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LARGE DEVIATIONS FOR THE EMPIRICAL FIELD OF A
GIBBS MEASURE!

By HaNs FOLLMER AND STEVEN OREY
ETH, Ziirich and University of Minnesota

Let S be a finite set and consider the space Q of all configurations w:
Z? > S.For j € Z% §;: @ — Q denotes the shift by j. Let V, denote the cube
(i€ Z%0<i,<n,1<k<d). Let p be a stationary Gibbs measure for a
stationary summable interaction. Define py, as the random probability

measure on § given by
py (@) = n=¢ E 8y, -

j € Vn
Our principal result is that the sequence of measures p o p(,nl, n=12...,
satisfies the large deviation principle with normalization n¢ and rate func-
tion the specific relative entropy A(-; u). Applying the contraction principle,
we obtain a large deviation principle for the distribution of the empirical
distributions; a detailed description of the resulting rate function is provided.

1. Introduction. Let S be a finite set and introduce the compact space
Q = SZ° of configurations w: Z¢ — S. Let #(Q) denote the compact space of
probability measures on £, and denote by . () the subspace consisting of all
elements of .#(Q) that are invariant under all shifts 6;: @ - @, i € Z% where
(G;w)(J) = w(J + i). A measure p € #(Q) is called a Gibbs measure if its local
conditional probabilities are specified by a stationary interaction potential.
Precise definitions and conditions are given in Section 2.

Let us consider a stationary Gibbs measure p € # (). Denote the cube
(i = (.- ig) € Z% 0 < i), < n} by V,. Now define the empirical field Py, as

the random element of #(£) given by

1
an(w) =4 Z 80,0)’
n- e v,
with 8, the unit point mass at w. The distribution p o p3;! of py, under p belongs
to (A (RQ)). Our principal result is that the sequence

pooyl, n=12,...,

satisfies a large deviation principle, where the rate function is given by the
specific relative entropy A(»; p) of » with respect to p. More explicitly, we show
in Section 3 that for open subsets A of .Z(Q),

1
lim inf —;1 €A]> - _inf h(v;p),
im inf 77g ogpu[py, € 4] Ve AN (@) (7 )
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962 H. FOLLMER AND S. OREY

and in Section 4 it is shown that for closed subsets A of /Z(Q),

1
lim sup —lo €Al < - inf  A(v; p).
sup -5 gu[oy, € A] veaBE o (v; 1)
By the contraction principle [13], page 5, we obtain, in particular, a large
deviation principle for the empirical distributions '

1
Ry(w) = pr 2 8.

eV,

on the state space S. In Section 5 we provide a detailed description of the
resulting rate function.

For background on large deviations we recommend [13] and [12], but no prior
knowledge of the subject will be assumed. The pioneering paper on large
deviations for the empirical process of a Markov process is [3], and our indebted-
ness to this work will be clear.

Working independently of us, Olla [8] and Comets [1] obtained results similar
to our Theorems 3.1 and 4.1; the method of proof of these authors is completely
different from ours. For other work related to this paper, see [6], [4] and [7].

2. Preliminaries. The purpose of this section is to introduce notation,
summarize some known results, which will be needed later, and derive some
preliminary results. The reader may choose to skip this section and refer back to
it as needed.

When working with a fixed space X, we write Y := X — Y for any subset Y of
X. If X is a compact metric space, C(X) denotes the class of continuous
functions from X to the reals, and .#(X) is the class of probability measures on
the Borel sets of X, topologized by weak convergence.

We will be concerned with the d-dimensional lattice Z%, a fixed finite set S
and the space Q of all configurations w: Z¢ — S topologized by the compact
product topology. For each i € Z% the shift map 6;: @ — Q is defined by
(6,0)( k) = w(k + i), k€ Z% Let A (Q) denote the class of all p € #(Q) that
are stationary in the sense that p = p o6, for all i € Z¢.

For any positive integer n, let V, be the cube of all ¢ = (¢,,..., t;) € Z¢ with
all coordinates nonnegative and strictly less than n. For s € Z¢ and ¢ € Z9, the
distance between s and ¢ is the sum of the absolute values of differences between
the components. For V C Z¢ and p a positive integer, d,V denotes the set of
t € V° whose distance from V is at most p. Let N,(0) be the set of all ¢t € Z d
whose distance from 0 is at most p.

