{z(

< CyC,ee'(e + 8’)¢(lyl)\!f( 2

We now want to estimate
E [I(T,K(y)sl)S'C(K ’) fo (3, 2) ds]
= ¢C(K") ['dsp,( 3, 2) P[TX(y) <1 - s].
First, we have 4
3.4) Uoldsps(y, 2)(P[TX(y) <1-s] - Plo< LE(y) <1- s])]

< ce®(ly — 2) ¥ (y1)”.
The proof of (3.j) is very similar to that of (3.h) and will be left to the reader.
Second, the arguments used in the proof of (3.i) easily imply that

‘Edsps(y, z)(P[O < Lf(y) <1l-s]- sC(K)'[)l—sp,(O, y) dt)’

< es(j2 — ) ()"
The statement of Lemma 3.3 now follows, by putting together (3.g)—(3.k). O

(

(3.k)
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COROLLARY 34. Let B’ be another Brownian motion starting from 0, inde-
pendent of B, and let S!¥ denote the associated Wiener sausage. There exists a
constant Cg4 such that, for any ¢ € (0, 3),

(3.1) E[(e—2m(s:< N 8/¥) - c(x)*B([o; 1]2))2] < Cge log%.
Here B([0; 1]2) denotes the intersection local time of B and B’ on [0;1]?,
B([0; 1) f [ (B, — B;) dsdt.
In the special case when K is star-shaped (i.e., eK C K for ¢ < 1), we have
(3.m) me-?m(sf N 8/¥) = c(K)’B([0;1]%), a.s.
Proor. We first consider another compact set K’, as in Lemma 3.3, and we
establish the preliminary bound, for ¢, ¢ € (0, 3),
|E[(ce) *m(SX n 8;)m(SK 0 8:%) - (K )*C(K')B([0; 11|

(3.n) 1 1
< Cs’(elog— + a’log—,).
€ €

Note that
E[m(SEK N SE’K)m(Sf' N SE’,K')] = fdydzP[TEK(y) <1; T¥(z) <1]?
(3.0) = [dydz (P[TX(y) < T (2) <1]
+P[TX¥(z) < TX(y) <1])".
On the other hand (see, e.g., [15], Proposition 2.1),

E[p([0:11)] = [dyae( ['p.(0. y) s [ pi(y, 2)
(3-p) 2
+['p0.2) ds [ bz 5) )

Lemma 3.3 gives us bounds on

(e¢)'P[TX(5) < TF(2) <1] = C(K)C(K) ['p,0, 3) ds [ 'ply, 2) ]

Taking (3.0) and (3.p) into account and using both the bounds of Lemma 3.3 and
(3.d"), we obtain (3.n). The point here is that ¢(|y|)? is integrable, but ¥(|y|)? is
not.

“The convergence (3.m) is known to hold in the L%-norm when K is the unit
ball D (see [14]). Thus we may take K’ = D and let ¢ tend to 0 in (3.n) to get

(3.9) (472)‘E[£_2m(SEK N SE’K),B([O; 1]2) - C(K)2,B([0; 1]2)2] ‘ < Cs’slog%.
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Similarly, taking K = K’, ¢ = ¢, we have

(3.r) ’E[e"‘m(SeK N 8/%) = o(K)*B([0:11%)7]| < cye log%.
Formula (3.1) follows immediately from these two bounds, with C; = 3C{.

In the special case when K is star-shaped, m(SX) is a monotone function of e,

and (3.m) follows from (3.1) and an easy application of the Borel-Cantelli lemma.
O

ProOF OF (3.a). We start from formula (1.j) and take n = n(e) such that

1 n/2 -1
$ < €2 <3.

ol Bl 2]
W el

= (22/2) E[{m(SK.~(0; 1)} < C.

