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STATISTICAL MECHANICS OF CRABGRASS

By M. BRaMsoN,! R. DURRETT"2 AND G. SWINDLE?2

University of Minnesota, Cornell University and
University of California, Los Angeles
In this article we consider the asymptotic behavior of the contact process
when the range M goes to co. We show that if A is the total birth rate from
an isolated particle, then the critical value A (M) — 1 as M — oo. The rate
of convergence depends upon the dimension: A (M) — 1 =M~23in d=1,
=~ (logM)/M?in d=2,and =M %¢in d> 3.

1. Introduction. In this article we consider a “contact process” in which
the state at time ¢ is §, ¢ Z¢/M = {2/M: z € Z9). £, is the set of sites occupied
by “particles.” In our model (i) particles die at rate 1 and (ii) if x is occupied and
y with ||x — y|| < 1 is vacant, births occur from x to y at rate A /o(M), where
o(M) = |{x € Z%/M: 0 < ||x|| < 1}| is a constant chosen to make the total birth
rate from an isolated particle equal to A. v is for volume. Here and in what
follows, ||z|| = sup|z;|, but other norms or birth rates of the form ¢(x — y) could
be introduced without much difficulty. This type of model is appropriate for a
lawn or meadow where the spacing between plants is small, hence the title of the
article. More generally, the model can be used in any situation where offspring
can be displaced a large distance (measured on the lattice) from their parents.

The point of this article is to show that if M is large, £, behaves much like a
branching random walk Z, in which (i) particles die at rate 1, (ii) give birth at
rate A and (iii) an offspring of a particle at x goes to a y chosen at random from
{y € Z¢/M: 0 < ||x — y|| < 1}. Comparison with the definition of £, reveals that
the contact process can be thought of as a coalescing branching random walk,
that is, a system which follows rules (i)—(iii), and (iv) if a particle is sent to an
occupied site, the two coalesce to one.

From the above comparison, it follows that if Z(A) is the number of particles
in A at time ¢ in the branching random walk starting from a single particle at 0
at time 0, and £X(A) = |£) N A| is the same thing for the contact process
starting from £) = {0}, then the two processes can be constructed on the same
probability space with Z2(A) > £2(A). Here |B| = the number of points in B.
The reader should notice that Z? is a measure-valued process and ¢ is set-val-
ued. To facilitate comparison, we will use |Z?| to denote Z2(R¢).

From the last observation it follows that if we let

Q, = {§) + o forall t},
A(M) = inf(A: P(2,) > 0),
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then A (M) > 1 = the critical value for the branching random walk. It is not
hard to show that if we keep T fixed and let M — o, then the contact process
£), 0 < t < T, converges in distribution to a branching random walk. The next
result shows that we can let T' > o0 and then M — oo.

THEOREM 1. As M — oo, A(M) — 1. Furthermore

c/M*? d=1,
A(M)—1={ClogM)/M? d=2,
c/M? d=>3,

where = means that if C is small (large) then the right-hand side is a lower
(upper) bound for large M.

The conclusion that A (M) — 1 is analogous to results of Holley and Liggett
(1981) and Griffeath (1983) who consider what happens in the basic contact
process (in our notation, M =1 and ||x|| = |x,| + -+ +|x4). They show that
the critical value for the model in d dimensions converges to 1 as d —» c0. The
main point of Theorem 1 is to identify the rate of convergence. The content of
Theorem 1 becomes a little more transparent if we write the conclusion in terms
of volume v(M):

C /0?3 d=1,
A(v) —1={C(logv)/v d=2,
C/v d=>3.

Recast in these terms, the result suggests that there should be a power series for
A (v) in d = 3, and resembles a (nonrigorous) result of Thouless (1969) for the
Ising model: If g is the number of “interacting particles,” then the shift of T,
from the mean field value is proportional to g 'Ing in d =2and ¢~ ' in d > 3.
(The Ising model does not have a phase transition in d = 1.)

One final reason for writing things in terms of the volume can be seen in our
bounds for A (M) — 11in d > 3. If U, denotes the random walk which has steps
uniformly distributed on {x € R% |x|| < 1}, then Proposition 3.1 and 2.6 imply

<A (M 201 ZP Ull<1
socay < M)~ 12 5 X P S ).
We think that in d > 3,
}‘c(M)_ (M) {:IP(” ”Sl),

where a,, ~ b,; means a,,/b,, > 1 as M — oo. Getting sharp asymptotics like
this seems to be a difficult problem. Our bounds are ridiculously crude in d = 1
and d = 2.

