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STRONG APPROXIMATION FOR MULTIVARIATE EMPIRICAL
AND RELATED PROCESSES, VIA KMT CONSTRUCTIONS

BY PAascAL MASSART

Université Paris—Sud

Let P be the Lebesgue measure on the unit cube in R? and Z, be the
centered and normalized empirical process associated with n independent
observations with common law P.

Given a collection of Borel sets & in R, it is known since Dudley’s work
that if % is not too large (e.g., either & is a Vapnik—Cervonenkis class (VC
class) or & fulfills a suitable “entropy with bracketing” condition), then (Z,)
may be strongly approximated by some sequence of Brownian bridges in-
dexed by &, uniformly over % with some rate 3,.

We apply the one-dimensional dyadic scheme previously used by Komlés,
Major and Tusnady (KMT) to get as good rates of approximation as possible
in the above general multidimensional situation. The most striking result is
that, up to a possible power of log(n), b, may be taken as n~'/2¢ which is
the best possible rate, when & is the class of Euclidean balls (this is the
KMT result when d = 1 and the lower bounds are due to Beck when d > 2).
We also obtain some related results for the set-indexed partial-sum processes.

1. Introduction.

Definitions and notation. Let P be the Lebesgue measure on [0,1]¢ and
Xy, Xy, ... be a sequence of independent random variables with common distribu-
tion P defined on a “rich enough” probability space (2, &, Pr).

Let P, denote the empirical measure associated with (x,,...,x,), P, =
1/n¥}_14,, Fy=0. We call the empirical process the centered and normalized

process Z, = yn (P, — P).

NoOTATION. Given a set J and a function f: - R, let V,f denote the
supremum of f over J.

Let Z2(R?) be given the metric pp: (f, &) = (P((f — &)%) — (P(f — &)»)"*
and & be a collection of Borel sets in R¢, which is totally bounded for pp.

DEFINITION 1. A Brownian bridge indexed by & is a centered Gaussian
process indexed by & with covariance function (S,S’) - P(SN S') —
P(S)P(S. :

We say that the strong invariance principle (respectively, strong Kiefer
invariance principle) holds for &% with rate (b,) if there exists some sequence
(B,),>1 of versions (respectively, independent versions) of a Brownian bridge
indexed by % that are almost surely uniformly continuous on (&, pp) such that

VIZn - Bnl = O(bn) as.,
&
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respectively,

v

L4

=0(b,) as.
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Z,- — Y B,
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In what follows the sequences (b,) of the above definition will always decrease
to zero, but for Kiefer type approximations, denoting from now on by L the
function x — log(max(x, e)), the case where b, = o(VLLn) is also of interest
(because when the strong Kiefer invariance principle holds with such a rate, any
kind of law of the iterated logarithm which holds for partial sums of Gaussian
processes may then be transferred to the empirical process).

Let us review the main attempts of getting as good rates of approximation as
possible in the strong invariance principle for empirical processes.

Some bibliography. Let 2(® denote the class of quadrants in R¢, that is,
d
(d) — _ .
2@ = {11;11] o, u;];ue Rd}.

The sharpest known results about this classical class are the following:

1.1. The KMT results [see KMT (1975) and Tusnady (1977)]. The strong
invariance principle holds for 2% with rate Lnn~'/2 which is the best possible
one. Moreover the strong invariance principle (respectively, Kiefer invariance
principle) holds for 2® (respectively, for 2) with rate Ln2n~1/2,

) 1.2. Results of Csorgd and Révész (1975). For any d > 3, the strong invariance

principle (respectively, Kiefer invariance principle) holds for 2(¥) (respectively,
for 2(@D) with rate Ln®2n~Y/%+D (respectively, with rate Ln2p~1/2d+D),
Note that Révész [see Lemma 11 of Révész (1976a)] showed that the same rate
Ln®?n~1/% remains valid when d = 2 and replacing 2® with the VC class of
convex polygons with no more than K vertices.

Some other classes of sets were also studied by Révész [see Révész (1976a),
(1976b)].

1.3. Révész’s work on classes of sets with smooth boundaries. For the class of
some Borel sets of R? with (d + p)-regular boundaries (with 0 < p < 1), Révész
proved that the strong invariance principle (respectively, Kiefer invariance
principle) holds with rate n=°/12@+D+¢ (regpectively, n~=r/12d+D+2p+e)

Let us finally mention: )

1.4. Some general results about rates of convergence. Dudley and Philipp
(1983) gave entropy conditions on a class & for the strong Kiefer invariance
principle to hold with rate b,, where b, is some negative power of either n or Ln
(in that framework R¢ may be replaced with a general measurable space and P
is just any probability law in the Vapnik—Cervonenkis case), but of course, in
such a general situation, the rates b, are far from being optimal.
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Note that, refining their method, we proved [see Massart (1986)] that b, may
be taken as n~/(18+20d(#)+9) i the case where % is a VC class with real density
d(&) [in the sense of Assouad (1983)] fulfilling some mild measurability condi-
tion.

Statement of results. First we need some more definition and notations.
From now on % is a class of Borel sets of R

NOTATION. Given a norm | - | on R% let A® denote the set A° = {y € R*%:
|y — 2| < € for some z € A} for any &£ €]0,1].

We shall need the following smoothness condition on the boundaries of the
sets belonging to &.

DEFINITION 2. The class & is said to fulfill the uniform Minkowski condi-
tion [condition (UM)] if and only if there exists some constant K such that

P((3S)?) < Ke foranye€]0,1] and any S € &.

CoMMENTS. Of course the above definition does not depend on the given
norm on R?% Two classes of interest fulfill the uniform Minkowski condition:

(a) The class of convex sets [this is essentially the Steiner—Minkowski theo-
rem; see Dudley (1982), page 62].

(b) The class of Borel sets with uniformly Lipschitz boundaries in the sense of
Dudley (1974).

Condition UM will play an essential part in our forthcoming constructions.
Assuming condition UM is some kind of loss of generality with respect to the
framework of Dudley and Philipp (1983), but however it turns out that many
interesting geometric examples of P-Donsker classes fulfill condition UM.

We need to introduce some reasonable growth conditions on . We shall
make two kinds of assumption on & in what follows. We denote the first one by
H(0): & is a VC class. We recall that this means

sup{n € N||A N ¥| = 2" for some set A with cardinality n} < oo,

where A N ¥= {A N S, S € #} and |E| denotes from now on the cardinality of
the set E. Moreover & fulfills the mild measurability condition (.#): There
exist some Suslin space Y and some mapping T from Y onto & such that
(%, ¥) = V7,,(%) is measurable on R? X Y.

We denote the second one [which is the entropy with bracketing condition
used in Dudley (1978) and Dudley and Philipp (1983)], by

H($), with0 < § < 1: Ny 4(e, &) < exp(Ke~%)

for some constant K and any ¢ in ]0, 1], where N; (¢, &) denotes the minimal
cardinality of a collection #(¢) of Borel sets such that for any S in & there exist
S~ (&), S*(e) in FL(&) with S™(¢) € S c S*(¢) and P(S*(e) \ S7(¢)) < .
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ExXAMPLE 1. The class 29, the class of balls in R? (associated with any
norm), the class of balls in R? associated with some polynomial norm (in
particular an Euclidean norm is convenient), the class of ellipsoids and the class
of half spaces do all fulfill assumption H(0). [See Assouad (1983) for many
examples and properties of VC classes.]

