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ON THE CONVERGENCE RATE IN THE CENTRAL LIMIT
THEOREM FOR ASSOCIATED PROCESSES

By THOMAS BIRKEL
Mathematisches Institut der Universitdit Koln

We give uniform rates of convergence in the central limit theorem for
associated processes with finite third moment. No stationarity is required.
Using a coefficient u(n) which describes the covariance structure of the
process, we obtain a convergence rate O(n~/2log?n) if u(n) exponentially
decreases to 0. An example shows that such a rate can no longer be obtained
if u(n) decreases only as a power.

1. Introduction and notation. Let {X;: j € N} be a process of associated
random variables, i.e., for every finite subcollection X iy +» Xjomy and every
pair of coordinatewise nondecreasing functions f, g: R™ — R there holds

Cov( F(X;ay---r Xjomy)> 8(Xjays -+ Xjomy)) = 0,

whenever the covariance is defined. Associated processes are of considerable use
in physics and statistics and have been investigated in recent years to a great
extent [see for example Newman (1984) and the references therein].

Assume in the following that EX; =0, EX? < o and put S,=X"_ X s
o2 =ESZ.

Several authors have shown that associated processes satisfy—under ap-
propriate conditions—the central limit theorem, i.e.,

(1.1) A, = sup |P{0,'S, < x} — ¢(x)| = 0(1),

where ¢(x) = (27)"/%(* _exp(—t2/2) dt denotes the standard normal distribu-
tion function. Newman (1980) obtained (1.1) for strictly stationary associated
processes, satisfying

o0
(1.2) 0 < o= Cov(X,, X;) +2 ) Cov(X,, X;) < co.
j=2
Using thé coefficient
u(n)=sup ) Cov(X;,X,), neNuU{0},

kEN j:|j—k|2n

Cox and Grimmett (1984) weakened the assumption of stationarity. The condi-
tions

(1.3) u(n) =0(1), u(0)< oo,
(1.4) .ig{' EX? >0,
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1686 T. BIRKEL

and
(1.5) sup E|X|° < o0

JEN
imply the central limit theorem. Up to now, there is only one result which yields
a convergence rate for A, [see Wood (1983)]. The inequality given in the paper of
Wood maximally leads to A, = O(n~'/%), contrasting with his statement (see
Remark 2.3). This convergence rate, however, is far from the optimal rate, the
Berry-Esseen rate O(n~1/2).

We prove that A, = O(n"'/2?log?n) if u(n) exponentially decreases to 0,
inf,_y02/n > 0, and sup;cn E|X;|® < o (see Theorem 2.1). An example shows
that we can no longer obtain this convergence rate for A, if we only slightly
weaken the assumption concerning u(n) (see Example 2.2). If instead of
sup; ey E|X|? < oo, however, we assume sup; ., E|X;|>*® < oo for some & > 0,
then even a convergence rate O(n~'/%log n) can be obtained. We do not know
whether the Berry—Esseen rate O(n~'/2) is available. Let us remark that also for
strongly mixing processes the convergence rate O(n~'/%log?n) appears and it is
still an open problem whether this is the optimal rate [see Tikhomirov (1980)].

In the next section we present the exact results, postponing some technical
lemmas to Section 3.

2. The results.

THEOREM 2.1. Let {X;: j€ N} be an associated process with EX; =0
satisfying

(2.1) u(n) = O(e™*") for some A > 0,
(2.2) inf 62/n > 0,
neN
and
(2.3) sup E|X|? < co.
JEN

Then there exists a constant B not depending on n such that for alln € N
A, < Bn='?log?n.
If instead of (2.3) we assume

(2.3*) sup E|X|**® < o0 for some & > 0,
JEN
then there exists B not depending on n such that for alln € N
A, < Bn '?logn.

Proor. The theorem will be proved by modifying methods of Tikhomirov
(1980) and Schneider (1981). We adopt their notation. Throughout the rest of the
paper the symbols B, C, D with or without a subscript will denote a bounded
quantity not depending on n. The symbol 8(¢) with or without a subscript will
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denote a function such that |6(¢)| <1, which may depend on n. Let m =
m(n) =[Clogn] and %k = k(n) = [Dlogn], where C, D > 0 will be specified
later, and let f, be the characteristic function of o, 'S,.

