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PATH PROPERTIES OF INDEX-8 STABLE FIELDS!

By JouN P. NoLaN

University of North Florida and University of North Carolina,
Chapel Hill

We examine the paths of the stable fields that are the analogs of index-8
Gaussian fields. We find Hélder conditions on their paths and find the
Hausdorff dimension of the image, graph and level sets when we have local
nondeterminism, generalizing the Gaussian results.

1. Introduction. Our objective is to study the sample paths of the stable
analogs of the index-8 Gaussian fields. One example of the latter is a Gaussian
process with Var(X(¢) — X(s)) = |t — s|?# for some 0 < 8 < 1. The work of
Cuzick (1978), Adler (1981), Pitt (1978) and Geman and Horowitz (1980) has
resulted in detailed knowledge of the sample paths of these Gaussian fields. A
good reference for these results is Chapter 8 of Adler’s book, where one can find
any Gaussian result we do not explicitly reference.

In Section 2 we define our terms and give some consequences of local
nondeterminism. Section 3 is concerned with Holder conditions for the sample
paths of (N, 1) stable fields. Briefly, the stable result does not follow the
Gaussian one and we give a surprising example of how || - |5 is a poor replace-
ment for Var(-). We describe what we can for hannomzable sub-Gaussian and
moving average processes. Finally, in Section 4, we examine (N, d) stable fields.
We allow the indices of stability to be different for different components. We
find the Hausdorff dimension of the image, graph and level sets for classes of
stable fields, as well as show their trajectories are Jarnik functions. Perhaps
surprisingly, || - ||5 is an adequate tool for these irregularity results and there is
no dependence on the index of stability. Adler (1981) has used the word
“erraticism” to describe the uniform irregularity of sample functions, which
these stable fields share with their Gaussian analogs.

2. Preliminaries. Points in R™ will be denoted by x = (x,..., x"), the
usual inner product by (x, y) = Zx’y* and the Euclidean norm by |x| = (x, x)'/2
The notation A =g, , ., B will mean that there is a positive constant C
depending on the parameters a,, a,,... such that C"! <A/B < C. For s, t €
R” s < ¢ means s' < ¢ for all i = 1,..., n in which case [s, ¢] will mean the
n-dimensional rectangle 12 [ s%, ¢']. Lebesgue measure on R” will be denoted by
Leb,,.
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If X is a real symmetric p-stable random variable, 0 < p < 2, then we let
(2.1) I X1, = [~log( E exp(iX))]"*.

This is a norm (p quasinorm if 0 < p < 1) on the space of symmetric p-stable
random variables. Of course, || X||2 = Var(X)/2 in the Gaussian case, so one is
tempted to think of || X||7 as a generalization of the variance. It is known that
for any 0 < q < p, there is a C(p, ¢) > 0 such that

(2.2) E|X|?=C(p,q)IX||%,

for every symmetric p-stable r.v. X.

Let 0 <p <2 and T C R™. A real-valued random field X = {X(¢): t€ T}
will be called an (N,1, p) stable field if every finite linear combination
Y7 1a;X(¢;) is a symmetric p-stable r.v. Then by (2.1)

[

so ||Xa;X(t;)|l, completely determines the distribution of (X(t,),..., X(¢,)).
Every (N, 1, p) stable field X has a stochastic integral representation: There is
some measure space (M, .#, m) and a collection { f(¢,-): t € T} c LP(M, #, m)
such that X(¢) = [f(¢, u)W(du). W is the p-stable noise generated by m. This
representation for X is described in Hardin (1982). For our purposes, we only
need to know that such integrals are defined and that ||Xea,;X(¢)ll, =
1 Za,f(t N Lem, 4, my

Throughout we assume that || X(¢) — X(s)||, > 0 as ¢ — s, which is equiv-
alent to X being continuous in probability.