Theorem 1 gives asymptotics for the critical value. Our last two results
concern the survival probability P(Q,,), where Q, = {£ # @ for all ¢}. The first
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result is the analog of a result of Schonmann and Vares (1986) for the basic
contact process with d — oo.

THEOREM 2. If A > 1 s fixed and M — oo, then P(2,) = (A — 1)/A.
The limit is the survival probability for the branching random walk, so
Theorem 2 gives another sense in which the ¢? is like Z? when M is large. The

next result refines the last conclusion.

THEOREM 3. Let

c/M?3 d=1,
A=1={C(log M)/ M? d=2,
C/M¢ d=>3.

There is a constant 8(C), which depends on the dimension and approaches 0 as
C — o0, so that if M is large .

P(2.) = (1 - 8(C))(A - 1)/A.

In the language of statistical physics, the last result identifies the scale on
which the crossover occurs from contact process to branching process behavior.
When C is large, the contact process survival probability is almost that of the
branching process, but when C is small, the lower bounds on A, imply that the
survival probability for the contact process is 0 for large M.

Having stated our results, the rest of the Introduction is devoted to an
explanation of how they are proved. We begin with a “back-of-the-envelope”
calculation which indicates why the answers in Theorem 1 are correct. Let
A =1 + £ and suppose

Ce™3/2 d=1,
(1) o(M) ~ { Ce 'log(e 1) d=2,
Ce! d>3.

To prove Theorem 1, we need to show that the contact process dies out if C is
small and survives if C is large. The key to this lies in two differential equations.
If we use x ~ y to denote x, y € Z%/M with 0 < ||x — y|| < 1, then

d A
) BN = (- DERN - oy T Pleye ),

d
®) ZEIZ0 = (A= DEZ.

The solution to the second equation is trivial: E|Z?| = e~ V%, The right-hand
side is approximately equal to 1 if ¢ < 1/¢ and large if ¢ > 1/e. This suggests
that ¢ = 6 /¢ is the right time scale to look at, and on this scale Z? is much like a
critical branching random walk. The second conclusion is a large leap, but will be
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substantiated by results given in Section 2. In percolation terminology, 1 /¢ is the
correlation length.

The term which appears in (2) but not in (3) will be called the interference
term. To estimate this term, we let

BY=[n,n +1)x - X[ngn,+1)
and
B.=[n,-1Ln +1)x - X[n,—1,n,+1)

for each n = (n,...,n,;) € 2% Now if x, y € B? and x # y, then x ~ y, and
x ~ y implies x, y € B}, where n; = 1 + min([«;],[ ;]) and [x] is the greatest
integer less than or equal to x. So

(4) YEE(BY) < ¥ P(x,yet) < LEL(BL).
n x, y~x n
Careful readers will have noticed that the left-hand side should be
LE£XABL)(£X(BY) — 1), but we will ignore this technicality. It is a minor mistake
when compared to the next step.
If we replace £ by Z? and set A = 1, we have a critical branching random
walk. Well-known results for that process [see, e.g., Fleischman (1978)] imply

£ d=1,

-\ 2
(5) Y EZ)XB!) ={logt d=2,
n 1 d> 3.

Replacing { by Z in (4) and plugging the last asymptotics into (2), we see that
for t = 0 /¢,

g7 1/2 d=1,
the interference term = { log(1/¢) d=2,
1 d>3.

The choice of v(M) in (1) makes the interference term of order ¢, that is, the
same size as the first term.

The last few paragraphs explain the intuition behind the answer. To translate
these heuristics into rigorous lower bounds on A (M), we observe that by
comparing with a branching random walk in which a particle at x gives birth to
a set of particles with distribution x + £2, we get

k
(6) Elgd < (EI1)
So if E|¢0] < 1, then P(Q,) = 0.
The techniques we use to show that E|£| will fall below 1 when the C in (1) is

small depending upon the dimension. In d > 3, a simple argument shows that
the interference term is at least

1 EI£0
80(M) Igt—ln2|,
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so E|£)] > 0 when A <1+ 1/90(M) and M is large. In d = 1, we show that if
C is small,

d
EtEE?' < —¢ whent € [1/10¢,1/¢] and E|£0| > 0.9.