For fixed n we will derive a differential equation for f,(¢) in the region
0<t<o,/(8b,), where
b,= max sup (E|S,,,— S

m
l<ps=m jeNnU{0}

As in Tikhomirov (1980) and Schneider (1981) we obtain

£(8) = io;* ¥, B X,exp(its))
i=1

J

)1/3

kE n r—1

D) E(Xj [T ¢ (exp(itS") - f,,(t)))
re2 jm =1

(2.4) AP »

+ios' Y EE(Xng;.l))fn(t) +io; 1 Y E(X;E0)f(2)
ro3 jo1 i1 Jj=1 :
n k

+iogsl Y E(XjI—[£§’)eXP(itS}k’)),
j=1 =1

where for j=1,...,nand [ =1,..., &,
SP - 80— o8,

) — ) — -1
sV=sh=0' L X,
1<v<n

lv—Jji>im
gD = £0,(¢) = exp(it( SV - 8P)) - 1.

We will need some technical lemmas to estimate the summands in (2.4). These
results, which are given in Section 3, are comparable to Lemmas 4.1-4.4 of
Tikhomirov (1980), respectively, to the modified estimates of Schneider (1981).
Put 8(m) = X2 ., ,u(i). Assumption (2.1) implies §(m) = O(e™*™), and thus
we can choose m and & such that
8(m)"* = 0(n"%),
k4t 8(m)? = 0(1),
(1/2)** = 0(n™")
" [cf. the proof of Theorems 1-4 in Tikhomirov (1980)]. From (2.2) it follows that
n = O(o?). Using Holder's and Minkowski’s inequality, we get from (2.2) and
(2.3) that m'/2 = O(b,,), b,, = O(m).
Lemmas 3.2-3.6 and a simple but tedious estimation of the summands in (2.4)
lead to the following relation in the region 0 < ¢ < 0,/(8b,,):

25) £(8) = —tf(2) + B.b:(t)n="*bLt%,(¢)

+ Byf,(t)n"'mb,,t2 + Byf,(t)n"%2.
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Since b,, = O(m) = O(log n), it follows from (2.5) as in Tikhomirov (1980) that
lfn(t) - e_tz/zl < B(n_l/zlogznt:*e"z/4 + n og?nt + n'3/2t),

which holds in the region 0 < ¢ < yn'/%2log™%n. An application of Esseen’s
inequality now implies the first assertion of our theorem.

If (2.3*) is satisfied instead of (2.3), (2.1) and Theorem 1 of Birkel (1988) imply
b,, = O(m'/?) = O(log'/*n). Then (2.5) leads to the estimate

Ifn(t) - e"2/2| < B(n‘l/"’lognt:’e"z/4 + nog¥*nt + n‘3/2t),

which holds in the region 0 < ¢ < yn'/?log™'n. According to Esseen’s inequality,
this implies the second assertion and completes the proof of our theorem. O

Let us remark that Theorem 2.1 provides convergence rates for A, in the

central limit theorem of Cox and Grimmett (1984) (note that o2/n >

1EX; 2/n > inf; ENEX since the random variables are nonnegatively corre-
lated) Us1ng that for statlonary associated processes

u(n) =2 E Cov(X;, X;), ne€N,
j=n+1

we also obtain convergence rates in the central limit theorem of Newman (1980).

We now present an example of associated processes satisfying the central limit
theorem, for which lower bounds are obtained for A,. It shows that a conver-
gence rate O(n~'/2log?n) can no longer be obtained for A, if instead of (2.1) we
assume that u(n) decreases only as a power.

ExaMpLE 2.2. For every B > 0 there exist an associated process {X;: j € N}
with EX; = 0 and a real number p € (0,1,/2) such that

(2.1%) u(n) = O(n™#),
(2.2) and (2.3) are satisfied, but

limsupn? A, = o
holds.