Points ¢,,...,¢t, € T are ordered if t <t,< --- <t, when TCR; if
T c R" N > 1, we call them ordered if for every j=2,...,m, |t; = t; )| <
|t; — t| forevery k =1,..., j — 1,1i.e, t;_, is closest to ¢; among ¢,,..., ¢;_;. In
Nolan (1986) we used this definition of order and the L” representation to define
local nondeterminism for symmetric stable fields. We repeat that definition here
in terms of || - ||,; An (N, 1, p) stable field is locally nondeterministic (LND) if

@ 1X()ll,>0forall e T
(ii) 11 X(¢) — X(s)ll, > O for all ¢, s € T sufficiently close; and
(iii) for any m > 2,

lemiag 1X(¢,) — span{X(#,),..., X(t,_1) },

e10 1X(£n) = X(tm-)llp

where the liminf is taken over distinct, ordered ¢,,...,¢,, € T with |, — ¢, | <e.
One consequence of LND is the following.

’Zn: a;X(t))

Jj=1

I

(2.3) Eexp(i ‘E an(tj)) = exp(—

J=1

>0,

LEMMA 21. Let 0<p<2 and X and Y be (N,1, p) stable fields
on T. Assume both are LND, |X(¢t)|,=c YD), for all t€ T and
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1 X(2) — X(s)ll, =c, 1Y(2) — Y(s)ll, for all |t — s| < &8,, where 8, is some posi-
tive number. Then locally X and Y have equivalent norms, i.e., there is a §, > 0
such that for any m > 2,

i u; X(¢))

Jj=1

f‘: uY(t;)

J=1

=c(m, p) )
P J4

forallu,,...,u, €R andallt,...,t, € Twith |t;— t] <8, for all i andj.

ProoF. We will assume ¢,,..., ¢,, are ordered. This is no loss of generality as
there is always a permutation = of (1,..., m} with £,,,,..., £;(», ordered and
the following proof works on this rearrangement. Set

m

v; = Zuk, thenv;,, —v;=u;forj=1,...,m -1,
k=j

TuX(5) = 0 X(t) + Y o(X(5;) - X(t,_1)).

Jj=2
By Theorem 3.1 of Nolan (1986), LND implies

24) 1 Zu,;X(8)1l, =com, p 10 X (81, + fnvj(X(t,-) = X(t;-1))llp»

Jj=2

when ¢,,..., ¢, are close. The same argument works for Y, so the assumptions on
the p-norm of X(t), Y(¢), X(¢) — X(s) and Y(¢) — Y(s) give the result. O

In view of (2.3), one is tempted to conclude that if X and Y satisfy this
theorem, then they will have the same local properties. This is true in the
Gaussian case, but not necessarily true when 0 < p < 2, as we shall see in the
next section.

The following consequence of LND is the crucial one for local time applica-
tions. Since it was not explicitly stated in Nolan (1986), we present it here.

LEMMA 2.2. Let X bea LND (N, 1, p), 0 < p < 2, stable field on compact T
with joint density p(£; %) = p(ty, ..., by X155 Xp) Of (X(8),..., X(t,)). Then
there is a 8 > 0 such thatif t,..., t, are ordered, distinct and |t;— t;| < & for
alli, j,

p(% %) < K,(m, p)J(2),
and forany 0 <y <1,

1p(% ) — p(& 7)| < Ky(m, p)J(t)' "> Hllxj -y
J'

where

J(¢) = [uX(tl)upflqu(t,-) - X(t,-_l)u,,]_ .
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ProoF. The inversion formula for characteristic functions shows

p(5x) < (27)_'"/"’" Eexp(i rzn: qu(tj)) du

Letting v; h=jl k88 in (2.4), LND shows that there is some & > 0 such that
[t — ¢t < 8 for all i, j, implies that the preceding integrand is bounded by

exp

—C(ule(tl)u,,+ ﬁuvj(X(tj)—X(t,-_l))u,,) )

Jj=2

Let w, = || X(¢)|,v, and w; = || X(¢;) — X(¢;_)l|,0; for j=2,..., m. (Recall
that these norms are positive as part of our definition of LND.) Some calculation
shows that J(#) is precisely the Jacobian of the transformation (u,,..., u,,) =

(w,,...,w,), yielding
m p
—C( X |w,~|)
j=1
= Kl(ma p)J(Z’).