EXAMPLE 2. In another connection the class of convex sets in R? fulfills
H(1/2) [see Dudley (1982)] and the class of Borel sets whose boundaries have
uniformly bounded derivatives of orders up to a for some positive a with
a > d — 1[in the sense of Dudley (1974) or Révész (1976b)] fulfills H((d — 1)/«).

It follows from the above comment that any of these classes fulfills the
uniform Minkowski condition, too.

Moreover it is worth noticing that if & fulfills H({) for some 0 < { < 1 and
condition UM, then so does the class of sets resulting from at most 2 Boolean
operations with arguments in & for some fixed k.

Throughout the paper d is an integer greater than or equal to 2; moreover,
unless we give some other specifications, the space  is assumed to be rich
enough in the following sense: There exists a random variable, defined on @, with
uniform distribution over [0, 1], which is independent of the observations.

THEOREM 1 (Strong approximation of the empirical process). Let & fulfill
the uniform Minkowski condition and assumption H({) for some 0 < ¢ < 1. We
set a,(¢,d) = VLnn='2% when ¢ = 0 and a,(§,d) = n=@~9/24 when ¢ > 0.

Then there exist some constants C, A and 6 (depending only on &) and, for
any integer n, some version Z™ of a Brownian bridge indexed by & which is
almost surely uniformly continuous on (&, pp) such that for any positive t

Pr*(VIZ,, —ZM| > a,(¢, d)(t+ CLn)) < Ae™?,
&

where Pr* stands for the outer measure associated with Pr.

An immediate consequence of Theorem 1 is

COROLLARY 1. Let & fulfill condition UM and assume that H({) holds for
some 0 < ¢ <1, then the strong invariance principle holds for & with rate
Lna (¢, d), where a,($, d) is defined as in Theorem 1.

The corresponding results concerning Kiefer type approximations are stated
below.

“THEOREM 2 (Kiefer-type approximation of the empirical process). Let &
fulfill the uniform Minkowski condition and assumption H({) for some 0 < { < 1.
Then, there exist some sequence (B;); ., of independent versions of a Brownian
bridge indexed by & which are almost surely uniformly continuous on (%, pp)
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and some constants C, A and 0 (depending only on &) such that for any
positive t
> b (¢, d)(t+ CLn)*?| < Ae?,

Pr*|V

&

where b,({,d) = a,(,d + 1) whenever d = 3 or { = 0 [with a,(-, ) deﬁned as
in Theorem 1] and b,({,2) = n~1=H/@3+D) jf ¢ > 0,

1 =n
Z — —= B;
" vn ng /

COROLLARY 2. Let & fulfill condition UM and assume that H({) holds for
some 0 < ¢ < 1. Then the strong Kiefer invariance principle holds for & with
rate (Ln)*/?b,(¢, d), where b,(-, -) is defined in Theorem 2.

CoMMENT. Corollaries 1 and 2 generalize and improve on 1.2 in the case
where { = 0. Moreover, Corollary 1 is optimal up to a power of Ln in the case
where either & is the collection of Euclidean balls or % is the collection of half
spaces and d = 2 [see Beck (1985) for the lower bounds].

In another connection, Corollaries 1 and 2 generalize 1.3 and improve on 1.3
when d < 6 [in that case, our result could be refined by using the oscillation
control of Révész (1976b) instead of that of Alexander (1984) which we use in
Lemma 1 below]. Note, in particular, that the strong invariance principle holds
with rate Lnn~'/® for the class of convex sets in R? as well as for the class of
Borel sets with twice differentiable boundaries in R2.

It is worth noticing that Borisov has already used [see Borisov (1982)] KMT
constructions to prove multidimensional invariance principles; the rates that he
got are less efficient than those given in Theorem 1, but hold for more general P
(for instance, for all P the rate Ln?n~1/224-D jg valid for the class 2(¥). Also,
as far as the class 29 is concerned (in the case where P is uniform), the rate
Lnn~'2 has been announced by Borisov in (1981) (unfortunately no proof of
this striking result has been yet published as far as we know); as a matter of fact,
in that case, our corollaries could easily be improved. However, since there is no
hope of obtaining a rate such as Ln®n~2 when using the classical Poissoniza-
tion technique, we shall not detail this improvement here.

Sections 2, 3 and 4 are devoted to the proofs of Theorems 1 and 2. In Section 5
we use the results of Section 3 to prove an analogue of Theorem 1 for set-indexed
partial sum processes [a good introduction to the study of set-indexed processes
is given by Pyke (1984)].

Until the end of Section 4, & is supposed to fulfill condition UM and
assumption H({) for some 0 < § < 1.

2. Approximation with finite regular classes and Poissonization. Given
anvvinteger v, let % be the o-algebra generated by the cubes

O ={yeRY(i;—1)r ' <y <iptforal j}, ieznl(o,r],

where Z , denotes the set of strictly positive integers. When there is no confusion
to be feared we shall simply write %, instead of Z(?.
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NorATION. For any Borel set B in %,, we call the perimeter of B the
hypersurface area of its boundary. Let s,;_,(B) denote this quantity. Given a
Borel set A, let A, be the set of #, composed with those atoms of %, which
intersect A. The essential part (i.e., the oscillation control) of Lemma 1 derives
from the Bernstein type inequalities which were proved by Alexander (1984) and
by Massart (1986). ‘

LEMMA 1. There exists a map 11, ¥ — %, such that, denoting by &, the
range of 11,, the following three properties hold:

(2.1) Moderate growth of the entropy.
1% < exp(Cypf) if0<¢<lor|¥| <Cyp if =0
for some constants C, and r depending on &%.
(2.2) The uniform perimetric property. U,%, fulfills condition UM on the one
hand and V ,s,_, < K for some constant K depending only on & on the

other hand.
(2.3) Oscillation control. Given m > 0, an upper bound for

Pr*(\/[Zn —Z,°11,| > V—U—WT)
&

is, for any positive T, given by
Aexp(—0T) if0<¢<1,
Ancexp(—8T) if ¢ =0,
whenever v~ *9n > n for some constants A, a and 6 depending on &
and 1.

Proor. For any positive ¢, let N(e, &) denote the minimal cardinality of the
. range of a mapping Il(e): ¥ — % such that P(II(¢)SaS) < ¢ for any S in &.
Then it is easy to see that N(e, &) < N; 4(¢, &) on the one hand and it
follows from Dudley (1978) that, if { = 0, N(e, &) < Ce~" for some constants C
and r on the other hand [more about this property is given in Assouad (1983)].
Given II(¢) as above with minimal cardinality range, we define I1* = II(» 1)
and then II,S = (II’S), for any S in #. Clearly (2.1) holds.