ProoF. The following construction depends on an example of Tikhomirov
(1980), but the details are quite different. For « > 0 and § € (0 1) let {§;: i € N}
be a sequence of i.i.d. random variables satisfying

P{‘El = Zja} {‘El = _ Z] } Ck~ 1- (2+8)(l+a) ke N,

Jj=1 J=1

where 2CTP_ k17 @O0+ = 1,
For j € N put

X Z (lal{sj z+l>2' lln} - l {sj 1< Et llu})
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Then EX; = 0, according to our construction.
Since

j ,
y . — o .
Zl (0 oz = 80y <stziie))
i

is nondecreasing in ¢,,..., t;, Theorem 2.1 and Property (P,) of Esary, Proschan
and Walkup (1967) imply that {X;: j € N} is an associated process.
We will prove the following relations:

(2.6) s'upE|Xj|3 <o ifa<(1+8)/(1-9),
JEN
(2.7) inf 02/n > 1,
neN
(2.8) u(n) = O(n=%0*9),
(2.9) A,; > Bn=%log"27%n  for some B > 0.

It is easy to see that (2.6)-(2.9) lead to an example having the required
properties. Therefore it remains to prove (2.6)—(2.9).

PROOF OF (2.6). By definition of X/,
J v—1 p—1 p—1
' E|Xj|3 < Z Vaﬂapap{|£j—v+1| > Z A |§j—p+l| > Z I, |§j—p+l| > Z la}
vop,p=1 =1 =1 =1
=T +T,+T,,
where T, means the sum over all equal indices, T, means the sum over all indices
for which exactly one differs from the other two, and T; means the sum over all

pairwise different indices.
As a < (1 + 8)/(1 — 8), we obtain

J v—1
T,= X Vs“P{I’Ell > ) l"}
=1

v=1

[c <]
< Cl Z V—8(1+a)—2+a < C2 < o0.

v=1

Using the fact that the ¢; are independent, T, and T; are estimated in a similar
way. This proves (2.6).

PROOF OF (2.7). Our construction yields

Since the X are associated, their covariances are nonnegative. Hence, 02>
L7_Var(X;) > n, which proves (2.7).
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ProoOF OF (2.8). Let j, 2 € N be given. Then our construction yields
J i+k-1
COV(Xj’ Xj+k) =2) (i + k)aP{gl > X la}
i=1 =1

0
SC3 Z i—2—8(1+a)
i=k+1

< C4k_1_8(1+“).

According to the definition of u(n), this immediately implies (2.8).

PROOF OF (2.9). Asin (5.14) and (5.15) of Tikhomirov (1980) we obtain
(2.10) A, > P(S,> o,logn} — o(n~12).
From our construction it follows that
n n
S,= Y & — Y Y. almost everywhere,
i=1 i=1
where fori = 1,...,n,

n+l-i n+l1-1i

Yi = (gt — Z l“)1{£i>zf_+ll—i1a} + (gt + Z la)1{£,<—2f:ll_il°‘}'
=1 =1
Hence, by (2.10),

(211) A, =2 P{ > &> 20,log n} - P{ Y Y. >o,log n} —o(n~1?),

i=1 i=1

Since the §; are i.i.d. with symmetric distribution, it follows [cf. Petrov (1975),
page 285] that for ¢t € R,

P{ A t} > (n/2)P{g, = ) (1 - 2(n — VP&, > ).

i=1

Using this for ¢ = 20,log n and using n < 0?2 < u(0)n, we get
n

(2.12) P{ Y &, > 20,log n} > Csn=%?log=2"n.
i=1

By construction we have

n n [>2]
EYY <) E|§1|1{|e,|>z;‘_,1“} <G Y im0 < €, < 0.
i=1 i=1 i=1
Hence Markov’s inequality and (2.7) yield
(2.13) P{ Y. Y, >o,log n} =o(n"12).
i=1

Relations (2.11)-(2.13) prove (2.9), which completes our example. O



CONVERGENCE RATE AND ASSOCIATION 1691

We conclude this section with a remark concerning the mequa.hty of Wood
(1983). Under the conditions of Newman’s (1980) theorem [i.e., {X;: jeN}isa
strictly stationary process fulfilling (1.2)], he obtained the estimate for n = mk,
x € R:

(2.14) |P{n_l/2sn5x} - N(O,Uz)((—oo,x])l

< [165¢m(o? — 52) /(9753 )] + 36,/ (52m"2)],
where 67 = 07/k, p, = E|S;|3/k*. But the convergence rate given by (2.14) is
far from the optimal rate.

