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AN EXTENDED VERSION OF THE ERDOS-RENYI STRONG
LAW OF LARGE NUMBERS

By Davip M. MAasoN

University of Delaware

Consider a sequence Xj, X,,..., of ii.d. random variables. For each
integer m > 1 let S, denote the mth partial sum of these random vari-
ables and set S, = 0. Assuming that EX, > 0 and the moment generating
function ¢ of X, exists in a right-neighborhood of 0 the Erdds-Rényi
strong law of large numbers states that whenever k(n) is a sequence of
positive integers such that log n/k(n) ~ ¢ as n —» oo, where 0 < ¢ < oo then
max{(S, s rny — Sn)/(¥(c)k(n)): 0 < m < n — k(n)} converges almost
surely to 1, where y(c) is a constant depending on ¢ and ¢. An extended
version of this strong law is presented which shows that it remains true in a
slightly altered form when log n/k(n) — co.

1. Introduction and statement of results. Let X, X,,..., be a sequence
of independent random variables with common distribution function F such that

(i) X, is nondegenerate with 0 < EX; < oo and \
(ii) sup{t: ¢(t) = E exp(tX;) < o0} > 0.

Note that (i) implies that
0 < w=sup{x: F(x) <1} < oo.
Here and elsewhere in this paper k(n) will denote a sequence of nondecreasing
positive integers such that 1 < k(n) <n for integers n > 1. For any such
sequence k(n) let
Mn(k(n)) = 0< max ){Sm+k(n) - Sm}’

m<n—k(n

where §)=0and S, = X, + --- +X,, for m > 1.
The following two functions play an essential role in describing the asymp-
totic limiting behavior of M, (k(n)) when k(n) = O(log n). Set for 0 < z < oo,

$(z) = sup{zt — log ¢(¢): ¢ > 0 and ¢(¢) < 0}.
It is well known that ¢ is an extended real valued convex function on [0, c0) with

$(0) = 0 and {(z) — o0 as z — oo, which when w = o0, is finite on [0, c0) and
when 0 < w < o0 is finite on [0, w) and infinite on (w, c0). For any 0 < x < oo let

y(x) =sup{z: {(2) <x}.

From the properties of ¢, it is readily deduced that y is concave, continuous and
nondecreasing on [0, o) with y(x) - w as x — .
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Erdos and Rényi (1970) proved that if ¢(n) = log n/k(n) — ¢ as n = oo for
some 0 < ¢ < o0, then

M)
-y AT

Recently some remarkable refinements of the Erdos-Rényi strong law.of large
numbers (1.1) have been achieved by Deheuvels, Devroye and Lynch (1986) and
Deheuvels and Devroye (1987). Also consult S. Csorg6 (1979) for a unifying
approach to Erdos-Rényi strong laws in general and to see how M, (k(n))
behaves when c(n) — 0 refer to Theorem 3.1.1 on page 115 of M. Csorgd and
Révész (1981). .

The purpose of this paper is to present an extension of the Erdos-Rényi
strong law of large numbers to sequences k(n) for which ¢(n) — oo. It will be
seen that essentially (1.1) continues to remain true in this case, except that
sometimes lim must be replaced by limsup. Our main results are stated in the
following theorem and their relationship with other work on this problem is
discussed in Remark 3 below.

a.s.

THEOREM. Let X,, X,,..., be a sequence of independent random variables
with common distribution function F satisfying (i) and (ii).
(a) If 0 <w< o0, then for all sequences k(n) such that c(n) - c as
n - oo,
M(kn) L M(k(m)

(12) Jm )~ A k(e

(b) If w = o, then for all sequences k(n) such that c(n) > oo as n = o,

M,(k(n))
(1.3) limsup ————< =1 a.s.
neo k(n)y(e(n))
Moreover, the limsup in (1.3) can be replaced by lim for all such sequences
k(n) if and only if

a.s.

(1.4) lim y(—log(1l — F(z)))/z =1
if and only if ,
(1.5) lim max X, /y(logn)=1 a.s.

n—o l<ms<n

The proof is postponed until Section 2.