For V C Z¢, we denote by &, the o-field on @ generated by the projections
w = w(t), t € V, and by wy, the restriction of w € Q to V. Let 7" denote the class
of finite subsets of Z% For p € #(2) and V € ¥°, we denote by p the marginal
distribution of u on SV, by u¥(-|n) the regular conditional distribution on %
given F. at the point n € , and by py(-|n) its marginal distribution on SV.
Also, if p is a positive integer, u} ,(|n) or py, ,(-|n) denotes the conditional
distribution given &, ;, viewed as a measure on { or SV, respectively.
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An interaction potential is a collection of maps U(V,-): SV > R, Ve 7. Itis
stationary if
(2.1) U(V,0y) = U(V + ¢,(67%)y,,)-
Henceforth U will denote a fixed stationary interaction potential, whlch also
satisfies the condition
(2.2) Y UV, )l <,
oevey

where the norm is the supremum norm. A measure p € #(Q) is a Gibbs measure
with respect to U if py(-|1) can be chosen as

(2.3) pyv(wyln) = (Zv(ﬂ))_leXP(_Ev(‘*’vM)),
where
(2'4) EV(“"V'") = Z U(As §A)7
A: ANV
with {(i) = w(i) for i € V and {(i) = n(i) for i € V¢, and
(2.5) Zy(n) = Z eXP(—EV(EM))-
tesv

p is called a Markov random field if (2.3) only depends on 7, y, and this means
that U is a nearest-neighbor potential, i.e.,, U(A, -) = 0 whenever A contains two
points the distance between which exceeds 1; see [11]. We define 4(U) as the
class of all Gibbs measures with respect to the interaction potential U. Then

(2.6) U)29U)nA(Q) =02
see [11], Theorem 4.3.

Let us now introduce some thermodynamical quantities and recall the corre-
sponding limit theorems; see [5] for proofs. For » € # () and V € ¥", we
denote by

Hy(v) = = X »y(§)logry(¢)

tesS
the entropy of v,. The specific entropy of v is defined as

IV Hv(”)

where |V,| denotes the ca:rdinalfty of V,. More precisely, the d-dimensional
Shannon-McMillan theorem holds:

(2.7) h(v) = hm

1
(2.8) lim lVllogvV(wv)

exists in L(») (see [5], Theorem 2.4), and even v a.s. [see [5], (4.28) for a Gibbs
measure » and [10] for a general » € # (Q)]. The specific energy of v is defined
by

|
(2.9) ey(?) = lim o [Ey(wy,n)v(dn),
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where the limit does not depend on n € Q. More precisely, for any sequence
1, € Q, the limit

1
(2.10) lim —Ey(wy,|n,)
n |Vl

exists » a.s. and in LY(») and coincides with the conditional expectation of

y UV, wy)
oeVery ' Vl ’
with respect to the o-algebra of shift-invariant events. In particular,

e iy = [ x Ter)

r(dw),
oeVery lVl

and this shows, due to (2.2), that e, is a continuous functional on .Z (). The
proof of (2.10) uses the relation

(2.12) 11

/)l =0
Ve @, 7 " ’

and this will be needed in the following discussion; see (4.16) in [5].
Also the pressure defined by

1
2.13 py= 1

exists and is independent of 7 € Q.
Now take p € 9(U) N A (2) and v € # (). Then

§
(2.14) Hyi) = 5 ny(E)log s 0
tesSY (g)
defines the relative entropy of v, with respect to py, and the specific relative
entropy is given by

2.15) h(o; p) =

( IV l

The limit in (2.15) exists, and it satlsﬁes the following variational principle:
(2.16) h(v; ) = ey(v) — h(v) + py =0,

and the last inequality becomes an equality if and only if » € 9(U); see [5],
(4.25) and (4.27). Since e, is continuous and 4 is upper semicontinuous, (2.16)
shows that A(-; p) is a lower semicontinuous function on . ().