REMARK 2.3. Let {X;: j€ N} be a strictly stationary associated process

fulfilling EX, = 0, E|X;|? < oo and (1.2). Assume that the random variables are
not independent. Then (2.14) maximally leads to a convergence rate O(n~1/%).

ProOF. Since uncorrelated associated random variables are independent [cf.
Corollary 3 of Newman (1984)], we can choose j, > 2 such that Cov( X], X;)>0.
Hence, for & > j,

0 k
o> —ap=2 ) Cov(X,,X;)+ (2/k) Y (j— 1)Cov(X,, X;)
j=k+1 j=2
2.15
(2.15) > (2/k)(J, — 1)Cov(X,, X, )
/k, C,>0.

Note that the association of the process implies Cov( X;, X ) > 0 for all j. W.lg.
we assume E|S,|3 = O(n?/?). Using Holder’s inequality and o op > X \EX?/k =
EX?2 > 0, we find positive constants C; such that for all k. € N

(2.16) C,<af<C;,, Cy<p,<C,
From (2.15) and (2.16) we get for n = mk,
[1664m(o® - 52)/(975%)] + [3p,/(5Em )]
> C,(n/k* + EY?/n'/?),  C,> 0.

Now it is easy to see that k£ = k(n) = [n3/5] yields the best possible convergence
rate O(n~1/%), O

Observe that our standardization o, IS, is different from the standardization

n~12S, used by Wood (1983). But in the stationary case this difference presents

no d1fﬁcult1% If {X;: j € N} is a stationary associated process fulfilling (1.2),
we have

|P{n=1/%S, < x} = N(0,0%)((— o0, x])]
< splp(e5,53) - o] 4o )~ o070
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As 62> 02/n > EX? > 0, we obtain
|o(n'%,; x) — ¢(07%)| < By(0® - 02/n) < Byn™?,

according to (2.1). Hence Theorem 2.1 remains valid if we consider the standard-
ization used by Wood (1983).

3. Auxiliary results. In this section we prove some results which we need
for the proof of Theorem 2.1. The following lemma is the main tool for our
estimates. We assume all occurring covariances to exist.

LEMMA 3.1. Let A and B be finite sets and let X;, j € A U B, be associated
random variables. )

@) If f: R*™ > R and g: R*® > R are partially differentiable with bounded
partial derivatives, then

|Cov( F((X)ica) 8((X)),e5))| = £ T 10£/08., 108/0¢)1.Cov( X, X;).
t€A jeB .

(ii) If h: R — R is a bounded differentiable function with bounded derivative,

then

< |REAHE2 02 Y Y Cov(X,, X;).

i€A jJEB

COV( il; h(X,), j];!gh(Xj))

ProOF. Let f;: R¥ - R and g,: R*® — R be defined by
fi(s) = Z 19f/ 3]l 08:5
i€A
&(s)= % 108/,
JjEB

Since f, — f, f,+f and g, — g, g, + g are coordinatewise nondecreasing, (i)
follows from Proposition 15 of Newman (1984).
(ii) follows from (i), putting

f(s) = H h(s;), g(s) =11 h(sj)' O
i€A JEB
We now adopt the notation of Section 2.
LEmMA 3.2. The inequality
r-1
X;T1&
=1

E < B(2tb,/0,)" "' + B(4th, /0,)" 2’ r'\/3(t/0,)** 8(m)"?

+B2'r*3(t/a,)*? 8(m)*>
- &0 = 80,1
holds forallj=1,...,nandr=2,...,k + 1.
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Proor. Using Hélder’s inequality and (2.3), we obtain
1/3

r-1 r—1 /3, p—1
oo due]<n(sTe] (£

where IT indicates the product over all even indices and 1" the product over all
odd indices. We have |£]> = A(S{™? — S(), where h(x) = |exp(itx) — 1|° =
2%%(1 — cos(#x))*?, ||All,, = 8, IIA'|l,, < 6¢. By Property (P,) of Esary, Proschan
and Walkup (1967), the random variables S{™» — S§®, I=1,...,r -1, are
associated. Hence Lemma 3.1(ii) (put A = {2}, B={2<n<r - 1: n even})
implies