We first bound

Then we bound

E 8_2,21 zgl {m(SEK( 2qz; = 2q2; 1) " SEK( 2(12; : —2%))}
-C(K )2{“(~7(—n))})2J1/2
5 (El e s )

55252 (5 2]

(independence of increments)

= Z 2(P=1/29=3p/2F [(8_2{m(8£p/2(0; 1) N Selép/Z(l; 2))}
p=1

—c(kY2#(a(l01) x (152D}
' (change of scale)

n
<2722y (e2p/2log
p=1

1/2
577 ) (Corollary 3.4)
£

< GCg.
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Thus we have proved

2
(3.t) E[(e-z{m(sf)} - C(K ) {a(Z,)}) ] < (C, + G).
On the other hand, elementary calculations show that, with our choice of n,
2
(3.u) E[({a(z,,,)} - {a(72)}) ] < G,.

Formula (3.a) follows from (3.t) and (3.u). O

ProoF oF (3.b). Keeping Spitzer’s result (1.g) in mind, we see that (3.b)
follows from (3.a) if we know that

(3.v) lim (log%)_l/z{a(,z )} =

-0

with convergence in distribution. Formula (3.v) is proved by Yor [29] [in fact,
Yor’s result is more general than (3.v)]. For the sake of completeness, we will now
sketch an elementary proof of (3.v). The first step of the proof is to estimate the
variance of a(7,). We show that

(3.w) !i_x}})(log%)_ E[{«(7))] = 5%

We first compute
E[a(7,)] = [ [ @n(c—5)) " dsds

= 2(2'7r)_3/2.e'1/2 - 4(277)_3/2 + 2(2m) 2 %%

then we write

E[a(7 )] = E[ffyffydsdtds’dt’&m(Bs — B,)do(By — B,,)].
We investigate separately the three cases {s <t <s’' < t'},{s <s’' <t <t} and
(s < 8’ < t’ <t} and after some lengthy but straightforward calculations we find
that
2 =3l 4.1 -1/2 1 1
E[a(Z ) ] = (27) °[4e ! — 16712 + 4vrlog; + o0 log; ,

from which (3.w) follows easily.

We now define
1 1/2
N=N(e) = [(log—) ],
)

where [u] denotes the integer part of u. We note that

N
(8.x) (7)) = X XF+ R,

i=1
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where

X [i -1 )\2 p
i a N ’ N) n €
and the remainder R® satisfies

E[R] < %E[a([lz_vl,%) X

i=1 N’
Our choice of N implies that
1 -1/2
(3.y) linz) (log—) R* =0, inthe L'-norm.
£ €

On the other hand, the random variables (Xf, 1 < i < N) are independent and
identically distributed and satisfy

, 1\-V2 _— 1) g 1
hm(log;) E[{Xf} ] =21_I}})(10g;) E[{a(fm)} =g

e—0

where we have used (3.w). Formula (3.v) will follow from (3.x), (3.y) and an
application of Lindeberg’s theorem on triangular arrays to the family
((log(1/¢)) "4 Xf}; 1 <i < N(e)). Of course, we need to verify Lindeberg’s
condition. It is clearly enough to prove that

1 2
(3:2) B[{a(57))] = Cufloe )
for some constant C,,, and for 0 < ¢ < . In order to prove (3.z), we set
gr=In 03]’ Zr=g 0[]
The identity
o 7;) = (1) + o(F2) + o([0;3) x (3:1] 0 7, )
implies that
E[{a(7)}]"* < E[{a«(5) + «(72)}] " + Cone
On the other hand, using (3.w) again, l
E[{a(s) + o(72))'] - 28[{a(5))'] + sE[{«(7)} ]

< 1E[{«(F)}] + ‘Cl2(log%)2.