From now on we choose to work with the supremum norm on R? |y| =
SUP; << d|yi|‘

We show a little more than (2.2), namely we show that (2.2) holds when
replacing %, with & = {S,; S € #)}. To prove this, we note that, given ¢ =
uv™! and B € %,, the quantity 2(((1 + 2u)? — 1)/2d)r~¢ [respectively,
(@1 — @ — 2u)/2d)r~?) represents the maximal (respectively, minimal) contri-
bution to P((dB)®) of one of the elementary faces (of .a cube) composing the
boundary of B. The number of such faces is equal to »*~'s,_,(B), so upper and
lower bounds for P((dB)®) are, respectively, given by

2(((1 + 2u)? = 1) /2d v 7%, (B) < 2(1 + 2u)* 'ur~'s,_4(B)
for u > 0,

(1 - -2u0)?)/2d)r s,_(B) = (1 - 2u)" 'ur~'s,_,(B)
forO0 <u=<1/2.

(2.4)

(2.5)
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Now, the following inclusion is elementary:

(2.6) (3A,)° c (dA)**""" forany A C R

Then, because & fulfills conditions UM we get, using (2.5),

(2.7) Vs, , < K forsome constant K.
K%

v

Moreover, using either (2.4) and (2.7) when u < 1 or (2.6) and condition UM
for & when u > 1, we get that U, fulfills condition UM. Thus (2.2) holds.

As a consequence of Corollary 2.4 of Alexander (1984) and of Proposition 3.7 of
Massart (1986), both applied to the classes {S\ II'S: S € &} and {II’S\ S:
S € &}, we get that (2.3) holds when replacing IT, with II".

In order to control Z oll, — Z, oIl umformly over %, note that A C A,
and (A4,\ A) C (dA)" for any subset A of 10,1]¢, so since & fulfills condltlon
UM, P(I1,SaIl*S) < K'»! for any S in & and some constant K’. Thus, using
Bernstein’s inequality [see Bennett (1962)], we get

Pr(lenOHv —_ ZnoH"| > Tv—(l‘{)/2)
&

< 2N(»~1, & )exp(—T%/(2K"? + n~VT)),
yielding (2.3). Thus the proof of Lemma 1 is complete. O

Let 7 be a random variable independent of (x;);.,, such that 7 has the
Poisson law on N with parameter n [recall that this means Pr(7 = k) =
e ™(n*/k!)]. Then it is well known [see for instance Gaenssler (1983)] that 7P, is
a Poisson pomt process with intensity measure nP.
Moreover, in the spirit of Csorgé and Révész (1975), the followmg Poissoniza-

tion lemma is available.

LEMMA 2 (Poissonization). 'Let € be a finite collection of Borel sets of R
For any positive U and T, we have

T
V= Z. - 2,
n

ProoF. We have

2TVn )

N T) < 2exp(—%(U/\ ,/,7)) + 2|<g|exp(— 5

Pr(V
'3
Pr(\g m/nZ, — zn|' > T)

< Pr(j7 — n| > U\/rz)

. Pr(V[/WZk—Zn|>T)H(w=k),

|k—n|< Uyn 4
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so, using Chernoff’s inequality, we get
U

Pr(\él‘/w/_nz,, —Z)> T) < 2exp(—n(h(—ﬁ) AR —_‘/n:U)))
¢ max Pr(VManZk 21> 1),

|k—n|<Uyr

where h(x) = (1 + x)log(1 + x) —x when x> —1 and A(x) = +o when
x < —1. Now, given A € ¥, |[(kP, — nP,)(A)| has the binomial distribution
%(|k — n|, P(A)). Then, using the inequality of Hoeffding (1963) leads to

2nT?
max Pr(Vl‘/k/nZk -Z,| > T) < 2|4 max exp(— )
%

|k—n|<Ujn |k—n|< U |k — n|

2T%/n
s2|(ﬂexp(— U )

To complete the proof of Lemma 2, it is enough to note that the following
elementary inequality holds for any x: A(x) > (|x|/4)(|x| A 1). O

How does the proof of Theorem 1 work? Lemmas 1 and 2 mean that in order
to approximate Z, by some suitable Brownian bridge uniformly over %, it is
enough to approximate the centered and normalized Poisson process £, =
(P, — nP)/ Vn, uniformly over the subcollection II,(.%) of &, by some suita-
ble Wiener process W.

Let us explain briefly how our method works in the VC case and the difference
between our approach and that of Csorgé and Révész. The method of Csérg6 and
Révész (1975) or Révész (1976a), to perform the above construction, would
. consist of constructing W independently on each atom of %, with a rate of
approximation which is about Ln/ Vn, then getting

v@/2(Ln)*?
— = 0 - - -

with great probability, because each set of %, is composed of no more than »
atoms and the errors are independent on disjoint atoms. [The cardinality of
II,(&) is so small in the VC case that all works as if it was bounded.] The key
idea in our approach consists in counting “intervals” rather than atoms. In fact,
in the KMT constructions, the rate of approximation is still about Lnn~/2 on
the intervals, moreover the uniform perimetric property [see (2.2) above] means
that each set of II (%) is composed of no more than O(»%!) intervals.

The main difficulty is that, with this new construction, the errors are not
independent on disjoint sets anymore, but we claim that this dependence is weak
enough to allow an evaluation such as

d

v(d—l)/2(Ln)3/2
R G ey

(%)

with great probability.
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The purpose of Section 3 (which is the main part of this paper) is to give a
precise sense to this claim.

3. A KMT-type inequality for set-indexed partial sums. First we need
some notations.

NoTATION. Given a finite subset A of N and a sequence u € RN we set
u[A] = X, c su;. Moreover, we say that two intervals of N are strictly disjoint if
their union is not an interval. Of course A may be partitioned into strictly
disjoint intervals (which we call the components of A). We denote by c¢(A) the
number of components of A.

In this section, (2, &, Pr) simply denotes an appropriate probability space.

THEOREM 3. Let F be a probability law on R with (xdF(x)=0 and
[x2dF(x) = 1 and such that we have

for some t, > 0, fe"‘ dF(x) < oo for |t < t,.

A sequence Y,,Y,, ... of independent standard normal random variables and
a sequence X, X,, ... of independent random variables with common law F may
be constructed in such a way that, for any integer n and any collection A of
subsets of N N 10, n], the following inequality holds for any positive x, y and x
with ¢(A) < x for any A in /-

Pr(jtgd)JX[A] - Y[A]l> Vxa (Ln + \fy) + z(1 + Ln))

< An®(e % + |le ),
where a, A and 6 are some constants depending only on F.

(3.1)

CoMMENTS. The notation being that of Theorem 3, suppose that |«| =
O(n#) for some B and take x = y = O(Ln). Then Theorem 3 gives

supsc X [A] - Y[A] = O(Vx (Zn)** + (Ln)?)
with great probability. As a crude application of Theorem 1 of KMT (1976), one
would get that the same result holds with xLn instead of /x (Ln)*? + (Ln)>
So our result improves on this crude application of KMT’s theorem whenever
Ln < x (in the forthcoming application x will be some power of n). Note that all
works as if the errors were strictly independent on disjoint intervals.