We shall need the fact that, for » € #Z (Q),

1 vy(wy,)
2.17 lim —log———"
( ) A f"‘V,,(wV,,)

exists in LY(»), and that this limit coincides with A(»; p), » a.s., if » is ergodic.
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To see this, observe that, by (2.12),

lim —— I‘V,l(wv,l) _
VAR Py
for any n € Q; see [5], (4.22). So the limit in (2.17) may be written as

b

lim —log Lvalv) w{v,)
(2.18) V"( v )
+ hm Ey(wy[n).

The assertion involving (2.17) is now justified by (2.8) and (2.10), and the
convergence holds in fact » a.e.
For a positive integer p, we introduce

(2.19) = X U4,
A20, AGN,(0)

LEMMA 2.1. Let 1 € Q and n' € Q coincide on 3,V. Then

py(@yin) eIVl

< wy, € SY.
Hv(wvl"l) v

(2.20)

PRrROOF. In (2.4) break the summation into two parts, = = ¥’ + X", where the
first sum is over those A included in V' U 3,V, whereas the second sum is over
those A intersecting (V U d,V)°. Then

IAE )} lu(a, )l < Vi,

eVABt AN(VU,V)# o

So we obtain
|Ey(wyin) — Ey(wyin)| < 2|Vly,

and
Zv(n) > Z e~ EviEm)—2Viy,
tesv
= Zy(n)e 2V,
Hence

py(eln) _ Zy(w) e~ 1Ev(wyin ~ Ey(oyin)]
Mv(‘*’vl"l) Zv(ﬂ)
< edlViv,, 0

We need a remark on the space #(2). #(2) can be viewed as a compact
metric space, and we shall use the following explicit metric. Choose a sequence
(¢,) of continuous functions on Q satisfying the following conditions: (i) the span
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of (¢,) is dense in C(RQ); (i) [|¢,]|< 1, n =1,2,...; (iii) for each n there exists
V € ¥ so that ¢, is #,-measurable. Now define

(221) dist(r, 1) = L 27| [6,dv = [o,dul,
n=1

for v, p € A (Q).

3. Lower bound. The following theorem will be proved in this section.

THEOREM 3.1. Let p € G(U) N A (), where U is a stationary interaction
potential satisfying (2.4). Then, for any open subset G of (),

1
(3.1) hmnlnf mlog n(py, €G) = - yeagl;s(ﬂ)h(v; ®).

The proof will use Lemma 3.2. A more general lemma (for d = 1) was given in
[9], but it will be convenient to give a direct proof here.

LEMMA 3.2. Let v € # (). Then there exists a sequence (v,) of ergodic
measures converging to v such that

(3.2) tim h(s,) = h(»).

ProoF. For n > 1 denote by 7, the measure that coincides with » on each
o-field #y . ., k € Z% and makes these o-fields independent. The measure

1
Vp = nooi_l
|Vn| ieV,

A1

is stationary. Let 6,7, = #,00;!. To show that », is ergodic, let B be an
invariant event, that is, §,B = B for all i € Z% It is easily seen that each 6,7,
satisfies the Kolmogorov zero one law, and so 6,7,(B) = b, € {0,1}. Also, for i
and k € Z¢ 0, ,5,(B) = 6,5,(8; 'B) = 6,5(B), so that b,+k =b,,and so b,=b
does not depend on i. By the definition of »,, v,(B) =

It is easy to check that the measures », converge weakly to ». Since the
specific entropy A(-) is upper semicontinuous, it follows that

limsuph(v,) < h(»).

For fixed i € V,,, the cube Vy., contains at least (N — 1)? disjoint boxes of the
form V, +i+n- k with %2 € Z9, and on each such cube the entropy of 6,7, is
given by Hy(v) (here 6,7, = 7,°6;"). Thus

Hy(8,7,) = (N - 1)Hy(»).
By Jensen’s inequality,

vy %) 2 mgv Hy, (67,) = (N = 1)"Hy(»).
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Hence
H N-1
Vel ¥m )‘( N )IVI Hy(»)-

Letting N 1 o0, we obtain

h(v,) = Hv(v)

Val
and this implies
liminfh(»,) > h(»). O

Proor oF THEOREM 3.1. (1) Let » € #(2) and G an open neighborhood of
v. It will suffice to show

(3.3) € G| = —h(v; p).