Hence, setting h(e) = (log(1 /e)?E[{a(7.)}*], we find that, for any p >  and for
¢ sufficiently small,

h(e) < ((ph<2s) b o)+ (lgl)/c)
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from which it follows immediately that A(e) is bounded when ¢ is small. This
completes the proof of (3.z) and hence of (3.v). O

REMARKS. (i) The preceding arguments may be adapted to yield a simple
proof of the following renormalization result for stable processes due to Rosen
[20]. Let X = (X,; t < 0) denote a symmetric stable process in R2, with index
v > 1. Then it is known that the path of X has double points. For any ¢ > 0, let
8,(x) be the transition density of X at time ¢, so that 8, is an approximation of
the Dirac measure 8, and define

a(T) = [ [yae(xs — X,) dsdt.

Rosen’s result states that, if » < 3,
limy(e){a (7)) = O,

where the convergence holds in distribution, C, is some constant depending on »
and (&) = (log(1/e))" % if v = 4, €2/?73/2 if » < 4. Rosen’s proof is difficult
and requires the estimation of all moments of {a(Z)}. Using the same argu-
ments as given previously for the proof of (3.v), one can reduce the proof of
Rosen’s result to an estimate of the second moment of {a(7)}.

(ii) In the case when K is the unit ball D, it is possible to give a direct proof
of (3.b), which does not involve the notion of intersection local time. Indeed,
some tedious calculations show that

E[(m(Sf’))zl = 4n%2 + 8(27)* %% + 16w284log% + o(s“log%),
from which it follows that
var(m(SP)) = 167r2£4log% + o(e“log%)
and then the same arguments as in the preceding proof of (3.v) yield (3.b).
4. Results in higher dimensions. We now assume that B is a d-dimen-

sional Brownian motion, with d > 4, and that K is a compact subset of R?.
Then Spitzer’s results (1.f) and (1.g) can be extended as follows (see Getoor [8]):

C(K)?

472

(4.) E[m(S¥(0;¢))] = C(K)t + logt + o(logt), ifd =4,

(4.b) E[m(S¥(0;t))] = C(K)t+ jdyP[TK(y) <o|*+0(1), ifd=>5,
where we have used the same notation as in Section 3,
' TX(y) = inf(t; B,e y — K}.
Since
E[m(8%(0; ¢))] — C(K )t = E[m(S¥(0; t) N SX(¢; 0))],
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(4.a) and (4.b) can be interpreted in terms of intersections of independent Wiener
sausages. Let S'%(0,¢) denote the Wiener sausage associated with another
Brownian motion B’, independent of B but such that B, = B, then

(4.2") Jim (log ) 'E[m(S%(0; t) N §7%(0; 0))] = Cif2)2, ifd=4, -
Jim E[m(S%(0; t) N 8%(0; 0))]
(41 = E[m(8%(0; ) N §%(0; )]
- fdyP[TK(y) <]’ <o, ifd=5.
Note that (4.a’) can be strengthened by
tlirg (log t) "'m(S¥(0; t) N 8'%(0; 0)) = gz(l—fr%)iN2,

where convergence holds in distribution and N denotes a standard normal
variable. The latter result is proved in [16] in the special case when K is the unit
ball, but the proof can be easily extended. If d > 5, m(S¥(0; c0) N S"%(0; 0)) is
a finite random variable in L? for any p < oo.

THEOREM 4.1. There exists a nonnegative constant A(K) such that

lim t~%(m(S¥(0; t)) — tC(K)) = A(K)N,

where convergence holds in distribution and N denotes a standard normal
variable. Moreover, A(K) is positive if and only if K has positive capacity.

The main ingredient of the proof of Theorem 4.1 will be the following lemma.

LEMMA 4.2. For any compact subset K of R?, there exists a constant A(K),
positive if and only if K has positive capacity, such that

lim t~'var(m(S%(0;¢))) = A(K ).

Proor. We may and will assume that B, = 0. We shall deal with a fixed
compact set K, contained in the unit ball, and thus we drop the index K in the
notation. For 0 < a < b, set

S(a; b) = S(a; b) — S(0; a).



FLUCTUATION RESULTS FOR THE WIENER SAUSAGE 1011

Let n, N be two integers with 1 < n < N. We start from the trivial formula
m(8(0; n)) + m(S(n; N)) = m(S(0; N)).