Theorem 3 is really a multivariate analogue of Theorem 1 of KMT (1976):
This idea will be illustrated in Section 5 below. In view of applying Theorem 3 to
approximate empirical processes, we shall take F as the centered Poisson law
with parameter 1, as explained at the end of Section 2.

ProoF OoF THEOREM 3. For the sake of simplicity we first assume the
regularity condition of Theorem 1 of KMT (1975) is fulfilled, that is:

(@) [alR(t+ )P du < oo for some p > 1 and all ¢, |¢| < t,, where R(z) =
Jr €®* dF(x) for arbitrary complex z with |Re z| < ¢,.
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Next, we shall explain how to get rid of this condition following the lines of
the proof of Theorem 1 of KMT (1975).

So first the sequence (X,,), . is constructed exactly as in KMT (1975). We
shall not explicitly recall this construction but our notation will be as close to
that of Theorem 1 of KMT (1975) as possible, so that we hope it will be easy for
the reader to refer to KMT (1975) when necessary.

Throughout the proof the intervals ]k, £'] have to be interpreted as subsets of
Z .. There is no loss of generality in assuming that n = 2V, which we shall do in
the sequel.

R” is given the canonical inner product which we denote by (:|-). The
functions 15, B €]0, n] will be considered as vectors of R”".

The dyadic orthogonal expansion. Given I, , = =1k27, (k+ 1)27], we set
. Then, let & ,=e; ;,,— €., and & =e¢;,.
It is easy to verify that the fam1ly

{61 1<j<N,1<k<2V7} U {6,0<j<N}U{e,

is an orthogonal basis of R" with furthermore (€, ,|€; ;) = (€;,€;) = 27, The
orthogonal expansion of a vector 15, B C]0, n] with respect to the above basis
has the form

Ip=|Bn {1l}lego+ X [BNI,[27%
0<j<N

> )y 2_j(|B NIy o =B N Ij—”k“l) %k

1<j<N 1<k<2N-/

(3.2)

Following KMT (1975) we then set U'J = (X|€; 1), U = (Xle;,) and
U} = (X|é;), where X = (X,,..., X,,). The variables 17;-’,@, V., and V; are defined
from Y = (Y},...,Y,) in the same way.

Given B c]0, n], it follows from (3.2) and the identities X[B] = (X|13) and
Y[B] = (Y|1p), that X[B] — Y[B] is a linear combination of the elementary
differences (U — V) — s. So the problem is first to control the differences
(U — V) — s, second to handle some of their linear combinations.

_Some technical lemmas. Exactly 'as in KMT (1975), the differences
(U — V) — s are controlled via the following crucial estimate which is proved in
KMT (1975).

LEMMA 3. If F fulfills condition (a), then there are positive constants C,, C,
and ¢ such that

U, - V| < Clé‘flj}z +Cy if U < &2/,
Ui = Vial < C27(U2% + UR) + G if U 4l < 627 and |Up 4| < 62,

where the U — s and V — s are defined above.
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We also need the following large deviation lemma. Let H(a, r) be the class of
random variables Z such that

E(exp(tZ)) <r forall |¢| < a.
We denote by H(a, r) the class of the Z — EZ’s with Z in H(a, r).

LEMMA 4. Let (T));; be a finite family of independent elements of H(a, r)
and (w;);c; be a family of real numbers with |w,| <1 for all i € I. Setting
S(w) =X, c ;w,T;, we have, for all v such that ¥, . jw? < v,

@) for 0 < & < 2r%/a, Pr(|S(w)| = v¢) < 2exp(—v(at/2r)?); for 2r2/a <

§, Pr(|S(w)| = v§) < 2exp(—vaé/2); _
(ii) moreover (S*(w)/v)5,y < 20r2/a belongs to H(a?/8r%3).

(3.3) REMARK. (i) Note that, using Lemma 4(i), the following inequality
holds for all positive &:

a\2 §£2
Pr(|S(w)| = v¢) < 2exp(—v(2——r) T §) whenever a < 2r2.
(ii) Given K,,..., K in H(a, r) and some positive A, ... A, we have
a
Z MK, e H —5—,r
Jj=1 Z

because x — e is a convex function.

ProoF oF LEMMA 4. Let Z € H( a, r) and Z’' be an independent copy of Z.
We define Z = Z — Z'. Then Z is in H(a, r?).
As Z is a symmetric random variable, we have for all |f| < a

2k

E(exp(tZ)) =1+ Z T —E(Z%) <1+ ( t) E(exp(aZ) - 1),

SO

E(exp(i2)) < exp(( ”) )

and it follows from Jensen’s inequality that the same inequality holds for
E(exp((Z — EZ)).

Thus, log E(exp(tT')) < (rt/a)? whenever |t| < a for all T € H(a, r).

Therefore log E(exp(tS(w)) < v(rt/a)? whenever |f| < a and we get (i) using
the classical Cramér—Chernoff calculation.

To bound the Laplace transform of

_S(w)

- 0 nlS(w)|S2ur2/a .
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we use (i). Then, integrating by parts, we get
E(exp(tK)) = f 4ort/ e upr(1S(w)| > Vou ) du + 1< 1+ 2 f " tetu= @/ gy
0 0

SO
2t
(a?/(4r?)) — ¢t

whenever || < a?/8r2, and the proof of Lemma 4 is complete. O

E(exp(tK)) < +1<3,

End of the proof of Theorem 3 in case (a). We first note that X; belongs to
H(a,,3) for all j with a, depending only on F. We may always assume that
@y < 1. In the same way, we shall assume that the constants ¢, C;, and C, of
Lemma 3 fulfill the conditions e < 1,C = C, = C, > 1.

We finally set a = a0/2160 and note that a depends only on F.

We define Z = (U V)!(|U|<82J) and

~

Ziw=(U4a= V. )‘<|U,~,k|<e2f. U, 11 < e27)
and note that
(3.4) the variables Z — s all belong to H(a, 3)

[for instance |Z| < C(2~/U}? 10, <2/+19/a) + 1) because of Lemma 3 and then

conclude that Z belongs to H(a2/144C, 3) using Lemma 4(ii), Remark 3. 3(ii)
and the fact that 1 € H(a2/72,3)].
We fix a, and B, such that

o€ 2
(8.5) 23N+8exp( (apN + BO)( D ) ) <1
" and we assume that x > 4 and y 2 agN + B,. We define the integer M by
Yy Yy
ScoMc o,
4 T2

We start by regularizing the subsets of ]0,2"] at the scale M.

Regularization at the scale M. Given an integer k, let k(M) be either the
first multiple of 2 which is greater than or equal to % if M < N or equal to 2V
if M> N.

Now, given an interval B =]k, k'], let B(M) =]k(M), k'(M)] be the regu-
larization of B at the scale M.