Since
Elé(()).l/el = Elz(())l/el = exp(O]‘) < 1'2:

it follows that E|¢?| will be less than or equal to 0.9 at some time ¢ < 1/¢, and
(6) implies the contact process dies out. The argument in d = 2 is similar to the
one in d = 1, but we look at ¢ € [a/2¢, a/¢] and suppose E|£0| > 1 — a where a
is small.

To prove upper bounds on A (M), we use a block construction. Let L =
(Ky/e), I=LY? and I,=[2m — 1)I,(2m + 1)I] X [—1,1]9" . We first show
that if we start a branching random walk with at least K, /e particles in I, and
do not allow births outside [ —27,2/] X R¢"!, then with high probability there
are at least 3K, /¢ particlesin I_, and in I, at time L. Let £= {(m,n): m+ n
is even}, and say that (m, n) € % is occupied if there are at least K, /¢ particles
in I, in the contact process at time nL. To prove that the contact process
survives when C in (1) is large, we show that the process of occupied sites
dominates oriented site percolation with parameter p close to 1.

One technical problem with the approach above is that if all K, /e particles lie
in [0,1]¢, then the contact process will die out with high probability. To avoid
this difficulty, we start with an initial A c I, which has at most K,h(e)
particles in any unit cube B?, where

g~1/2 d=1,
h(e) = {logs_1 d=2,
1 d=>3.
Experienced readers will recognize these numbers as giving the size of a typical
clump of particles in a critical branching random walk at time 1/¢. We prove
that if K, is large and if we kill all the particles in the branching process at time
L which reside in crowded B?, then with high probability we will still have at
least 2K, /¢ particles in I_; and I,.

The last two paragraphs show that the branching process can do the things
that we want the contact process to do. To complete the proof, we will show that
if C in (1) is large, then the contact process is almost as large as the branching
process for ¢ < L. The first step is to notice that

Y P(x,ye¢t) < TE(z(BL)).

X, y~x

If we let 8 = |Z#| — |¢£| and subtract (2) from (3), then we get

d 9
- A A 1
— B5; SO0) En)Ez, (BL)".

Using the fact that A has at most Kjh(e) particles in any B? and estimates

<



STATISTICAL MECHANICS OF CRABGRASS 449

for branching random walk, we show that if C in (1) is large, then E|¢f| >
(1 — 8)E|Z#| for t <L = K,/e. Chebyshev’s inequality then implies that
|Z#| — |€8| < K,/e with high probability. Since the branching random walk will
have at least 2K, /¢ particles in I, and I_, with high probability, this completes
the proof of the upper bounds (modulo a few details).

The article is organized as follows: Preliminary results for branching processes
and random walks are stated in Section 2. Section 3 contains proofs of the lower
bounds in d # 2 and Section 4 treats the stubborn case d = 2. Readers who get
tired of all the details in Section 4 will be happy to know that the rest of the
article is independent of that section. The block construction which allows us to
prove that the contact process survives is described in Section 5. In Section 6 we
prove some estimates which imply that the block construction works for the
branching random walk. In Section 7 we use the differential equations (2)—(4) to
estimate the difference between the contact process and the branching process
completing the proof of Theorem 1. In Section 8 we prove Theorem 2. In Section
9 we prove the sharper result in Theorem 3.

Formulas are numbered (1),(2),... in each section. When formula (6) from
Section 2 is referred to in a later section it is called (2.6). Most of our results are
called lemmas, but those whose conclusions are part of Theorem 1 are called
propositions. Two of the lemmas are interesting enough so that they could be
called theorems. Lemma 4.6 shows that if S, is the sum of n independent
random variables with distribution F, and F, converges weakly to F, then
(under suitable conditions) the local central limit theorem holds for S,. Lemma
9.2 is an almost central limit theorem for almost critical branching random
walks. Finally, the reader might find Lemma 4.5 useful.

2. Branching process preliminaries. In this section we will describe some
results about branching processes and random walks which will be useful in what
follows. The first result says that a branching process with mean 1 + § looks
roughly like a critical branching process for times ¢ < K/§. In reading the
hypotheses the reader should keep in mind that we will apply this result to the
discrete-time skeletons Z, Z,, Z,,... of continuous-time branching processes in
which particles die at rate 1, and give birth to new ones at rate 1 + ¢ with
0<e<1. Inthiscase, 1+ 6 = e".