REMARK 1. Some examples of distributions which satisfy (1.4) are the
normal, geometric, Poisson and Weibull with shape parameter a > 1. Not all
distribution functions, however, satisfying (i) and (ii) with @ = co also fulfill
(1.4). Consider for instance

—log(1 - F(x)) =x + 2 xsin’(logx) forx > 1.
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Here, y(2) ~ 2, as z = o0, so that (1.4) is obviously not satisfied, yet (i) and (ii)
with w = oo hold. For this distribution function we necessarily have

0 < liminfM, (1) /y(logn) <1 as. /

n— oo

These examples were worked out by using the fact that when w = o0, ¢
is asymptotically equivalent as z — oo to the greatest convex minorant of
—log(l — F(z —)). This fact is easily derived from Lemma 2.1 below.

REMARK 2. It is shown in Lemma 2.6 below that assuming w = o0, (1.4) is
equivalent to

(1.6) lim y(logx)/Q(1 - 1/x) =1,

where for 0 <s <1, Q(s) =inf{x: F(x)=s}. Whenever w = oo, an easily
verified sufficient condition for (1.4) is
(1.7) lim — log(1 — F(x)X(x) = 1.

On the other hand, this condition is not necessary for (1.4). Let
—log(1 — F(x)) =exp([#] +1), 0<x < oo,

and equal to 0 for x < 0 with [x] denoting the integer part of x. The greatest
convex minorant g of —log(l — F(x —)) is

e 4 (et — et (x — [x]),  1sx<oo,
g(x) = { xe, 0<x<1,
0, x<0.
We see that
limsup — log(1 — F(x))/g(x) = lim —log(1 — F(n))/g(n) =e,
x— 00 n—oo

which since {(x) ~ g(x) shows that (1.7) does not hold. Whereas it is easily
verified that

v(x) ~logx and log(—log(l — F(2))) ~ 2,
showing that (1.4) is satisfied.

REMARK 3. Book and Shore (1978) and Steinebach (1983) proved a version of
this theorem. They assumed among other conditions, a condition that implies
that —log(1 — F(x)) ~ x2/(202) for some 02 > 0. In this situation, assuming (i),
(1.3) of our theorem holds with lim replacing limsup and k(n)y(c(n)) ~
(26%k(n)log n)'/2. This agrees with Theorem C of Steinebach (1983). de Acosta
and Kuelbs (1983) have also obtained Erdés-Rényi type results for the case
c(n) — oo assuming that X, has Weibull-like upper tails with shape parameter
a>1.
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2. Proof of Theorem. First we consider part (a). Obviously, proving (1.2) is
equivalent to showing that

M, (k(n))
. iminf ————— 8.
(2.1) hﬁl:’: k(n)e >1 as

Choose any & > 0 such that w — &> 0 and 1 > P(X, > w — £) = § > 0. Notice
that for each integer n > 1,

(22) P(Siny < (0 — e)k(n)) <1 - P(X, > 0 — &)*™ = 1 — §km,
and
P(M,(k(n)) < (0 = e)k(n)) < P(Sym < (@ — e)k(n))"* "7,
which by (2.2) is less than or equal to
(1 — 84 HOIY o oxp(—nd*™ /k(n)) /(1 - 8).
Now since ¢(n) = logn/k(n) - c as n - oo implies
(logn — log k(n) + k(n)log8)/logn -1 asn — o,

we have

io‘, exp(—n8*™/k(n)) < co.

n=1
This gives by the Borel-Cantelli lemma

P(M,(k(n)) < (o — ¢)k(n),i.0.) =0,

which finishes the proof of (2.1) and thus of part (a).

Before proceeding with the proof of part (b), we must establish a couple of
facts about .

Let

H = {h: h is convex and nondecreasing on ( — o0, c0) with Eexp(A(X,)) < o},
and set for 0 < z < oo,
$*(2) = sup {A(z) — log Eexp(h(X,))}.
heH

LEMMA 2.1. ¢ = ¢*.

ProoF. First observe that {* > {. Next choose any 0 < z < oo and h € H.
Since A is convex and nondecreasing we can find a0 < ¢t < coand —00 < b < ©
such that the function I(x) = &x + b, satisfies I(z) = h(z) and I(x) < h(x)
for all —o0 <x < 0. Obviously I € H with e%(t) = E exp(l(X,)) <
E exp(h(X,)) < oo, which implies that

h(z) — log Eexp h(X,) < tz — log ¢(t).
This shows that { > {* and hence { = ¢{*. O
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LEMMA 2.2. Whenever w = oo,
(2.3) “liminf — log(1 — F(z —))/¢(2) = 1.