Given a subset A of ]0, n], we finally define the regularization A(M) of A as
the union of the regularizations of the components of A. The regularization has
two elementary properties:

(3.6) |AAA(M)| < c(A)2M*1,
(3.7) c(A(M)) <c(A).
Now we pass to the technical part of the proof of Theorem 3.
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Estimation of supy e »|X[A] — Y[A]|. Given BCN, we set yj(B) =
2_‘1|B N Ij,ll and Yj,k(B) = 2_j(|B N Ij—l,2k| - IB N 1:]'—1,2k+1|)’ Since the
extremities of the components of A(M) are multiples of 2 and A(M) C
[2%,2], we have v,(A(M)) = v; J(A(M)) = 0 for j < M and vy (A(M)) =
0 for any A € 7. Thus, using (3.2) with B = A(M), we get the decomposition

X[A] - Y[A] = D\(A) + D,(A) + Dy(A),
where
Dy(A) = (X[ANA(M)] - X[A(M)\ A])
+(Y[A(M)\A] - Y[ANA(M)]),

Dy(A)= Y v(AM)(U,-V,) if M<NorDy(A)=0if M >N
M<j<N

and
Da(A) = Z Z Yj,k(A(M))(Uj,k - V’j,k)

M<j<N1<k<2N-J
ifM<N—lorD3(A)=0ifM2N— 1.

Defining the event © by
0 = {|U) < &2/ forall M <j < N, |U; ;| <2/,
|U 4l < e2/forall M <j <N,0<k< 2N‘j}

if M < Nor ® = Q if M > N and recalling that 4 < x, the above decomposition
leads to

Pr(jtg;lX[A] ~Y[A]l> Jxx (N + ) + (N + 1)x)

<P, + P, + P, + Pr(0°),

where
P, = | Vi 1Dy > i + ol
P, = |.9l|(\!(Pr((|D2| > —) n @)
and

P, = W|(ZPr((|D3| > N(Yxx +x) +1)n @)).

Control of P,. We use Lemma 4 with a = a, and- v = max(x y, x/16). Given
A € o/, note that |[Aa A(M)| < v because of (3.6), so inequality (i) of Lemma 4

means when ¢ = ‘/x/_v s
Pr(|X[A\A(M)] - X[A(M)\A]| > /x max(xy, x/16) )

<2 exp( —x(a0/6)2)
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whenever £ < 18/a,. But the latter condition is always fulfilled because of our
choice of v and because 9/a, > 8. We finally note that the same inequality holds
for the Gaussian term because of course the Y — s belong to H(a,, 3). Thus

P, < 4W|exp( - (962)236)'

_ Control of Pr(0°). (We may assume that M < N.) The number of variables
U;, U, and U; , is less than 2N+1 50 we get as a direct application of Lemma

4(i) with v = 27,

. [ @ge\? aye 2
Pr(0°) <4 Y, 2N"exp(—21(——0—) ) < 2N+2exp(—y(——0—) )
M<j<N 6 12

Control of P,. (We may assume that M < N.) We first note that on the
event ©® we have, given A € &,
Dy(A)= ¥ v(A(M))Z,.
M<j<N
But from (3.4), the Z — s belong to H(a,3). Moreover lv,(A(M))| <1, so
crudely, E(exp(tDy(A))) < 3" for t = +a yielding the estimate,

X
P, < 2W]3Nexp(—a§).

Control of P;. We fix an integer j. The variable U; , is constructed as a
function of (V. (4,e---,V;), where J is that integer for which 27 <
k27 < 279*1 holds.

Now the variables Vj,, Vj , are orthogonal when j’, j” and %k vary, so they
are independent (because, of course, of the Gaussian property). Hence, the
sequence (U; ), and (Vj, #)r>1 are independent. But each of these sequences is
composed with independent random variables when % varies.

Since U, , is constructed as a function of U;, and 17; 1 we deduce that
U w UJ » V; &) is a sequence of independent random variables when % varies.

Thus the variables Z; ,, as defined in (3.4), are independent when & varies
and belong to H(a, 3).

Moreover the coefficients v; ,(A(M)) have the nice properties that they
vanish when no extremity of a component of A(M) belongs to I, , and that they
are absolutely bounded by 1. Recalling furthermore that (3.7) holds, we may
apply Lemma 4(i) with a = a, v = 2max(x, x) and § = /x/2v, getting, for each
fixed j and A, ‘

< Jx max(x, x)

Y vAM)Z, - EZ;,)
. 1<k<2N-J .

except on an event with probability less than 2exp(—x(a/6)?/2) whenever

£ < 18/a; but the latter condition is ensured via our choice of v and the fact

that 9/a > 1.
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Now E(U; , - V, ) = 0and E(Uj,, — V; ,)? < 27*2, so the Cauchy-Schwarz
inequality yields
|EZ, ,| < 2(Pr(©°))"/%2772.

Then, recalling that |y; ,(A(M))| < 1 once more, we get using the above esti-
mate of Pr(©°) and (3.5),

Z Z Yj,k(A(M))EZj,k

M<j<N 1<k<z~—f
Noting that U Vie= Z - on O, we finally get

<8-2MPr(©°))"? <1

X[

P, < 2N|.5z/|exp(— 5(5)2)

Collecting the above estimates of P, P,, P; and Pr(©¢) yields for all positive
x’ y’

Pr(jxg;lX[A] ~ Y[A]]> xx (N + /y) + (N + 1)x)

x (a2 age\?
. aN —Z(Z) | + o3n+8 _(_0)
<4-3 M|exp( 2(6)) 2 exp( N1 ) |

completing the proof of Theorem 3 in case (a).

Now let us sketch the proof of Theorem 1 in the general case when the
smoothness condition (a) is not assumed. We follow the approach used by KMT
to prove Theorem 1 of KMT (1976).

Their proof is based on two special cases:

1. F has an absolute continuous component.
2. F is concentrated on a finite interval.

Case 1. The construction that they make in that case leads to estimates for
the differences (U — V) — s which are just the same as in Lemma 3, so our proof
in case (a) carries over in case (1) without any difficulty.

CASE 2. The situation is here slightly different. In fact, KMT showed that
the estimates of Lemma 3 do not remain valid.

Anyway the new “control” variables W — s introduced on page 48 of KMT
(1976) have the key property that for each fixed j, the variables
(Uj’ w Uk V; # W, ) are constructed in such a way that they are still indepen-
dent when & varies. Thus our proof in case (a) carries over in that case, too.

Now we pass to the general case. We shall need the following measure-
theoretic lemma due to Berkes and Philipp [Lemma Al of Berkes and Philipp
(1979)].

L.LEMMA 5. Given three Polish spaces R,, R, and R,, let Q, and Q, be
probability laws which are, respectively, defined on R, X R, and R, X R,. If @,
and @, have the same marginal distribution on R,, then there exists a distribu-
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tion @ on R, X Ry, X R; whose marginals on R, X R, and R, X R; are,
respectively, @, and Q,.