By taking conditional expectation with respect to %, = o(B;; s < n) and then
subtracting the expected values, it follows that

(42) (m(8(0; n))) + {E[m(S(n; N)IZ]) = kz vy,

where
UY = E[m(S(0; N))|#,| — E[m(S(0; N))|F;_,].
The independence of increments clearly implies that
(4d)  {E[m(S(n; N))Z]} = —{E[m(S(0; n) N S(n; N))|%,]}.
Similarly, for £ = 1,..., N,
UY = E[m(S(k - 1; N))|%,] — E[m(S(k - 1; N)) |, _\]
=m(S(k - 1; k) — E[m(S(N - 1; N))|F;_]
+E[m(S(0; k — 1) n S(k — 1; N — 1))|%,_,]
—E[m(S(0; k) N S(k; N))|F:].
Let %, , denote the o-field generated by the increments of B on [a; b]. Then
E[m(S(N - 1; N))|Z_] =) E[m(S(0;1) = S(1; N))|Fy_pern],
from which it follows that
Nﬁ_erE[m(.§(N - 1; N))|%,_,] = E[m(S(0;1) — S(1; »))] = C(K),
in the L'-norm. We finally obtain -
Jim. UM =m(S(k - 1; k)) - C(K)

+E[m(S(0; k — 1) N S(k — 1; ))|F,_,]
(4.) —E[m(S(0; k) N S(k; )| %]
= (E[m(S(k — 1; k) — S(k; ))|%,] }
+E[m(8(0; k — 1) N S(k — 1; 0))|F;_1]
—E[m(8(0; k — 1) N S(k — 1; 0))|F].
Letting N tend to infinity in (4.c) and taking into account (4.d) and (4.e), we
obtain

(4 (m(S0; ) = (E[m(S(0; n) 0 8(ns 0))IZ]} + ély"’



1012 J.-F. LE GALL

where
Y, =E[m(S(0; £ — 1) N S(k - 1;0))|F,_1]
—E[m(S(0; £ — 1) N S(k — 1; 0))|F]
+{E[m(S(k - 1; k) — S(k; ©0))|#,] }.
It can easily be verified, for instance, by using the estimates in [14], that
E[E[m(S(O; n) N S(n; oo))lé"j,]zl < E[m(S(O; n) N S(n; oo))z]

(4.6) < constant(log n)®, if d = 4,
< constant, ifd > 5.
On the other hand, Y, is %,-measurable and, for k& < [,
E [Yz| Fi]=0.

This implies that
» n 2 n
(4h) E[( ) Yk) ] = ¥ E[(%)7].
k=1 k=1
Lemma 4.2 now follows from (4.f)—(4.h) and the following lemma.

LEMMA. There exists a nonnegative constant A(K ) such that
lim E[(v,)] = A(K).
Moreover, A(K) is positive if, and only if, K has positive capacity.

Proor. It will be convenient to assume that B, is defined for any ¢ € R, by
setting B, = B’ , for t < 0, where B’ is another Brownian motion independent of
B starting from 0. The sausage S(a; b) is thus defined for any a, b € [ — o0; 0],
a < b. Moreover, we may assume that B is defined on the canonical space
Q = C(R,R?) of continuous functions from R to R? so that, for v € € and
teR,

Bt(w) = w(t).
The shift 8 on @ is then defined by setting
fu(t) =w(l+t)—w(), teR.