For the second part, the inversion formula yields

J(t) dw

p(hx) < (27)_mLmexp

p(& %) - p(E 3)l < (27) " fI1 - exp(—i g (x; = :vj)uj)

X Eexp(i Y qu(tj)) du
j=1

For any 0 < y < 1, the first term inside the integral is <IIT. 1|x yj|7|u AT

Letting v; be as previously, u,, = v, and u; = v; — v;,, for j = 1 —-1,s0
we can replace the u;’s with v"s and expand to get

H|u,|*s > I[Tiof (8 € (0.1,2)™

Jj=1 {9y j=1

Using LND as previously,
m
p(&%) = p(5¥) < @) " [T -yl
j=

0,y ;v

"fn{% X, | -2 1X(2;) - X( Dl

Xexp(—C( lejl)p)J(i) dw.

Since ¢ — || X(¢)||, is continuous on compact T, | X(¢)ll, and || X(2) — X(5)l,
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are bounded, implying that for § = 0, 1 or 2,
1 X(£)II°" < constant|| X(¢)|| 5%,
1X(¢) — X(s)II,°" < constant|| X(¢) — X(s)I,>",
and we can combine these terms with J(£) to get

|p(% %) — p(% 7)| < constant J()'**"

X/ Z ﬁ|wj|0ﬂexp(—C(2|wj|)p) d&)’j=lin-[1|xj -yl

R™(6) j=1

m
=Kz(maP)J(z)szl—[le_yj|7- a
j=

3. Regularity for (N,1) fields. The path regularity of a real-valued
Gaussian field, i.e.,, an (N,1,2) stable field, is determined by the growth of
o(t, s) = Var(X(t) — X(s))/2 = 2||X(¢t) — X(s)||; A natural question is whether
| X(¢) — X(s)l|,, is the corresponding quantity to examine when 0 < p < 2. The
answer is no in general, though this quantity is useful for some classes of stable
fields.

For clarity, we will examine (N, 1, p) stable fields X similar to the index-f
Gaussian fields studied in Chapter 8 of Adler (1981). Specifically, for all ¢ in the
interior of 7' and some 0 < B < max(1, p~'), define the two conditions

(3.1) I X(t+ h) — X(t)|l, = o(|h|*), as|h|lOforall0 <a <8,
(3.2) |h|* = o(| X(¢ + k) — X(¢)|l,), as|h|iOforalla> ﬁ;

Note that we may have 8 > 1 when p <1 because || - ||5, not || - || ,, is subad-
ditive. If both (3.1) and (3.2) hold, we call X an index-B (N, 1, p) stable field. In
this section we will examine when sample paths of X satisfy a uniform stochastic
Hélder condition of order « on T, i.e., there is an as. finite, positive r.v. C(w)
such that whenever |h| is small and ¢, ¢t + h € T,

(3.3) ‘ |X(t + k) — X(t)] < C(w)\h|*.

In the Gaussian case (3.1) implies (3.3) for every a < 8 and (3.2) implies (3.3)
fails for every a > B. The stable Lévy process with B = p~' shows that the
stable result cannot be as simple.

THEOREM 3.1. Let X be an (N, 1, p) stable field on compact T € RY and
0O<p<2

(i) Assume N = 1. If p > 1 and (3.1) holds for some B > p~?, then (3.3) is
valid for every a < B. No other values of p and B are sufficient for (3.1) to imply
continuous paths.