LEMMA 2.1. For any a > 0, let X4, be a class of Galton-Watson processes
with reproduction variances not less than «, and such that for any n > 0 there is
a k(n) so that

Y kPpp<nm
k>k(n)

foralllawspin X,. If pis alawin X, letf(z) = Lp,z*, p=f'Q1), v =f"(1)/2
and
A-w)
¢, =4 (n-1)
vn p=1



450 M. BRAMSON, R. DURRETT AND G. SWINDLE

For any sequence of laws p™ € X, with p —> 1 asn — oo,

(a) c,P(Z,>0) =1,
(c) P(Z,/p"c, < x|Z,>0) > 1—e ™.

(Here p, v and c, are the constants associated with p™.)

REMARK. The lemma above is from Jagers (1975), page 63. There the result
is stated incorrectly. The p” in (b) and (c) is missing. It is easy to see that if we
accept (a), then (b) and (c) must have the form given above since

E(Z,Z,>0) = EZ,/P(Z, > 0) = u"/P(Z,> 0) ~ p"c,.

While the last result is useful for conceptualization, it plays a minor role in
the proofs below, appearing only in Sections 3 and 9. Most of the work is carried
out using moment equations. Let Z(A) be the number of particles in A at time
t in a branching random walk which starts with a single particle at x and in
which (i) particles die at rate 1, and (ii) a particle at x gives birth to a new
particle at x + z at rate B(dz), that is, B is a measure on R? and the rate at
which particles appear in x + A = {x + y: y € A} is B(A).

Durrett (1979) gives the following integral equation for the moments.

LEMMA 22. Letm,(t, x, A) = E(ZX(A)*) and omit the subscript when k = 1.
For k > 2,

m(t,x, A) = m(¢,x, A)
k-1 ,
+/,B(dz) El -;—(f)/(;dsfm(t— s, x, dy)
xm;(s, y, A)m,_;(s, y + 2, A).

Lemma 2.2 relates the £th moment to moments of order less than &, so all the
moments can be calculated once we observe

(1) m(t,x, A) = e?* " VP(XF € A).
Here A = B(R%) and X} is a continuous-time random walk which starts at x,

takes steps at rate A and has jumps with distribution F(dx) = B(dz)/A. To
check (1), observe that

(2) %m(t,x, A)=-m(t,x, A) + fm(t,x, dy)B(A — y),

and that the right-hand side of (1) satisfies (2). In what follows we will use 8,
and F,, to denote the quantities above when the range is M.

Lemma 2.2 has been used to analyze the spatial distribution of critical
branching random walks. [See Sawyer (1976), Fleischman (1978) and Durrett
(1979).] In view of Lemma 2.1, the reader should not be surprised to hear that for
A =1 + ¢ the spatial distribution is roughly the same as the critical case for
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t < K/e. To translate this intuition into proofs, we will need estimates on
m(t, x, A) which are uniform in the random walk law. To do this, a concentra-
tion function inequality of Kesten (1969) will be useful. To state his result, we
need some notation. If Y is a random variable let

Q(Y;L)=supP(x <Y<x+1L)
be its concentration function.

LEMMA 2.3. There is a constant C so that if S, is a sum of n independent
and identically distributed random variables, then
C L Q(S;L)
R 11— (s ]

Q(S,; L) <
for any l with 0 <1 < 2L.

For the results that follow, we will need to generalize Kesten’s result to
continuous time and to d > 1. To do this, let X, be a continuous-time random
walk which jumps at rate A and has jumps with distribution F},, the uniform
distribution on {x € Z¢/M: 0 < ||x||,, < 1}. X, can be thought of as a random
walk which jumps at rate A(1 + 1/V(M)) and has jumps with distribution
F,; = the uniform distribution on {x € Z¢/M: ||x||,, < 1}. If we do this and let
S, denote the position after the nth jump, then the d coordinates of S, are
independent. (Note that the last representation shows us that the coordinates of
X, are independent.)