r—1 r—1 r—1
") 3 2),3 ned3 2(ap)2 -
EL’I1 €01 < EgP) Ez=l—[1 EP)? + 872(6t) 123 Cov(S®M — S@, 8-V — §»)
12 le;en

r—1
< E'£52"3Eﬂ "|€D12 + B,87%(t/a,)? 8(m),
1+2

according to the definition of u(m) and 8(m).
Applying Lemma 3.1(ii) consecutively, we obtain (note that [£("|* < 8)

r—1 r—1
(3.2) EIH €D < ll'[ 'E|EP)? + By(r — 1)87%(t/a,)’ 8(m).
=1 =1

In the same way we get
r—1 r—1

(3.3) ET] PP < TT"EIEP? + By(r — 1)87(t/0,)" 8(m).
-1 =1

As in Tikhomirov [(1980), cf. (3.2)—(3.4)] it is not hard to show that for
=1,...,r—1

(3.4) E|EPP < (2th,/0,)".
Since 2tb,,/0, < 1, (3.1)~(3.4) lead to the required estimate. O

LEMMA 3.3. The inequality

< B4"(t/0,)u(m + 1) + B4'(t/0,)"/* 8(m)*?

r—1
Cov( X; E ¢0, exp(itS}')))

- 89 - 4D(0)
holds forallj = 1,...,nandr =2,..., k [here Cov(£¢,m) = E({n) — E(§)E(n)].

ProoF. Let y,: R = R be a differentiable function satisfying ¢(x) = x for
|x] < N/2,0 < ¢{4(x) < 1forx €R and ||{||,, = N. The constant N > 0 will be
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specified later. For z € C put h(z) = Re(z), hy(2) = Im(z). Then we have

r—1
Cov( X, l_]—[l £0, exp( itS}’))) '

< X

ve(l,2y!

+ X

ve(l,2y-!

r—1
COV((Xj - ¥o( X)) I=I_[1 g0, exp( itsj(r))) \

=T, +T,+T,

Cov( Yo X;) :lj:hw(gl))’ oo tSj(r))) l

(3.5)

r-1
Cov( ol Xj) ll:ll hy,(§J(l)) , sin( tS]('))) l

+

Put f(x) = cos(tx) — 1, fy(x) = sin(&x). Then
M) =h(s - 80), vm 12
For fixed v € {1,2})"~! we now apply Lemma 3.1(i) with
r—1
f(s) =‘P0(so)ll_llfv,(sl)’ 8= (so’“"sr—l) ER’,
and g(s) = cos(ts), s € R. Since the random variables X;, S/~ — S{» and S{"
are associated by Property (P,) of Esary, Proschan and Walkup (1967), and since
19F/3solle < 277 10f/3s)lle, < Nt27%2,1 <l<r—1, and ||3g/9s||, < t, we
obtain

Cov

r—1
() T ). con(i)|
r—1
< -, 37) + T Ner-scn{ -0 - 5, 57)
=1

< 2" Y(t/o,)u(m + 1) + 2" 'N(¢t/q,)* 8(m).
Using #{1,2}""! = 2", we get

(3.6) T, < 22~ %(t/0,)u(m + 1) + 22°~2N(t/q,)* 8(m),
and analogously
3.7) T, < 2°%(t/a,)u(m + 1) + 22 "2N(t/a,)’ 6(m).

The properties of ¥, imply |X; — ¢o(X,)| < 4N"% X% Since |£"| <2 and
sup; cn E|X;|? < o0, it is now easy to see that

(3.8) T, < B,N~%2".
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W.lg. we assume t> 0. As uncorrelated associated random variables are
independent, the condition §(m) = 0 implies that the process {X;: j € N}
is m-dependent and thus Theorem 2.1 follows from Tikhomirov (1980)
and Schneider (1981). Hence we also assume &(m) > 0. Putting N =
8(m)~3(t/a,)"?/3, (3.5)~(3.8) imply the assertion. O

LEMMA 34. The inequality

glE( Xj:ljllﬁy)(exp(itsj(r)) _ fn(t))) l

J

< nAD + BnAPr'2m%(t/q,)If(¢)| + Bn'/?A0rm(t/a,)
holds for allr = 2,..., k.