(i) For N > 1, (3.2) implies (3.3) fails for every a > B.
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ProoF. (i) By compactness of T, it suffices to consider T = [0, k], where A,
is small. Using (3.1) and (2.2) we have for any 0 < ¢ < p, any a < B,

(3.4) E|X(t + k) — X(¢))? < K|k,

for |h| small. If p > 1and B > p~ !, then choosing a € (p~}, B)and q € (a}, p),
gives ag > 1 and Kolmogorov’s classic result guarantees continuous sample
paths. However, we need something stronger to get the desired modulus of
continuity. Theorem 1.1 of Pisier (1983), with d(¢, s) = |t — s|* and (1) = |u|?
gives the desired modulus of continuity. The second part of (i) comes from
example (d) given in the following discussion

(ii) As in the Gaussian case, if a > S, then (3.2) shows (X(h) — X(0))/|h|* is
a.s. unbounded as |A| |0, so (3.3) cannot hold. O

Note that the proof of part (i) is a moment argument and applies to the gth
moment processes regardless of whether they are stable or not. When the index
set T is N-dimensional, Kolmogorov-type arguments require that the exponent
on the right-hand side of (3.4) must be greater than N. Since ag < Bp <
max(1, p) < 2, moment arguments fail for stable fields when N > 1. We know of
no general result when N > 1, though the value 8 = p~! is always a lower bound
as example (¢) will show. In the next section we will strengthen (ii) using local
times.

We now give examples to illustrate the possibilities for specific classes of
(N, 1, p) stable fields. We will mention when these examples are LND for use
here and in the next section. Any unreferenced statements come from Nolan
(1986).

(a) Harmonizable fields. Let N > 1,0 < p < 2, p a finite Borel measure on
RY, W the complex p-stable noise generated by p and define
X(¢) = Rej exp(i(t, \)) dW(),
RN

for ¢t € [0,27]". This gives a stationary (N,1, p) stable field, but does not
exhaust that class, e.g.,, Cambanis and Soltani (1983). Sufficient conditions for
(3.1) and (3.2) to hold are, respectively,

(3.5) limsup A|N**Pu(A + Q) < o0, forall a < 8,
[A]= o0

(3.6) liminf A|V**Pu(A + Q) > 0, forall a > B,
[A]= 00

where @ is any bounded cube [—a, @]V in R". If both hold, then X is an
index-B8 (N, 1, p) stable field. If both hold when a« = 8 and p > 1, then X is
LND. Taking @ =[—-1/2,1/2], this includes random p-stable Fourier series
X(t) = Re(Za,exp(int)b,), e.g., |a,| = |n|~*#P) for large |n| implies X(¢) is an
index-8 p-stable process.

When p > 1, Marcus and Pisier (1984a) give necessary and sufficient condi-
tions for X to be continuous. Since (3.5) implies 7(¢, s) = || X(¢) — X(s)||, <
constant|t — s|* for a < B, their logarithmic metric entropy is finite, giving
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continuity. Even more, using Theorem 1.6 of Marcus and Pisier (1984b), we get
(3.3) for every a < B. Using their notation, |lexp(iu - )|, < constant|u| making

Jllexp(iu )112 dp(u) < oo.

Furthermore, J(,8) < constant §'~* and 6,(r, 8) < constant '~ for small
e > 0. For |t — s| < h, § = 7(t,s) < h* and their result shows

1X(£) = X(s)| < C(w)lh** 72,

When 0 < p < 1, the finiteness of p insures the continuity of X, see Marcus
and Woyczynski (1979).

(b) Sub-Gaussian fields. Let 0 < p <2, A a positive (p/2)-stable r.v. and
Y(t) an (N, 1) Gaussian field. Then X(¢) = AY2Y(¢) is a sub-Gaussian (N, 1, p)
stable field. It satisfies (3.1) and/or (3.2) if and only if Y satisfies the respective
condition. It is LND if and only if Y is. Since the sample paths of X are simply
multiples of those of Y, (3.1) implies (3.3) for every a < B as in the Gaussian
case.

(¢) Multiparameter Lévy stable fields. Let 0 < p <2, T =[0,1]" and X(¢) =
W([O, t]), where W is the p-stable noise generated by Lebesgue measure on 7.
When N =1, || X(t + h) — X(t)||, = |h|'/?, so X is an index-(1/p) stable pro-
cess. It is also LND. In contrast, when N > 1 we have (3.1) for 8 = p~*, but (3.2)
fails for every 8 and these fields are not LND. To see the claims about (3.1) and
(3.2), we note that

| X(¢+ k) — X(2)||2 = Leby([0,2+ R] a[0,¢]).