IVal

(2) Assume now that » is ergodic and G is a neighborhood of ». In view of
(2.21), there is a neighborhood
[tedv = [fudv

Gy = {"I
k=1

of », where f,,..., f, are %y (0)-measurable for some p > 1. Since » as. py,
converges weakly to v,

<e}CG

lim »[py, € G,| = 1.
n

Assume h(7; p) < o0, as otherwise there is nothing to prove. Let W, := V,, U d,V,.
Then » restricted to #y, is absolutely continuous with respect to p restrlcted to
Fw,; denote the correspondmg Radon-Nikodym derivative by ¢y, , so that

lim ——log dw, = ——log ¢y

n Vil

n

1
IWI
= h(v;p) in LY(»),
by (2.17). Now note that the set

w6 - O ||

belongs to #y, . This allows us to write

:

——log oy, < h(v; p) + & b, >0]

V] ka /fk 4

i€V,

ey, € G| = M[PV,, €G, IVI

> e~ [Val(h(v; p)+e),, [an = GO’ log ¢W < h(v ”) + &],

and, since the second factor in the last member approaches 1 by (2.17), we obtain
(3.3).
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(3) Now let » € # () and G a neighborhood of ». Approximate » by ergodic
v, with h(»,) — h(v) as ensured by Lemma 3.2. Then the left-hand side of (3.3)
is greater or equal to — A(»,; p) for all large enough n. Remembering (2.16) and

the fact that e(-) is continuous, we see that A(v,; p) — h(»; p), and (3.3) follows.
O

4. Upper bound. In this section we prove

THEOREM 4.1. Let p€ G(U) N M (). Then for any closed subset A of
M (),
1

Vi log[pvn € A] < — inf  A(wy;p)

lim sup
n vEAN M (Q)

(inf ¢ = o0).

Before we can prove the theorem, we need some definitions and several
lemmas. In the remainder of this section p € 4(U) N A (Q).
For v € M (), we introduce

(4.1) Hy, (v 8) = [H(vy, ,(-In); by, (- In))»(dn)

= Hy, a,,v("i p) = Ha,,v("§ B

Next let Cy, , denote the class of all #y,; y-measurable functions ¢ on Q that
satisfy

(4.2) [etdps (-m) <1, neq,
and also
(4.3) ¢ < |Vloga™?,

where a = inf g , coh(sIn) > 0.
LEMMA 4.2. Hy ,(v; p) = sup‘,,ecv'Pﬁp dv.
Proor. For¢p € Cy ,, € Q,let -
ar = ferans, (-] e*dut( n).

Condition (4.2) and the fact that relative entropy is nonnegative give

H(vy (- 1n); py, o(- 1)) = H(py, ,(-1n); Ay)

+ [o.dvy, ,(-In) — log fe* dup, (- In)

> [¢dv,,(-)
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and hence
(4.4) Hy (v;p) 2 f¢ dv.
Now define
vy, p(@ylw) 1
‘I’(w) = Y V< v

G

For ¢ € (0, a~'), define

(45) b= (o o) fo v edng Cm)

and note that ¢, == log ¥ belongs to Cy, ,. By monotone convergence,

lim /¢cdv = lcl?(l) flog(‘l' Ve)dv - lcliré flog[f\p v cdp,’{;’p(.m)] dv

cl0
= flog\l’dv=HV‘p(v; p). O
LEMMA 43. Letp, n=1.2,..., satisfy lim,|d, V,| - |V, ! = 0. Then
1
(4.6) h(v; p) = lim ﬁ,—len,pn(V; B

ProoF. Note

H(ry, o(-10); sy, (- 1) = =Hy(wy, ,(-1) = [logpy, (1) dvy, (- In)
and by (2.12)

1

and so, remembering (2.16), it suffices to show

o1
tim o [Hy (v, (- m)#(dn) = A(y)-

flog#v,p('ln)v(dn) =ey(v) + Py

But this follows from
fHV(VV,p(' ln)) dv=Hy, a,,v(”) - Ha,,v(")
and the assumption on (p,), since H; v(v) < lapV|log|S|. O

. In order to obtain our upper bound, we follow [2] and introduce a stationary
modification of the empirical field p,. For each nonnegative integer n define =,:
Q - Q by

m(w)(i+n-t)=w(i), ieV, teZ
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Now let
oY, = py,o T
Clearly, p}, € .4 (Q).