We write F as F = pF| + (1 — p)F, for some p €]0,1] with F| concentrated
on a finite interval. By Theorem 3 in case (2), we may consider a sequence (X V)
of i.i.d. random variables with common law F, and a sequence (Y) of i.i.d.
random variables with the corresponding common normal distribution ¢(m,, 0,),
such that (3.1) holds for (X®, Y®),

Now, given a sequence (X®) of i.i.d. random variables with common law F,
which is independent of (X®) and (Y®) and a sequence (&) of Bernoulli trials
with probability of success p which is independent of (X)), (Y®) and (X®),

define u(m) = X7 ,¢; for any 1nteger m and then the sequences (X ) and (X’) via
their partial sums S, = Sy + SE . (m)» respectively, Sy, = T,0), + 8P, for

any integer m, where (S(l)) (8®) and (T®) denote, respectlvely, the partlal sum
processes associated with (X@), (X®) and (Y®).

Then (X) is a sequence of i.i.d. random variables with common law F and
(X'’) is a sequence of ii.d. random variables with common law pe(m,, o;) +
(1 — p)F,. Moreover, setting pu(A) = {u(j): j € A} for any A in &/ and next
w(Z) = {p(A): A € «}, we clearly have
(3.8) sup | X[A] - X[A]l < sup |X®[A*]-Y®[A*]].

Aew A*ep(H)
Now we work conditionally on (¢). Note that pu(./) has the same characteristics
as &/, that is, u(.%) is a class of subsets of ]0, n] with sup,. ¢ ,(c(A*) < x and
lu()| < |

So since (3.1) holds for (X®), (Y®) and u(%), conditionally on (&) we get
from (3.8) and the above remarks on the characteristics of u(2/),

Pr({ sup [ X[A] - X'TA]] > Vxx (Ln + /y) + x(1 + Ln)}[(e))

Aes

< An*(e™ ¥ + ||e” ).
Now we may take the expectation with respect to (¢) in the above inequality,
thus getting (3.1) for (X), (X’) and /.

In another connection, since pp(m,, 0;) + (1 — p)F, has an absolute continu-
ous component, we may apply Theorem 3 in case (1). So, consider a sequence
(X”) of ii.d. random variables with common law pe(m,, 0,) + (1 — p)F, and a
sequence (Y) of i.i.d. standard normal random variables such that (3.1) holds for
(X", (Y) and «.

But Lemma 5 allows us to consider that (X’) = (X”), so that (3.1) holds for
(X), (Y) and  and the proof of Theorem 3 is now complete. O

4. Strong approximations for empirical processes. A centered Gaussian
process with covariance function (S, S") = P(SN §') is a Wiener process. As &
has the integrable entropy property,

(4.1) j(;l(e_llog N(e,(Sf))l/2 de < o
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(see the proof of Lemma 1), it follows from a well-known theorem of Dudley
(1967) that there exists a uniformly continuous Wiener process indexed by &,
with respect to the pseudometric (A, B) = P(AaB). In order to construct such
a process on our rich enough space 2, we shall need the following lemma of
Skorohod (1976).

LEMMA 6. Given two Polish spaces R,, R, and a random variable V from @
to R, with law q, let @ be a probability law on R, X R, with marginal
distribution q on R,. If there exists a random variable U defined on Q which is
independent of V and whose distribution is the Lebesgue measure on [0,1], then
there is a random variable Y from Q to R, such that (Y,V') has law Q.

We now pass to the

PROOF OF THEOREM 1. Given a fixed integer n of the form n = %, we define
the one-to-one mapping : Z , N[0, »*] = (Z ,N[0, »])? by 7(j) = the jth point
of (Z ,N[0, »])¢ with respect to the lexicographical ordering.

Now let 7 be a N-valued random variable independent of (x;);., and whose
distribution is the Poisson law with parameter n. We first recall that the
elementary cubes C{) were defined at the beginning of Section 2 as

CH={yeRY(i,—1)r ' <y <ip ' forall it,  iezin]o, v]%.

Then, since 7P, is a Poisson point process, mP,(C{"™),..., nP,(C{") are
independent random variables with common law the Poisson law with parameter
1 (denoted by F,). It follows from Theorem 3 and Lemma 5 that a family
(X;)1< j<nof iid. random variables such that X + 1 has distribution F; and a
Wiener process W which is uniformly continuous on (&, pp) may be constructed
in such a way that (3.1) holds when setting Y; = n*/2W(C{"0)).

Using Lemma 6, we may assume that W is constructed on @ and that
X, = aP(CD) — 1.

J
Given II, as in Lemma 1, we define

o= {rY(1,8),Ses}u {[o,»)] nz,},
where for each B in %,, 7~ '(B) denotes (abusively) the set {j € Z ,: C\"V) c B}.
Now, given B in &, and i = (i},..., i4_,), we define
d-1

B;=Bn ( I ](ij - 1)p~t, i 1] x [0,1]].

Jj=1
Then c(r~%(B;)) is less than or equal to the number of elementary faces (of
cubes) composing the boundary of B; that are parallel to the hyperplane y; = 0;
the number of such faces (for all possible values of 7) is not greater than or equal
to »9~'s,_,(B), so, since (1" (B)) < L;c(7~(B))), we get

sup c(A) < 9~ sups,_,(IL,(S)),

Aed Ses
so that, using property (2.2), we may choose x in (3.1) as x = K »?@~1 for some
constant K.
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Thus, defining the Brownian bridge associated with W by Z =
W — W(]0,1]%)P, (3.1) yields (note that in the sequel, the same letters A, a, C
and 6 will denote some constants which may be different at different steps of the

proof)

Pr(\/l‘/w/nZ,,oH,, —ZoII,
4

(4.2) > 2/Kx (Ln + \Jy)r V% + 2x(1 + Ln)v‘d/z)

<An¥(e ™+ (1 + |#]) e~ %)

for all positive x, y.

Now we write the difference Z, — Z as

Z,—Z=D +D,+ Dy + D,,

where D, =Z,—Z,°1l,, Dy,=2Z,°1l1,— \Jn/nZ 11, Dy=n/nZ, °II, —
ZoIl,and D, =Z-1I, - Z.

D,, D,, D, and D, are, respectively, controlled with the help of (2.3), Lemma
2, (4.2) and an analogue of (2.3). In fact, as far as D, is concerned, it is clear that
(2.3) remains valid when replacing Z, with Z, because the inequalities on which
(2.3) is based still hold for Z [this was developed in Massart (1986) on the one

hand; on the other hand note that, in the Gaussian case, the exponent 7T in
(2.3) could even be replaced with §7'2].

Control of D, and D,. Applying (2.3) with n = 1 and
T=t/4+ CLn,

“we get (since p~17¢/2 = p~(1=0/2d)
[4
Pr*(V|D1| > n—“—“/w(Z + CLn)) < Ae7?,
P2

It follows from the above remark that this inequality remains valid when D is
replaced by D,.