Note that 6 preserves the probability P on . For ¢ € R, we denote by ¥, the
o-field generated by (B,; —c0 < s < t). Then :

(4.i) Yk = Zk_1°0k_1,

where
Z, = E[m(S(—k;0) N S(0; ))|9,] — E[m(S(—k;0) N S(0; x0))|¥,]
+{E[m(S(0;1) — S(1; ))|9,] }.
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We shall prove the existence of a random variable Z such that
(43) lim Z, = Z,

k— 0

in the L%norm. The first assertion of the lemma follows immediately from (4.j),
with A(K)? = E[Z?].
If d > 5, (4,j) is obvious, and

Z = E[m(S(- 0;0) N S(0; 0))|%,] — E[m(S(—o0;0) N S(0; 0))|¥,]
+{E[m(S(0;1) — S(1; 0))|%,]}.
We now consider the case d = 4. The point here is that

m(S(—o0;0) N S(0; ©)) = 0, as.,

and thus we cannot define Z as previously stated. However, we have

Z, = {E[m(S(0;1) - S(1; 0))|9,] }

—E[m((S(0;1) — S(1; )) N S(—£;0))|%,]
+E[m(S(—k;0) N S(0; %0))|%,]
—E[m(S(=k;0) N S(1; «))|%,],

and

E[m(S(—k;0) N S(0; x0))|%] — E[m(S(—k;0) N S(1; 0))|¥,]

= [dy15 1o()(&(2) - &y - B)),
where we have set g(y) = P[y € S(0; «0)]. The explicit formula

8(y) = cqfex(dw)ly = w*~

(eg is the equilibrium measure of K ') can be used to derive the bound, valid for
x, y € R,

x| + 1
(41 |g(y)—g(y—x>|sc(g(y)+g(y—x>)( - Al).

Then

E| [ayiano(0]8() ~ a(y - B

x| + 1
Al]l < 0.
[yl

Similarly, straightforward calculations using (4.k) show that

E[ffdydz%(—m;m(y) 1S(—ao;0)(z)|g(y) —&(y - B))||&(2) — &(z - Bl)l]

< o0.

< ¢ [ [dxdyp,(0,)g(7)(&(2) + &(y ~ x))
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Hence

fdyIS(—oo;O)(y)(g(y) -&(y- Bl))

is well defined as a random variable in L%(Q). Using dominated convergence, it
follows that '

lim Zk=Z’

k— o0

in the L%norm, and
Z = {E[m(S(0;1) - S(1; 0))1%,]}
—E[m((S(0;1) — S(1; 00)) N S(—0;0))|%,]

+ fdy1s<—oo;o>(y)(g(y) -&(y - By)).

This completes the proof of the first assertion of the lemma. Note that the
preceding arguments apply to any d > 4.

It remains to prove that Z =+ 0 if K has positive capacity (the converse is
obvious). Coming back to (4.f) and using (4.i), we have

(m(SQO; 1))} = % Zo6% + H,,
k=0
where
H, = (E[m(S0; n) 0 S(n; o))[@,]} + & (Zy — Z)=0".

k=0

In particular,

n—1
m(S(0; n)) > nC(K) + Y Z6*+ H,.
k=0

We shall establish the existence of a constant ¢ (depending on K but not on n)
such that, for every n > 1,

(4.) P[m(S(0; n)) <& |H, <¢] >0.
If we assume Z = 0, the inequality
m(S(0; n)) > nC(K) + H,,

together with (4.1) forces C(K ) = 0. Thus, in order to.complete the proof of the
lemma, it is enough to prove (4.1).
We first need to obtain a simpler expression of H,. We have

(Z - Zk)° 0% = fdy]'S(—oo;O)—S(O;k)(y)(E[IS(k;oo)(y)lgk]

-E [ls(k;oo)(y)lgk+1])-
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After some calculations, we get
n—1
Z (Z - Zk) °g*
k=0

= ./dy(18(—00;0)(y)E[IS(‘°°3°)(y)|g°]

- ]‘S(—oo;O)—S(O;n—l)(y)E [IS(n—l;oo)(y)lgn])
—m(S(—00;0) N S(0; n — 1))

(4.m)
= [dy1swo(¥)(&(y) - &(y - B,))

+ fdyIS(—oo;O)nS(O;n—l)(y)g(y - B,)