Z2— 00

PrROOF. First note that —log(l — F(z — )) = {(z). Suppose that for some
e>0and 0 <a < oo, forall z > a, )

(2.4) —log(1— F(z-))/¢(2) >1+e.
Since { is a finite, nonnegative, nondecreasing and convex function on [0, o)
with {(0) = 0, we can write

$(z) = j:f(x)dx for0 < z < oo,

where f is nonnegative and nondecreasing. Set for 0 < z < o0,
¥(2) = [0 {1 +el(x> a)) de

and let ¢(z) =0 for z < 0. Obviously, ¢ is convex and nondecreasing on
(— o0, 0). Note that on account of (2.4) and {(z) — o0 as z = oo we have for all
large enough 2z,

(2.5) $(2) <¢(2) = §(2) + e($(2) — ¢(a)) < —log(1 — F(z -)).
Since for s < 1,
fo°°(1 — F(x —)) " dF(x) < oo,

it is easy to show using inequality (2.5) that for any 0 < s < 1, the function sy is
a member of H. Hence forall0 <2 < w0 and 0 <s < 1,

§(2) = sy(2) — log Eexp(sy(X,)),
which implies by the fact that {(z) - « as z - o0,
(2.6) limsupy(2)/¢(z) < 1.

Z2—> 0

However from (2.5) we have
lim y(2)/8(2) =1+,
Z2— 00

which contradicts (2.6). Therefore (2.3) must be true. O

We are now prepared to prove (1.3) for any sequence k(n) satisfying ¢(n) - oo.
We shall show first that for all such sequences

(2.7) lim sup M <1 as
) nowo k(r)Y(e(n)) = T
LEmMA 2.3. For any integer k > 1, m > 0 and ¢ > 0,

(2.8) P(S, > (1 + e)ky(m/k)) < exp(— (1 + &)m).



262 D. M. MASON

ProoF. Notice that for all x > 0,
P(S, > x) < exp(—k$(x/k)).
Thus the left side of inequality (2.8) is less than or equal to
exp(—k§((1 + €)v(m/k))),
which by convexity of { and {(0) = 0 is less than or equal to
exp(— (1 + e)kS(v(m/k))).
Since {(y(m/k)) > m/k, we have (2.8). O
LEMMA 2.4. Whenever w = o, for any sequence k(n) such that c(n) — oo

and for all € > 0,
(2.9) P(M,(k(n)) = (1 + e)k(n)y(c(n)) i.0.) =

ProOF. For any integer i > 1, let ; = {n: k(n) =i} and for any 1nteger
J=0let A, = {n: 2/ < n<2/*1}, Also for integers i > 1 and j>0set A; ;=
QiﬂAjandm—#{z A+ @) IEA, # &, let m; ;=min{n € A, ;}.

Notice that if A; ; # &,

P( max .Mn(i)/y(log n/i) > (1+ e)i)

< P( pir1(i) = (1 + e)iy(log m; J/z))
2J“P( > (1 + ¢)iy(log m,; J/z))
which by Lemma 2.3 and m,; ; > > 2/ is
< 2/ %exp(— (1 + e)log m; ;) < 2/*%exp(— (1 + ¢) jlog2).
Therefore

P max M, () R (e) = 1 )

<m2/ exp(— (1 + ¢)jlog2) = 2m;27%.

Noting that m; < k(27*1) and thus c(n) — oo implies m; < (j + Dlog2 for all
sufficiently large j, we see that the Borel-Cantelli lemma completes the proof of
2.9). O

Assertion (2.7) is a direct consequence of Lemma 2.4. The following lemma
when combined with (2.7) completes the proof of the first part of (b).