LEMMA 44. Let ¢: & — R be measurable with respect to Fy _ . Then
[odoy, - [odoy,| < 2/ sl

where | ¢ | denotes the supremum norm of ¢.

IVal = [Vazzml

(4.7) A

Proor. Note that

i° Ty,

Jodet, = nvn

ieV,
and

f‘i’dpvn |Vl

and that the summands on the right-hand side agree except for those i € V, that
satisfy i + N,(0) ¢ V,.O

eV,

LEMMA 4.5. Fork,p>1,n>k+p, ¢ € Cy, , and any measurable subset
A of M (Q),

1 n— —2k— 2pl 2”(1)"
—1lo py €Al < —inf — [odv +
vy los b < 4] veAka:f v Vil
(4.8)
k k\? v +k|
+]1- - =] |loga™!+4—=
[ (k+p n”°g°‘ 7K

Proor. For n large, decompose V, into a family of blocks B;=YV,+jand
separating corridors, arranged so that each block B; is separated from each of its
neighbors by a corridor of width p. Let W, , , be the set of points in V,
belonging to one of the blocks B;. Let

Z ¢ o 0!’ i € Vk’

tER,;
where R; is the set of ¢ € V, such that ¢ = i + j for some j corresponding to a
block B; in our decomposition Using (4.3), we obtain

49 ¢05V W, , floga-t+ — T ..
“ 2= P Vi Z‘V

By Jensen’s inequality,

4.10 — — ;).
(4.10) ool 57 T v < 7 £ et
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Now
feXP(\Pi)d#= feXP( )y ¢°0t) dp = f 1 exp(¢°86,)dp
teR, teR;
and this is to be estimated by successive conditioning. For each ¢ € R;, the

factors exp(¢ © 6,) with s € R, — (t} are Z, , ,-measurable. On the other hand,
we obtain from Lemma 2.1

E,[e** "%y, 0] = [etut(de] )=0,
< e4|v,.|vpfe¢”,‘5k'p(dw| Yo f, < elViln,

The cardinality of R, is at most ((n + k)/k) and so
(4.11) fe"" dp < exp(4(n + k)dyp).
The inequalities (4.9)—(4.11) imply

V2l _
(412) [exp| = [odpy, | di < exp(|V, = Wi, pllog e + 41V, il ).

[Vl
The Chebyshev inequality and Lemma 4.4 with m = & + p imply

Vol . \4
y[pv eA] <exp( A :2£ qbdv)fexp(lVIfqbde du

[Val
(4.13) < exp| — Wi inf [¢dv

|Vn - Vn—2k—2p| ( |Vn|
+ 2||o|l [exp| = [odoy | d
| Vil | l'[ [Val f v | A

The last factor is estimated by (4.12), and noting that

' d
V. — W, , | <ndl- kR
no Tmkopl = k+p n

PROOF OF THEOREM 4.1. (1) Let us first show that for any closed subset A of
M (),

leads to (4.8). O

(4.14) J(A) = llmsup log;u[pv GA] < - 1nf h(v ©).

[Vl
Letting n approach infinity in (4.8) gives us, for ¢ € C;, ,,

1 Eo\¢
J3(A) < —1nf |_V_|-[¢dv+4y‘"+(1_(k+p) )loga 1
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Now choose p = p(k) so that p tends to co with 2 but p(k)/k tends to 0.
Write C, for C, ). For & > 0 there exists &, such that |y,,| < e for k > k..
Fork >k, ¢ €C,,

1

J(A) — e < —Vlélgquhdv.

Thus

1
J(A) —e < — sup sup inf — [opd¥
kxk, oeC, *<A [ Vil f

and, in fact,

1
(4.15) J(A) —e< — sup inf sup sup inf —fqbdv,
Ao, A, 1520 kxk, 9eC, ¥4, |V}
ACUA;
since J%(A) = max J°(A)) for any finite covering A,,..., A, of A.
For any » € A there exists 2 > k, and ¢ € C, so that

1
|—Vk_|‘/¢ dv > :ggh(v; p) —e/2,
by Lemmas 4.2 and 4.3. Since [¢ dv is a continuous functional on .#({), we can
conclude that

! di > inf
mf(p V> vnElAh(V’M) — ¢,

for all # in some open neighborhood G, of ». Now we use the assumption that A
is closed, hence compact. There exists a finite covering of A by open sets
G,,...,G, such that

inf inf — f dv > inf A(v; p)

inf sup sup Inft — j$¢dv > In v — &.