Generalizing the concentration function by setting

Q(Y; L) = supP(x; < Yi<ux,+ Lforl<i<d)

where Y = (Y1, ..., Y%), we have

d
®3) Q(S,; L) < l—[lQ(S,i; L),
=
since the components .§,1,..., §,‘f are independent. Now .§{ is uniformly dis-

tributed on {—-1,-1+1/M,...,1} so if we pick L =2 and l=1, then
Q(S};2) =1 and Q(S};1) <2/3 for M > 1. Using Lemma 2.3 and (3) now, it
follows that

(4) Q(S,;2) < C/n?”.

Here and in what follows C is the constant whose value is not important and
which will change from line to line.
Our next step is to generalize (4) to continuous time.

LEMMA 2.4. There is a constant C so thatif 1 <\ <2 and M > 1, then
Q(X,;2) < C/ti2,
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Proor. If welet y = A1 + 1/0(M)) = 1, then

(v)

Q(X,2) < Z e ™

n=0

Q(s,,, 2).

A standard large deviations estimate implies
wn )"

—yt
n2=:Oe n!
where K, § are independent of ¢ and y > 1. Using @(S,;2) < 1 for n < [¢/2],
(4) for n > t/2 and summing gives the desired result. O

< Ke™ %,

Our first application of Kesten’s inequality is to give upper bounds on A, in
d > 3. Griffeath (1983) has shown that if S, is the random walk which takes
steps with a uniform distribution on {x € Z%/M: 0 < ||x|| < 1}, then we have

LEMMA 2.5. Let y=P(S,# 0 foralln>1|S,=0). If y> 1/2, then A\, <
1/(2y — 1).
To get an upper bound on A, it suffices to bound y. Noticing S, has the same

distribution as S(T,,) where T, = inf{m > T,_ : S, # S(T,_.)} for n>1 and
T, = 0 gives

P(S, = 0 for some n > 1)

< i P(S,=0) [since P(S, =0) =0]

n=2
< Y P(S,=0
(5) n=2 ( )
< L P18 <) 577
» C 1 C’

= Loy + 1 o(M)

by (4). The constant C’ is presumably large, so the last result is not very good. It
can be improved considerably by noting that if U, is the random walk which has
steps uniformly distributed over {x € R% |x|| < 1}, then for each n,

P(|IS,ll < 1) = P(|IU |l < 1)

as M — oo. Dominated convergence and (5) allow us to conclude that the upper
bound is asymptotically

[« 9]

(M) n=1P(IIUnII <1).

Plugging this bound for 1 — y into Lemma 2.5 gives
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PROPOSITION 2.6. For M large

2.01
Aesi+ oo 1 ZP(nUnu<1)

Note: The idea of using Griffeath’s result to bound A, is due to Ted Cox.

While the definition of S, is still in the reader’s mind, we would like to
introduce one bit of notation which will come up again and again in what
follows. Let 62 be the variance of one component of S,. As M — oo,

(6) oy — 1/3,
1/3 being the variance of the uniform distribution on [—1,1].

Last and least, the following fact will be useful several times below to simplify
computations.

LEMMA 2.7. If0<x <1, thene* <1+ 2x.

ProoF. The proof is trivial and is included as comic relief.

x2  x® xt x 1 1
CTRRCTHDTER S§(1+§+E-_Z+"')
X 1 1
5-2-(1+§+57—2—+~~)=x. ]

3. Lower bounds for d # 2. In this section and the next we will prove the
lower bounds on A (M) given in Theorem 1. The key to doing this is the
differential equation given in the Introduction'

d 0 0 0
(1) EtEIEA =(A-1)E|&)| - (M) Z Z (x’ Y€ £t)

X y~x

We begin with a result which gives the desired bound in d > 3.

PROPOSITION 3.1. In any dimension, if M is large
A(M)=1+1/9(M).

ProOOF. To estimate the second term on the right-hand side of (1), we first
show that if A > 1,

(2) Y P(xed), yed)) = iP(xet),,).

y~x
This inequality comes from combining three facts. (i) The probability the
particle at x survives from ¢ — In2 to ¢ is 1/2. (ii) If it survives, then the
probability it will give birth to at least one particle is 1 — exp(—AIn2) > 1/2.
(iii) If a particle is born the probability it will survive for at least In2 units of
time is 1/2.
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Plugging (2) into (1) gives for ¢ > In2,

d
® ZBIEN < (A= DEI - gomrs BIE ool

8v(M)

Comparing with a branching process [i.e., dropping the negative term on the
right-hand side of (1)] gives

E|E) < e®"DRIERD | .
Putting this in (3) gives
e~ (A\-Din2
8v(M)

If (A—1)<1/90(M), then the term in parentheses in (4) is less than
—0.01/v(M) for large M. Comparison with a branching process gives

E|g), 5| < e®7DIn2,
So, using (4), we see that if (A — 1) < 1/90(M), then
In2 (0.01)(¢ — In2) )
9v(M) o(M)
From the last result we see that P(|¢%| > 1) < E|¢)| » 0as ¢ > c0. O

d
@ —BIE < (A -1- )E|s£’|.