Proor.” Elementary estimates yield

£ o x THestenlisr) - 1.0)|

n r—1
<Y Cov(Xjnsy),exp(itS}’)))l
Jj=1 =1
| £ afr(pe(ies?) - Bena(icy?)
(3.9) J=1
r—1
[where a? = af3(0) - £, T £§l))
-1
n
< nAD +|f,(¢t) Z‘, a"Eq{’
Jj=1
n
+|E|exp(ito;’S,) ¥ a(n - Eng.’))) ,
Jj=1

according to Lemma 3.3, where
o = 20) = 1 - exp(—it(5 - ).
Using Hoélder’s inequality and

E(( i X,,)( f‘, X,,))su(O)min{b—a,d—c}

v=a+1 p=c+1

(3.10)

fora<b,c<d,
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we get
[ < 5|0 - 5
’ 2\ /2
< (t/9,) E( x X,)
l<v<n
p—Jjlsrm

< B,r'’m'/*(t/q,).
Hence, by Lemma 3.2,

(3.11) < BnADrY2m%(t /o, )\f,(2)).

n
fat) X af B
Jj=1

We now derive an estimate for the third summand in (3.9). Since
|exp(ite, ’S,)| = 1, we get

n
E(exp(iton"‘Sn) Yy af")("l(j') — E'q(j’))) '
j=1
(3.12) s
n
<|E Z a}r)(.n(jr) —_ E,r’(jr)) ) .
j=1

Splitting the terms into real and imaginary parts and again applying Lemma 3.2,
we obtain

n
¥ () - Ex)
2

<2(80) T |Cov(Re(r"), Re("))|

1<i,j<n

2
E

42 T |Cov(Re(s), Im(x))|

1<i,j<n

(313) - + X |COV(Im(n‘i”),Im("§~"))|}

1<i,j<n

=20 T |Cov{con( (50 - 517).cos(~ (5 - §7)|

1<i,j<n

+2 T [Covfoos(~¢(8” - §(7)),sin( (3 - 51”))|

1<i,j<n
+ ¥ |Cov(sin(—t( S© — Si(r))),sin(—t(Sj(O) - s}r))))l}.
1<i,j<n

According to Property (P,) of Esary, Proschan and Walkup (1967), the random
variables S — §{" and 8{” — S{", 1 < i, j < n, are associated. Hence Lemma
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3.1() [put f(x) = g(x) = cos(—tx)] implies
Y |Cov(cos(—t(S,~‘°) - S}'))),cos(—t(S}O) - S}'))))I

1<i, j<n

<(t/s))> ¥ Cov| ¥ X, Y XM)

(3.14) 1<i, j<n 1<v<n l<p<n
li—j|<3rm p—il<rm le—jl<srm

1<i,j<n l<v<n l<p<n
li—j|>3rm p—i|<rm le—Jjlsrm

+(t/s)} X Cov( Yy x, Y X,,).

Using (3.10), the first summand is bounded by B,nr2m?(t/s,)?. The second
summand is bounded by

n .
@orfes| L 5 % T
i=1 l<v<n 1<j<n 1l=<p<n
[p—i|<rm li—j|>3rm |p—j|<rm
< By(t/0,)’nrm8(rm)
< B,nr*m®(t/s,)’.
Hence (3.14) yields

3 ‘Cov(cos(—t(Si‘o) - Si(”)),cos(—t(S}o) - S}’))))I < B,nrtm?(t/s,)’.

1<i,j<n

The other summands in (3.13) are estimated in a similar way. Combining (3.9)
and (3.11)—(3.13), we get the required inequality. O

LEMMA 3.5. The following inequality holds:

io;1 Y EXEP = —t + 0,(¢t)n(t/02)u(m + 1) + Boy(t)nb%(t*/0}).
J=1

Proor. Using the definition of u(n), the proof follows easily from the proof
of Lemma 3.4 of Tikhomirov (1980). O

Finally we need
LEMMA 3.6. The following inequality holds:

io; ! i E(Xjexp(itS}l))) = Bo(t)n(t/o2)u(m + 1).

Jj=1

ProOF. Using the decomposition exp(itS(™) = cos(tS{") + isin(tS"), the
proof follows easily from Lemma 3.1(i). O
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