1<j<gq kzk,¢eg,, vEGjlka veEA ®

This shows that the right-hand side of (4.15) is bounded above by
—inf, . 4h(v; p) + & Since ¢ was arbitrary this implies (4.14).

(2) Metrize .#(Q) as in (2.21). Then by Lemma 4.4 the distance between py,
and p%, converges to 0 uniformly in w (recall that these are random measures) as
n — . Henceif e > 0 and A, is a closed e-neighborhood of A, there exists n(¢)
such that n > n(¢) implies

[ov, € A] € [%, € A] = [y, € 4. N 2,(2)].
Thus (4.14) implies

1
J(A) == limsu
(4) = limsup 5

Now let ¢} 0 and use the fact that A(v; p) is a lower semicontinuous function of
v to obtain Theorem 4.1. O

log eAl<— inf  h(yp).
ogpfpy, € A e o) (v; 1)
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5. Large deviations for the empirical distribution. Let p e Z(Q) N
%(U) be a stationary Gibbs measure with interaction potential U. In the
language of [13] we have shown that the sequence of measures p o p;! on /#(Q)
satisfies the large deviation principle with rate function

I(v) = {h(v; ®, vedd (Q),
00, otherwise.

One important consequence is Varadhan’s abstraction of the Laplace method:
For any ¢ € C(Q),

(5.1) p(¢; p) = lim 1

n lmlogfexp( )y ¢°0,~)du

ieV,

exists and satisfies

p(i0) = sup | fods—10)]

(5'2) veH(Q)
= sup [/qs dv ~ h(v; u)],
veEM ()
as shown in [13], Theorem 2.2. By convex duality (5.2) implies
(53) noiw) = sup | fodr—p(s )]
o€C(R)

for any » € # (Q). This follows, e.g., from [12], Theorem 7.15, if we use the
natural embedding of .#Z(£) into the topological vector space of signed measures
on .

Let us now consider large deviations for the empirical distribution

1
—_— 8, EM(S).

Let o A (Q) — M(S) associate with each » € #(Q) its marginal distribution
v, = 7(v) at the origin 0 € Z% Then

Rv,,(“’) =

R vV, = 7T(PV,,)
and the contraction principle of [13], 2, Remark 1, shows that the sequence
o R(,nl, n=1,2,..., satisfies the large deviation principle with rate function
5.4 I = inf I(v) = inf h(v; n).
(5.4) oQ) veM(Q): 7(v)=Q ®) vEM(R): (v)=Q (v 0)

More explicitly,

1
(55) hn;mf A lqu[RVn € A] > - 52£I°(Q)’
for any open set A € #(S), and

1
(5.6) llmnsup |—VJIOgM[RV" € A] < - 52£IO(Q),
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for any closed set A C .#(S). Since A(-; p) is lower semicontinuous the infimum

in (5.4) is actually attained. In Theorem (5.5) the class of minimizing measures

v € M () is shown to coincide with G(U'), where U/ is a generalized interac-

tion potential obtained from U and some function f on S that depends on Q.
Let us first note that, again by Laplace’s method [13], the limit

. 1 .
po( fip) = hf‘|V,,| logfexp( > f(w(z))) dp

eV,
exists for any real-valued function f on S and satisfies the relations
(5) polfsw) = su | f1d@ - 1,Q)]
QeA,
and
(9) L@ = s |[1aQ-pfim]

For our purposes, we will have to consider functions f on S that may assume the
value — c0.