(5) Eig7| < eXP(

We turn now to the result in d = 1.

PROPOSITION 3.2. In d = 1 there is a constant C so that if M is large
A(M) =1+ C/M?¥3.

ProOF. By (1.6) it is enough to show that there is a 6 > 0 so that if
M < 8¢%/2, then E|£0| < 0.9 for some ¢. To prove this, it is enough to show

LEMMA 3.3. For small ¢ if 1/10e <t <1/¢ and E|{)| =09, then
(d/dt)E|E)| < —e.

Since
E|E) 10| < E|Z7)10,| = /1 <12

(the last inequality coming from Lemma 2.7), Lemma 3.3 implies that E |€2] will
be less than or equal to 0.9 at some time less than or equal to 0.4/e.

ProorF oF LEMMA 33. We let A=1+¢ in (1) and use the fact that
o(M)=2M and A > 1 to get

d 1
®) Bl < Bl - 5 T T Px, y€ £9).

x y~x
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To estimate the second or “interference” term, we let
I, = [-K#72, Kt'/?],
N(x) = |{y ~x: y€ £},
n,= {x €& N(x) > 6eM} N I,
$=(8-m) NI

The points in 5, are “too crowded.” The birth rate per particle is 1 + ¢, but these
particles “lose” at least 3¢ of their birth rate by giving birth onto occupied sites.
Using the facts

1
(7) W Z Z 1(x,y€£?) > 33|’7z|
X y~x
and
(8) Elé? NI + E§| + En,| = E|£?|
in (6) gives
d
©) EI60 < e(EIEY 0 I + E[5) — 2E|n,).

To estimate the first term on the right-hand side of (9), we observe that by
2.1)

(10) E§) N I7| < B|Z(I})| = e* V'P(X) € I}),
where X is a continuous time random walk which starts at 0, takes steps at rate
A and has jumps which are uniformly distributed on {-1, -1 + 1/M,...,1} —
{0}. To get a bound on the right-hand side of (10) which is independent of M, we
observe that if e >0 and M, > M € {1,2,...}, the central limit theorem
implies
sup{P(X € I7):1/10e < t < 1/¢} > P(oyx € [-K, K]) = a(K).

Here x is a normal random variable with mean 0 and variance 1. o7 is the
variance defined near (2.6), and o2 is the limit of 6 as M — co. From the last
observation, it follows there is a constant ¢, so that if ¢ < ¢y and 1/10e < ¢ < 1/,
then
(11) E|t° N If| < 2ea(K).
[If not there would be a sequence ¢, = 0, M, = M so that the sup of the
left-hand side over 1/10e < ¢ < 1/¢ is greater than 2ea(K).]

To estimate the second term on the right-hand side of (9), we observe

(12) 84 < (6eM)(2KVE)

since |[i,i + 1] N §,| < 6eM, and there are 2KV such intervals. Using ¢ < 1/¢
in (12) gives that

(13) 18] < 12K€/2M.
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The last result is not good enough since we want the right-hand side to be small
when M = 8¢~ %/2. To improve the estimate, we observe that

(14) El5) = E(8) 18 + 2)P(& + 2) < 12Ke/2MP(Z?| > 0)

by (13). Using Lemma 2.1 now, it follows that there are constants C, ¢, (which do
not depend on K)sothatif A =1+ ¢, ¢ <e¢ and ¢ > 1/10¢, then

(15) E|¢,| < CKe¥?M.

(15) is the last piece of the puzzle. To put things together, let ¢ < ¢, =
min(e, ¢). Pick K so that in (11)

(16) El£0NI7| < 2ea(K) <0.1.

If M < 8673/ the right-hand side of (15) is at most CK§ so if we pick § small
17) Elt) < 0.1.