- fdy IS(—oo;O)—S(O;n—l)( y)E []-S(n— l;n)—S(n;oo)( y)lgn]
—m(S(—o0;0) N S(0; n — 1)).
The bound (4.k) shows that

|fdy13(_oo;o>(y)(g(y) -&(y - B,))

IB,| + 1
< cfdyls(-w;m(y)(g(y) +g(y - Bn))( ly| 1)

We may choose a constant ¢’ such that, for any x € R¢ with |x| < 1,

/dyg(y)(g(y) +g(y— x))(lxl +1

|l
It follows that, for every n > 1,

fdyIS(—oo;O)(y)(g(y) -&(y - B,))

On the other hand, the explicit formula for H,, which follows from (4.m), shows
that, for some constant c, '

(8155 < ) <1) 0 {|far 1o 2)(& ) = £~ B1)

c ({m(8(0; n)) < & n {|H,| < }).
This completes the proof of (4.1) and of the lemma. O

A 1) <c.

> 0.

<c(c +1)

P[sup(Ile; s<n)<l;

<ec(e + 1)})

PROOF OF THEOREM 4.1. For ¢ large enough, set n = n(¢) = [ log¢]. Then

m(SX(0; ¢)) = é X¥(t) + R(t),
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where
i—1 i

Xi(¢t) = m(SK(
and the remainder R(t) satisfies ‘
n_1 i—-1 1§ i 2
(4n) E[|R(t)|]]=E| X m SK(———t;—t) N S"(—t; t) < c(logt)*,
-1 n 'n n ‘
for some constant ¢ (we use the fact that
E[m(S%(0; t) n 8'%(0,t))] < ¢, itd=>5,
<clogt, ifd=4).
The random variables X(¢), i = 1,..., n, are independent and identically dis-
tributed and, by Lemma 4.2,
log ¢ )
lim ——f—E[(Xt(t))’] - A(K)™

Theorem 4.1 follows from (4.n) and an application of Lindeberg’s theorem
on triangular arrays to the family ({X%(¢)}, 1 <i < n(¢)). In order to verify
Lindeberg’s condition, it is enough to establish the following bound:

(4.0) E|{m(s%(0; 1)} < &,
for some constant ¢ and for ¢ large enough. Note that (4.0) is equivalent to
(4.0) E[(m(s¥)}Y] < aeva-,

for ¢ small enough. The bound (4.0’) is easily established using the same method
as in the proof of (3.z): We divide the sausage S¥ into two pieces, namely
SX(0;1/2) and SX(1/2;1) and we use the fact that the fourth moment of
m(S¥(0;1/2) N SX(1/2;1)) is bounded by a constant times e**(log(1/e))*
(cf. [16] for the case d = 4; if d > 5, ¢*¢ clearly suffices). O

REMARK. Yor and Calais [31] have studied the asymptotic behayior of the
double integrals

(4p) 1(f) = ['ds [ du (#(B,~ B,)),

where f:R¢ — R is a continuous function with compact support. The fluctuation
results for the integrals (4.p) are very close to those obtained previously for the

Wiener sausage. Let us consider & functions f,,..., f,. Then
(4.9) tlim tHI(f);1<i<k)=(fy;1<i<k), ifd=2,

tlim (tloge) V*(I(f);1<i<k)
(4.r) 9-1/2

(fiN;1<i<k), ifd=3,
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where convergence holds in distribution, f; = [f,(x)dx and y and N have the
same meaning as before (see [13] and [29] for proofs of these results). On the
other hand, if d > 4, the following limit result holds:

(4.5) tlirr:ot‘l/z(lt(fi);l <i<k)=(N;l<i<k),

where (N; 1 < i < k) is a Gaussian vector whose covariance matrix depends on
the f,’s and is described in [31]. Note that, in contrast to (4.q) and (4.r), the limit
variable N, in (4.s) “depends on” the function f;. These results suggest that
similar properties hold for the fluctuation of the Wiener sausage and motivated
our previous remarks in the Introduction.
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