Control of D,. Applying Lemma 2 with =%, T = n~V***(t/4 + CLn)
and U = 2(t/4 + CLn), we get [using (2.1)]

t
Pr(V|D2I > n—(1/4)+(;/2d)(z + CLn)) < Ae?,
&

Control of D,. We use inequality (4.2) and property (2.1), taking x and y in
(4.2) of the form: y = aLn + bt and y =y + ar’.
We get, via an appropriate choice of constants a and b,

Pr(\/|D3| > a,(t, d)(£ ; CLn)) < Ae %,
&
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We complete the proof of Theorem 1 in the case where n'/? is integral by
collecting the above estimates of D,, D,, D, and D,. In the general case, let » be
the integer such that »? < n < (» + 1)% As an immediate application of the
Hoeffding-type inequalities of Massart [(1986), Theorem 3.3.1°)a)] when { = 0
and of Alexander [(1984), Corollary 2.4] when ¢ > 0, we get for all positive T,

> d(y + 1)%IT

which precisely means that the empirical process does not move too fast between
time »? and time n. The proof may then be easily completed by using (3.1) for
Z4 O

L (8,-P)

j=vd+l

Pr*(\/ <Ae T,

&

We now pass to the proof of Theorem 2. Some of the arguments that we shall
use below were already used by Dudley and Philipp (1983), Csorgé and Révész
(1975) and Massart (1986).

PrROOF OF THEOREM 2. For sake of simplicity, we make the complete
calculations only in the case where d > 3 or { = 0.

Given the sequence n;=[;*], j €N with p = (d + 1)/(1 — £), define the
partition {H;, € Z,}of Z,, by H; =]n;_,, n;] and denote by m; the length of
H,m;=n;—n;_,.

Now we want to build a filtration with the o-algebras %,, » € Z .. So, given
the sequence (u;);cz, such that mj2‘d < 2% < m;, we rename by %; the
o-algebra previously denoted by %,.,. With this new definition we have %, C
B\

JAlso, given II as in Lemma 1 and a Borel subset A of ]0,1]¢, IT; and A; will
stand for the quantities previously denoted by II,.; and A, as well Note that
the same remark as in the proof of Theorem 1 concerning the constants A, 8, C
and K, remains valid here. We make the construction of Theorem 1 indepen-
dently on each H; (using this time product spaces when applying Lemma 5 or
Lemma 6), so a sequence AL )jez, of almost surely uniformly continuous over
(&, pp) independent Brownian bndges may be constructed on £, in such a way
that property (4.3) holds.

Given the mapping 'rj‘lz %; - [0, 291N Z, which preserves the lexico-
graphical ordering (defined as 7~ ! in the proof of Theorem 1) for any collection
% c #; with ¢(1;7(C)) < x for any C in ¥ and all positive x, y, U and T, an
upper bound for the quantity

Mmj kreH;

€

(4:3)
> o(yxx (Lm; + y/y) + (1 + Lm,)x)27%/2 + T
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is given by

2exp(— %(U A \/m_j)) + 2|<f|exp(

where X, denotes §, — P for all k.

Of course we may assume that Z() = mj; V2%, ¢ 5 By, where the B — s are
themselves independent and regular Brownian brldges To begin with the techni-
cal part of the proof of Theorem 2, we fix an integer n. Then, given ¢/ such that
n € H,;, we set Jy = [J¥@*D]. We define A; = ¥, c (X, — B,) for all j. Now
we decompose the difference between the partlal sums as

T*m;

) + Am e + (1 + |9) e ™),

Z(Xk_Bk)=D1+D2+D3+D47

where
njy_, nj-1
D, = Z (Xk - Xk°HJ0) - Z (BkOHJo - Bk)’
k=1 k=1
n n
D, = Z X, — Z B,,
k=1+n,;_, k=1+n;_,
o
D, = Z Ajol'Ie,0
Jj=1
and

J
D,= ) A;eIl, ifJy<JorD,=0if J =d,.

J=1+d,
Control of D,. As was already mentioned in the proof of Theorem 1, in-
equality (2.3) holds for a Brownian bridge as well.

So, since |/n ;2 **~9/2 < q,n'/2=1/@0) for some positive constant a,, apply-
ing (2.3) twice with T = t/8a, + CLn, we get

t
r*(VlDﬂ > \/ﬁn‘(l‘“ﬂ(d“)(z + CLn)) < Ae™?
&

Control of D,.

Vo<Vl ¥ x,

& &L lk=1+n,_,

+V Zn‘,‘Bk.

Llk=1+n,_,

On the one hand we use as at the end of the proof of Theorem 1 the
Hoeffding-type inequalities of Massart when { = 0 or of Alexander when { > 0
to bound the first term of the above sum, and on the other hand we use the
Fernique inequality [see Fernique (1970)] to bound the second term. Thus the
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following inequality is valid for all positive T:

Pr*(V|D2| > mJT) < Ae” T4,
&

Noting that |m; < a,n'/2~'/?* for some positive constant a,, we apply the
above inequality with T = V¢ /4a, and get

vt
* V|D2| > n1/2—1/2p__4__ < Ae—ﬂt.
&

Control of D,. We define &, , = {S;, S € &,} for all j < k. So for all j < J,
we have

(4.4) V|AJ| sup |A (S\S)|+ V 1A

‘y}Jo

To bound the first term in (4.4), note that via (2.2), we have

(4.5) U &  fulfills condition UM.
lez,

Thus P(S;\ S) < K27% for all S € ¥,. So using Bernstein’s inequality on
the one hand and a classical inequality for Gaussian variables on the other, we
get as in the proof of (2.3) that for all positive T

Pr( sup |A,(S;\S)| > ml/2-@-H/24(T + CLn)) < Ae” T
s,
Now, note that the following bounds are available:
(4.6) \/'J—Om%:zd < a3n1/2(d+1)({+d(1—§)/(d+{)) < a3n1/2(d+1),
(4 7) ml/2—A-0/2d o 4r1pl/2-2=5/2d+ D)
: Jy = 73 :

So, using the above estimate of supg yJolA A8\ S)| with T = ¢/12a3a,, we
get

< Ae™?,

(4.8) Pr( sup |Aj(sj\s)| > n1/2—<2—;)/2<d+1)(

€5

+ CLn)

2a,

To bound the second term in (4.4), note that, setting P=U, i< k&” »> We have
V ss,_1 < K because of (4.5). Also I.V 5| < 1%,| for all j < .

Then we use (4.3) with ¥=, ,, x = K2~ V y=aln+bt, x=y+
a2tnf, T = m;1/*2%0/%(t/12a%a, i CLn) and U = 2(t/12a3a3 + CLn).

Via an appropriate choice of the constants a and b, we get

*

t
Pr| V |A)| > Ln*®n'/?-C- D/z(d“’(—— + CLn) < Ae™?,
‘56 Jo 6a3
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where ¢0) = 1/2 and &(§) = 0 if { > 0. This bound, together with (4.8), yields
(4.9) Pr(0°) < Ae™?,
where, setting M (t) = Ln®®n'/2-@=O/Ad+D(¢/4q, + CLn), © denotes the

event

©=| max VI|A; < M(2)].