LEmMMA 2.5. Whenever w = o, for any sequence k(n) such that c(n) = oo,

(2.10) lim sup M,(k(n))

P k(v (e(n)) = O



ERDOS-RENYI STRONG LAW 263

Proor. Notice that when w = oo, { is continuous on [y(0), o0) [note y(0) =
EX,] so that y is strictly increasing on [0, «0). By Lemma 2.2 we can find a
strictly increasing sequence x, such that x, > r for integers r > 1 satisfying

(2.11) lim —log(1 - F(x, -))/(=,) = 1.
Choose any 0 < £ < 1 and for integers r > 1 let
n,= max{n: y(log n/((l + s)3k(n))) < x,}.
Note that necessarily
y(log(n, + 1)/((1 +¢)°k(n, + 1))) > x,

and recalling that k(n) is nondecreasing, we see that for all large enough r,
k(n,) = k(n, + 1). Also since v is concave, for all large r, n, > r. By continuity
of ¥ we can find a

0<80,<log(n,+1)/logn, — 1
such that with
&= (1+6)ogn,/((1 +)(n,)),
v(§,) = x,. Thus for all large r and using concavity of y
P(X, > (1 + ) *(e(n,))" ™ = P(X, > 4(( + &) c(n,)))
> P(X, 2 7(8))"" = (1= Flx, )",
which by (2.11) is greater than or equal to
exp(~k(n,)(1 + £)i(x,) = exp(~ (1 + 8, )log n,/(1 + ¢)?)
> exp(— (1 +¢) 'log n,).

k(n,)

Therefore for all large r,
P(M,(k(n,)) < (1 + ) °k(n,)¥(c(n,)))

< {1 - P(Sk(n,) >(1+ 8)_ak(nr)Y(C(nr)))}nr/k(nr)—l

<{1-P(x,>(+ e)_3'Y(C(nr)))k(n,)}"r/k(nr)—l

<2(1- n,‘l/(”‘))n’/k(n') < 2exp(—n¥4*9/k(n,)).
Since eventually n, > r and ¢(n,) = o, it is easy to show that

2 Y exp(~n/®*/k(n,)) < o0,

r=1

which by the arbitrary choice of 0 < £ < 1 implies (2.10).
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Now we turn to the proof of the second part of (b). First assume that (1.4)
holds. We must show that for all k(n) such that c¢(n) — oo,

o M)
now k(n)y(e(n)) =
By (1.4) for all sufficiently large n,

¥{~log[1 - F((1 + &) *¥(c(n)))]} < (1 + &) 4(c(n)),
which gives
P(X, > (1 + &) *y(c(n))) = exp{log[1 — F((1 + &) *¥(c(n)))]}

> exp{ —{[(1 + e)_ly(c(n))]}
> exp(—(l +¢) 'log n/k(n)).

The proof now proceeds much as the proof of Lemma 2.5. This in combination
with (2.7) implies (1.3) with lim sup replaced by lim.
Next assume that for all sequences k(n) such that ¢(n) - oo,

M k()
n—o k(n)y(c(n))
In particular, we then have for the choice k(n) =1 for n > 1,
M, (1)
ol y(logn) T 1EeEn y(log n) -
Set for n > 2, p,= Q@1 — 1/n). The limit in (2.13) holding implies that

B, ~ Y(log n) as n = oo; cf. Corollary 4.4.1 on page 227 of Galambos (1978) (it is
easy to show that his continuity assumption can be removed). O

\

The following lemma completes the proof of the theorem.

S.

(2.12) a.s.

(2.13) a.s.

LEMMA 2.6. Whenever w = o0,
(2.14) y(logn)/p,—>1 asn— oo
if and only if (1.4) holds.

ProoF. From the fact that (1.4) implies (2.13), which by the above discus-
sion, in turn implies (2.14), we see that the “if” part of the assertion is proven.
Now assume that (2.14) holds. First, since y is nonnegative, nondecreasing and
concave, we can write

v(x) = [#() dy +(0),

where g is nonnegative and nonincreasing. Therefore

log(n+1) _
v(log(n + 1)) = y(logn) = [**"" "g(y) dy < n"'g(logn),
og n
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which necessarily converges to 0 as n — oco. This implies that
(2.15) y(log(n + 1)) /y(logn) > 1 asn — .
Hence for all x > 2 for which Q1 — 1/[x]) > 0,

v(log[x1)/Q(1 - 1/([x] + 1)) < v(logx)/Q(1 - 1/x)

< y(log([x] + 1))/Q(1 — 1/[x]),

which by (2.14) and (2.15) gives
(2.16) y(logx)/Q(1 - 1/x) > 1 asx — oo.
Since y(—log(l — F(2))) > z and Q(F(2)) < z, we see that

v(—log(1 — F(2)))/Q(F(2)) = v(~log(1 - F(2)))/z > 1,
which by (2.16) yields (1.4). O
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