Let f: S - [— o0, ) be a function not identically equal to — co. Define U/
by U/(V, ) = U(V, -) for |V| > 1 and

U'({i}, ) = U{i}, 0) - f(w(i)), i€z

The corresponding class of Gibbs measures 9(U/) will consist of probability
measure p/ such that for V€ ¥ and » € Q, a conditional distribution on SV
given % . is given by

(59) w(wyin) = (2}(n)) exp ‘va(wa))]uv(wvm,

where

(5.10) zh(m = X e T (6)|motem).
tesSY i€

Again # (Q) N 9(U') + @; see[11], Theorem 4.3. Observe that for p/ € G(U')
the marginal distribution uf = 7(n!) is concentrated on the set

S;={se8: f(s) > —},

since

pi(SF)= ¥ fM{O)(SIn)u’(dn)=0-

seSf
LEMMA 5.1. Letf: S - [—o0,0), f # — 0. The limit

I‘il flogfexp(_%f(w(i)))”(dw)

exists and is finite and satisfies the equation
(5.12) po(f;w) = [fduf—h(p'; p),

(511)  po(f;p) = lim
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for any pf € 9(U') N #,. More generally, for v € # () such that Q = n(v)
is concentrated on S; and p/ € 9UNY N,

(5.13) h(v;m) = h(v;p!) + [1dQ — pol( 3 k).

PrOOF. Let us compute A(»; uf) and A(»; p) by (2.16) and compare the
resulting expressions. One finds

T f(e)r(de) = [fdQ.

eyr(v) = ey(v) = IVI =

Also, for any 7,

1
b= limorlos T el ~Byfem) + F 1(2)
gZVn(ﬂ)
- IVI (,Ezvf(“)d’”h =

po( f; 1) + py,

where the limit defining py( f; 1) must exist and be finite because the same is
true of all the other limits that occur. This proves (5.13), and the choice » = »/
gives (5.12). O

THEOREM 5.2. Suppose I(Q) < co. Then there exists a function f: S —
[— o0, ) with the following properties:

(i) A measure v € A (Q) with marginal =(v) = Q satisfies
(5.14) h(v; ) = 1(Q),
if and only if v € 9(U").

(ii) Both [fdQ and py(f; 1) are finite and

(5.15) I(Q) = [fdQ - py f; ).

Proor. (1) By (5.8) we can choose a sequence ( f,) of functions on C(S) such
that

(516) 1@ = lim| [£.d@ ~ py( 1 )|

The expression in brackets is unchanged if f, is replaced by f, + ¢ for any
constant ¢. We may therefore assume

(5.17) max f,(i) = 0.
€S
Going over to a subsequence if necessary, we may assume
1(s) = limfy(s) € [~ c0,0]

exists for each s € S, and f # — o0. This will be the function whose existence is
asserted by the theorem.
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(2) Remembering (5.17), we obtain

Zj(n) = T exp( T fu(€(0))) u(em)
(5.18) ges¥ iV
> inf py(én) = o),
¢esS

where a = inf g ,cor(sIn) > 0. From (5.18) it follows that
1
Vol

Po frs 1) = li'rln logZ",k('r,) 2 a.

This implies, due to (5.16),
(5.19) lim / f,dQ > — oo,
and so Q(S;) = 1.

(3) Using (2), we can pass from (5.16) to

(5.20) 1(Q) = [£dQ ~ limpy( fu; p).

We must still show that the last term in (5.20) agrees with p( f; ) as given in
(5.15). For ¢ > 0 and k& sufficiently large, f, > f — ¢, and from this one obtains
immediately that

liinp"( fos ) = po( f5 1)

and hence (5.20) implies

(5.21) I(Q) < [fdQ — py( f; ).

On the other hand, if » € # satisfies m(v) = @ and A(»; p) = I(Q), then by
(5.13) for uf e 9UH N,

(5:22)  I(Q) = h(v;p/) + [fdQ —po(f; ) = [£dQ - polf; k).

Now from (5.21) and (5.22) follows the desired equality (5.15), and also
h(v; p') = 0, and this implies » € ¢(U') by [11], Theorem 7.1.

(4) Suppose pf € 9(U') N A, has marginal 7(p/) = Q. Then h(pf;p)=
I(Q) follows from (5.12) and (5.15). O

REMARK. Let p be a Markov random field, and let @ be a measure on S
with I (@) < c. In this case we have shown that there exists a new Markov
random field of the form u/ € ¢(U') such that p/ has marginal distribution @
and satisfies

Iy(Q) = h(p'; p).
This is a spatial analog to a result of [2], Theorem 2.1; see also [13], (13.7).
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