Taking any component of A to be 0, this is 0, so (3.2) cannot hold. The proof of
(3.1) is in the following elementary argument.

For any M >0, and any ¢ t+ h<[0, M]", Leby([0,¢+ R]a[0,¢]) <
MN-INY2|p|. Let a, b€ R" have coordinates a‘ = min(¢}, t' + A‘) and b’ =
max(¢, t' + h'). Then [0, ¢ + ] U [0, ¢] € [0, b] and [0, ¢ + A] N [0, ¢] = [0, a],
so [0, ¢+ h] a0, t] c [0, b] &[0, a]. Now the last term is equal to UN.,Q,, where

Q. = ([]_[o, bf]) x [at, bi] x (1‘[.[0, bf]).

J<i J>i
Hence,
Leby([0,¢ + k]2 [0,¢]) 5 ¥ Leby(Q) = X TT1p7) - ' - af
i=1 i=1‘J*

< ZMN—llhi' < MN—1N1/2(Z|hi|2)1/2'

Of course, these fields are discontinuous when 0 < p < 2, explaining the
critical value of 8 = p~! in Thearem 3.1. We note that Bhm (1981) hes derived
some of the results in the next section for these fields without LND by using a
direct approach to the integrals involved in the proof of our Lemma 2.2.

(d) A class of moving average processses. Let 0 <p < 2,0 < 8 <1 and set
(3.7) X(t) = [ |t = NFP e N AW(N),
—o0
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for ¢t € R, where W is the symmetric p-stable Lévy process. For every value of p
and B, this is an index-8 and LND p-stable process. When p > 1 and 8 > p~1,
then Theorem 3.1(i) shows (3.3) holds for every a < 8. However, in all other
cases (p <1 or B <p~'), the kernel in (3.7) is discontinuous and hence, by
Theorem 5.1 of Rosinski (1986), X(¢) cannot have continuous sample paths.

Looking a bit further at this example leads to an unexpected result. Let X be
one of these discontinuous moving average processes. Take the same p and 8
and get a sub-Gaussian process Z using (a) and (b) that is index-8 and LND.
Then Lemma 2.1 shows

i u; X(t;)

Jj=1

(3.8)

m
=com,p || 2 wiZ(¢;)

p Jj=1 p

locally. By (2.3), these two quantities completely determine the distributions of
(X(t),..., X(¢,)) and (Z(t),..., Z(L,)), respectively. Yet Z is continuous,
whereas X is discontinuous! Thus not only does the pair 8 and p fail to quantify
when an (N, 1, p) index-B stable field is continuous, even the stricter condition
(3.8) fails. It seems that no condition involving just || - ||, will suffice. Perhaps
the lesson here is that for regularity results, || - ||2 fails to express what Var(-)
does in the Gaussian case and that a Banach space approach like Rosinski (1986)
or Marcus and Pisier (1984a, 1984b) is necessary. Finding continuity conditions
for general stable processes is an important open problem. When conditions are
found, they should replace (4.1) to make the results of the next section more
complete.

4. Regularity and erraticism for (NN, d) stable fields. We will now con-
sider stable fields having state space R?, ie., X = {X(¢) = (X(2),..., X¥%¢)):
t € T c RM}. Each component X'(¢) will be an (N, 1, p,) symmetric stable field.
We allow components to have different stability indices. This will be abbreviated
as an (N, d, p) stable field, where p = (p,,..., p;). For simplicity, we will
assume T = [0,1]" and that X has stationary increments, although this is not
strictly necessary for most of these results.

Since (3.1) fails to imply uniform stochastic Hélder conditions on the sample
paths in general, we will replace (3.1) by (4.1) and generalize (3.2) to (4.2):

X satisfies a uniform stochastic Holder condition of every
(4.1)  order @ < B, ie, a@=(ay,...,a,), B=(By-...,B,) and com-
ponent X' satisfies (3.3) for every a; < 8,.