1sjsJ05,:l
0

Of course, possibly enlarging C once more, we may always assume that this
estimate is also valid:

(4.10) Pr(0°) < JO“Zm;OI.
Now we pass to the control of D; itself. Defining

2= A, 81210

we have, using Hoeffding’s inequality and (2.1),

Jo
(411)  Pr[VI|X (2— E(2))|> (¢ + CLn)l/WjOszo/?Mn(t)).
il J=1
< Ae %

However, the term

A
Z E(Zj)

J=1

\

oo

is negligible; more precisely, it is bounded by 1 because using the
Cauchy-Schwarz inequality and (4.10), we have

v |E(2)| < (Pr(09)* V (E(82)) < &,

o

0

so that (4.11) leads, via (4.6), to

Jo ¢
(412) Pr| V| X z|> (¢ + CLn)l/z(— + CLn)an(f, d+1)| < Ae”?.
=1 4
Now (4.9) and (4.12) yield
t
Pr| VIDy > (¢ + CLn)"?| = + CLn|a,(¢,d + 1)| < Ae™?.
3 4 n 3
&

.Control of D,. (We may assume that J, < J.) As for the control of D, we
first bound a generic term of the sum, namely, Ao 1I,.

Since, (%)) < z, is a filtration, we may apply (4.3) with¥= %, , x = K 2(d= Dy,
y=aln + bt, x=y+ a2%n, T =m;'*2%u/%(t/8aja,+ CLn) and U =
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2(t/8aja, + CLn), where aj and a, are some positive constants for which
mb/42§#¢10/2 < agn(d””/“(d“),
VT mi/24 < g n}/2d+D
Jo S Q4 .

[Note that (d + 3{)/4(d +1)<1/2 — (2 — ¢)/2(d + 1) when d > 3 or { = 0.]
Via an appropriate choice of the constants a and b, we get (in the case where
d=3or{=0)

t
Pr| max V|A;oIl, | > Ln*®n!/2-@-H/2D| — 4 CLn || < Ae™ %
h<isd & 0 a,

Then using the same argument as for the control of D;, we have

< Ae %

Pr(V|D4| > (t+ CLn)l/z(é + CLn)a,,(f, d+1)
&

when d > 3 or ¢{ = 0.

We complete the proof of Theorem 2 by collecting the above estimates of D,
D,, D; and D, and noting that the case where d = 2 and { > 0 may be handled
using the same method as above and choosing this time p = (3 + {)/(1 — {) and
J, = [JV4+9]. 0

5. Strong approximation for set-indexed partial-sum processes. In this
section & is a class of Borel subsets of [0,1]¢ and @ is an appropriate

probability space. Theorem 4 is a multivariate analogue of Theorem 1 of KMT
(1976).

THEOREM 4. Let F be a probability law on R such that

fxdF(x) =0,

fx2dF(x) =1
and
fe"‘ dF(x) < oo for|t] < t,.

Assume that & is a VC class fulfilling condition UM.

Then an array {Y; i € Z%)} of independent standard normal random vari-
ables and an array {X;; i € Z2) of independent random variables with common
law F may be constructed in such a way that for any positive t and any integer v

sup »

Ly
> V — (¢t + CLv)
Ses¥ 14

for some constants A, C and 0 depending on & and F.

¥

Pr —2 Y (X, - Y) < Ae

ievS
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In particular,

Lv»)*?
supr 4% Y (X, - Y)| = O((———)——) a.s.
Se¥ ievS ‘/;

CoMMENTS. The notation for these comments is that of Theorem 4. -

(a) Note that the above construction of {X;; i € Z%} does not depend on &.

(b) Note that no smoothing of the partial-sum process is required in the above
result; this is not surprising in view of the central limit theorem (Corollary 4.4)
of Alexander (1987). From that point of view, our Theorem 4 means that, in some
sense under a strong moment condition, the rate of convergence in Alexander’s
central limit theorem is of the order of L»*2»~1/2, Of course this rate is related
to that of Theorem 1 in the VC case (setting n = »?) because of the exponential
moment condition. For the sake of conciseness, the case where % fulfills H({) for
some 0 < ¢ < 1 will not be considered in this paper. In that case some smoothing
of the partial-sum process is necessary [as pointed out by Bass and Pyke (1984)]
and our method also leads to an analogue of Theorem 1 for the smoothed
partial-sum process, this time with rate Lyy~~%/2 [see Massart (1987)]. Note
that, though these rates of convergence are much more efficient than those given
by Morrow and Philipp (1986) in their Theorem 1 or Theorem 5, our moment
assumption is more restrictive than that of Morrow and Philipp. Nevertheless,
we believe that in the spirit of the work of KMT (1976) and Major (1976), our
method could lead to good results under weaker moment conditions, too.

Proor oF THEOREM 4. Let d, denote the boundary of the unit cube
[—1,1]% that is, the unit “sphere” d,= {y € R% |y| = 1}.

We define a one-to-one mapping ¢ from Z, onto Z% as follows: Given an
integer n, let » be the first integer greater than or equal to n'/? and then let
@(n) be the (n — (v — 1)®)th point of Z¢ N (vd,;) with respect to the lexico-
graphical ordering (our construction consists in “pealing” Z¢ sphere by sphere).

Now we fix an integer ». For any B € #, we set (with a comprehensive
confusion in the notation)

e (B)= U ¢7'(i).

CcCYcB

Next, “reading” a given sphere Z¢ N (ud,) following the lexicographical
ordering consists in shattering this sphere in at most du®~? lines (each line is a
segment which is parallel to one of the coordinate axes). Now following one of
these lines, each time we meet an extremity of a component of ¢ ~'(B), we also
cross an elementary face of the boundary of B at the same time, except maybe
for the last point on the line.

Thus the number of elementary faces of the boundary of B that we cross
when pealing all the spheres (pd,) N Z?¢ with 1 <p <v being less than
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v?~1s, (B), we have

2¢(¢7(B)) < v¥ sy y(B) +d XL pt?,
p=v
getting the following nice property for ¢:

(5.1) c(p~}(B)) < i l(sd (B) +d) forany B € %,.

\

Given S € &, we set S* = UiezimSCf ). Let £* = {(S*, S € &¥}. We claim
that & * has the two properties

(5.2) |#* | < Cp™
(5.3) c(p~}(S*)) < Kv¥! foranySin &

for some constants C;, K and r depending on .

In fact & * has the same cardlnallty as the class (V‘IZ ?) N &. So, since ¥ is
a VC class and |[»7'Z% N [0,1]% = »%, the Vapnik—Cervonenkis lemma [see
Assouad (1983)] yields (5.2).

In order to prove (5.3), note that S*aSc (8S)”', so (9S*)1/2r”
(88)3/2"”' Then since &% fulfills condition UM, we get [using (2.5)] that
VersSy_1 s K’ for some constant K’. Thus (5.1) leads to (5.3).

Defining the sequence (Y,),z, from the array {Y; j € z4) by Y, =Y, ()
we may apply Theorem 3 and consider the sequence (X )nE z, constructed in
Theorem 3. We define the array {X; j€ Z%} by X; = X_-

Using (5.2) and (5 3), (3.1) leads to 'I‘heorem 4 when settmg = {p~HS*);
Se), x=Kv?¥ ', n=v?and x = y = at + bLv via an appropriate choice of
the constants a and b. [Note that the constants A and # in Theorem 4 are not
necessary the same as in (3.1).] O

1
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