(4.2) For each @ > B, we have simultaneously for all components
) i=1,...,d,

|B1% = o(| X¥(t + k) — X¥(¢)|,,), as|hlLo0.

The results of the last section apply to each component separately, but to
study all the components together, we need to rule out degeneracy caused by too
much dependence between components. For example, if a field X has one
component a scalar multiple of another, then the image of X can be quite
different from when the components are independent. For Gaussian fields,
Cuzick (1978) gave such a condition in terms of the covariance. We alter slightly
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our earlier definition in Nolan (1986). An (N, d) random field has characteristic
function locally approximately independent components, if for all m > 1 there
are a 8§ = 8§(m) > 0 and a C = C(d, m) > 0 such that for all u,,...,u, € RY
and all ¢,,...,¢, € T with |t; — t| < & for all i and j,

d

Il

i=1

<

J=1

m
Eexp(iC"1 y uj»X"(tj))

Eexp(ilgl (u;, X(tj)>) .
(4.3)

.

d
< Il
i=1

Eexp(iC 5 uiX "(tj))

J=1

We will say an (N, d, p) stable field is locally nondeterministic (LND) if the
components are individually LND and (4.3) holds. Clearly, (4.3) holds if the
components of X are independent. If the indices p,, p,,..., p, are all the same,
then the techniques in the preceding paper give an equivalent condition in terms
of the common || - || ,, norm.

We start our analysis by looking at the Hausdorff dimension of the image and
graph of X, denoted by Im X and Gr X. This result generalizes Cuzick’s (1978)
Theorem 1.

THEOREM 4.1. Let X be an (N, d, p) stable field on [0, 1]_N with stationary
increments that satisfies (4.1), (4.2) and (4.3) for some B and let B, =
max(f;,...,B;). Then a.s.

d
dim(Im X) = d, ifN= ) B,

i=1

(4.4) ., 4
"—'d+ N_ZB;)/Bmax’ lfN<ZBn

i=1 i=1

d d
dim(GrX)=d+N- Y 8, Nz Y B,

i=1 i=1

(4.5)

Ma

d
=d+(N—— Z,Bi)/ﬁm, ifN< ) B

i=1 1

.
I

ProoF. We make minor adjustments to Cuzick’s proof. For both Im X and
Gr X, (4.1) and real variable arguments show that the right-hand sides of (4.4)
and (4.5) are upper bounds for the respective dimensions. The lower bounds for
dim(Im X) come from standard capacity arguments if we can show
Ji-1,vEI1X(2) — X(0)| ™ dt < oo for all A < right-hand side of (4.4). As he does,
substitute Y(¢) = (X¥(¢) — X%(0))/1X'(t) — X*(0)|| ,,- Our (4.3) plays the role of
Cuzick’s condition (1A) and guarantees that the joint density of (Y'(2), ..., Y¥(¢))
is bounded above by a constant independent of ¢. That density is, using (4.3) and
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1Y), =1,

d d
py(t; ¥, %) = (277)_dfndexp(—i§, yiui)Eexp(i Yy uiYi(t)) du

i=1

d
< constantf [ TIE exp(iCu'Y'(¢))| du
RYi=1
d
ivi P e
= constant /nxdi:]_[lexp(— [Cu'y (t)"zn) di

d
= f exp(— Y |Cui|”') di < o0.
R i=1
The rest of the proof follows Cuzick. O

It is worth noting that the result does not depend on the indices p,,..., p,.

As in the Gaussian case, the sum ©¢ 8, is the critical value. If this is less than

N, then dim(Im X) < d a.s., so Leb,(Im X) = 0 a.s. and almost every point in
R is not hit by X. If the sum is N or more, then we can ask about hitting points
and the existence of local times. The latter was done in Nolan (1986) for LND
stable fields. We simplify that proof here and sharpen the result when (4.2)
holds.

THEOREM 4.2. Let X be an (N,d, p) stable field on T =[0,1]" with
stationary increments that is LND and satisfies (4.2) for some B. If N > ¢, 8,,
then X has a jointly continuous local time a(x, t) that for any compact U C R¢
is

(i) Hélder continuous in x € U for any order 0 < y < min(1, (N/Z%,8;) —
1)/2), i.e., there is an a.s. finite positive r.v. C,(w) with

la(x, B) = a(y, B)| < Cy(w)lx — I,

for all x, y € U and all rectangles B C T with rational vertices;
(ii) Hélder continuous in t for any order 0 < 8 <1 — (X% ,8,/N), i.e., there
is an a.s. finite positive r.v. Cyw) with

a(x, B) < Cyw)(Leby(B))’,
for all x € U and all rectangles B C T of sufficiently small edge length.
ProOOF. The (4.3) part of LND lets us generalize Lemma 2.2 to

p(tx) < K,(m, p,d)d(t)
and

Ip(% %) — p(% )| < Ky(m, p, d) I—Illx,- — y (B,
2

where 0 <y <1, m21, t=(t,...,t,)€TY t,...,t, are ordered, X =



1606 J. P. NOLAN
(xly"',xm), 5’ = (yly"'9 ym) € (Rd)m and
d
I(@) = [1740),

where J¢ is the Jacobian term for component X' as in Lemma 2.2. The rest of
the proof is as in Sections 25-30 of Geman and Horowitz (1980). The only
essential change is to use

V, (B) = jB J(A(B) " di

(where A: T™ — T™ rearranges ¢,,..., t,, so that they are ordered) instead of
their V,, (B). O

As in (30.7) of Geman and Horowitz (1980), we can strengthen Theorem 3.1(ii)
with LND. This can be applied separately to the components of an (N, d, p)
field even when they do not satisfy (4.3).

COROLLARY 4.3. Let X be an (N,1, p) stable field on T = [0,1]V that is
LND and satisfies (3.2) for some B < 1. Then a.s. the sample paths of X are
Jarnik(a) for every a > B, i.e., for everyt € T,

_|X(t) - X(s)l
ap-lim ———— = a.s.
st |t — s|*

The fact that this holds at every ¢ means much more than Theorem 3.1(ii)—it
guarantees that the paths are uniformly erratic.

Let X be as in Theorem 4.2 and assume (4.1) holds. Continuing our discussion
after Theorem 4.1, a natural question is how big is the level set {t e T:
X(t) = x}. Consider the open set 0 = O(w) = {x € R%: a(x, T) > 0}. Real vari-
able results described in Adler (1981) show that for each w, ¢ and Im X are
essentially the same: His Theorem 8.6.1 shows 0 C closure(Im X) and his
Lemma 8.7.2 shows that the complement of @ is nowhere dense in Im X. His
Theorem 8.8.4 can be extended to the stable case.

COROLLARY 4.4. Assume X is as in Theorem 4.2 and (4.1) holds. Then a.s.

d
dim X~ (x) =N - ¥ 8;,
i=1
for all x € 0.

Finally, we comment on recent results of Monrad and Pitt (1986). Assuming
B=(B,...,B) has all components the same, then Gaussian fields similar to
those here satisfy a uniform dimension result that strengthens Corollary 4.4:
dimX~YF) = N — Bd + Bdim F for every closed set F C @. The stable fields
can be dealt with in the same way if we assume (4.1). They also show that (4.4)
can be strengthened: If N < Bd, then dim X(E) = (dim E)/B a.s. for every
closed set E c T. We do not see immediately how to generalize this when p < 2.
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Their “strongly LND” can be defined (the limit in the definition of LND is
independent of m), but the constant in (2.4) and hence in Lemma 2.2, depends on
m when p < 2.

Acknowledgments. The author would like to acknowledge the comments
and questions of the referee and Editor. Their help improved the clarity of this
paper, especially in Section 3.

Note added. After this paper was submitted, we discovered the work of
Kono (1986). He gives an alternate proof of our Theorem 3.1(i) and dimension
results like our Theorem 4.1 when N =1and 8, = 8, = -+ = B,. Finally, new
results on the continuity questions discussed in Section 3 are given in Nolan
(1987).
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