Using (8) now with (16) and (17), we see that if E|£0| > 0.9, then

(18) E|n)| > 0.7.

Using (16)—(18) in (9) gives for ¢ < &,,

d 0
£E|£,| < —1.2¢,
a conclusion slightly better than the result claimed in Lemma 3.3. O

4. Lower bounds in d = 2. In this section we will prove

PROPOSITION 4.1. In d = 2 there is a constant C so that if M is large
A(M) =1+ C(log M)/M>.
Let B,, , =[m, m+ 1) X [n, n + 1). The key to the proof will be upper and

lower bounds on the moments of Z)(B,, ,). Recall the notation of Lemma 2.2,
m(t, x, A) = E(ZZ(A)*), and that we drop the subscript when & = 1.

LEMMA 4.2. There are constants C,, C,, C; (which are independent of M) so
thatif A=1+¢, t<1/c and ¢ < 1 we have
(a) m(t, x, B, ,)<C@A+1)7},
(b) my(t, x, B, ;) < Cy(1 + £)"'log(2 + ¢),
(¢) myt, x, B, ,) < C1 + ) 'log*2 + ?).
Proor. To prove (a), notice that
m(t,x,B, ,) =e* VP(X;€B, ,) <eC/(1+¢)

by Lemma 2.4. The C here is not the same as the one in that theorem. In what
follows we will put ¢ or 1 + ¢ in the denominator as convenience dictates.
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To prove (b), we use Lemma 2.2 to write
m2(t’ X, Bm,n) = m(t’ X, Bm,n)

t
+/ﬁM(dz)/0 dsjm(t—s,x, dy)
xm(s, y, B, ,)m(s, y + z, B, .).

To estimate the integral, we observe

m(s,y+2,B,,)<C((s+1)7",
fm(t - s,x,dy)m(s, y,B,, ,)=m(t,x,B, ,) < C(t+1)7".
Soif A <2,
-1 t -1 -1
ma(t, %, B, ) < Gt + 1) + 2(fd901(s +1) )Cl(t +1)
0

< Cy(t+ 1) "log(¢ + 2)

for suitable C,. To prove (c), we use Lemma 2.2 again

myt, x, B, ,) =m(t,x, B, ,) + ;f,BM(dz) fotdsfm(t - s,x,dy)
x{m(s, y, B, ,)my(s, y + 2, B,, ,)
+mys, y, By, ,)m(s, y+2,B,.,)}.
To estimate the first integral, we observe

my(s,y+2,B, ,) < Cy(s +1) "log(s + 2),

/m(t - s,x,dy)m(s, y, B, ,)=m(t,x,B, ,) < C(t+1)7,

[7Co(s + 1) tog(s + 2) ds<log(t + 2) [Cy(s + 1) " ds < C, log(¢ + 2).
0 0
The second integral is estimated in almost the same way. We begin with the
observation
my(s, ¥, B, ,) < Cy(s + 1) 'log(s + 1),
but this time we use the fact that for ||z|| < 1,

fm(t - s,x,dy)m(s,y+2,B, ,) = fm(t —-s,x,dy)m(s, y, B, — 2)

< m(t, x, B,:,ln),

where B!, = [m — 1,m + 2) X [n — 1, n + 2). Since B}, is the union of nine
unit squares

m(t,x, B;Y) <9C (¢t +1)7"
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Integrating from O to ¢ gives the same result as before except for a factor 9.
Putting things together gives for A < 2,
my(t,x, B, ,) < Cy(¢+ 1)+ 30C,Cy(¢ + 1) 'log?(t + 2)
< Cy(t+ 1) 'log?(t + 2)
for suitable C;, completing the proof of Lemma 4.2. O

To prove Proposition 4.1, we will need lower bounds on the first two moments
which are of the same order as the upper bounds in Lemma 4.2.

LEMMA 4.3. Let A =1 + &. There are constants by, b,, t, > 1 and ¢, so that
if (m,n) € [—t/2, /2], then for t > t,,

(a) m(t,0, B,, ,) = by(1 + ¢) le® D",
and for t > t,,
(b) my(2,0, B, ,) = by(1 + ¢) 'log(2 + £).

REMARK. The two constants ¢, and ¢; could, of course, be combined into
one. The formulation above is convenient for the proof.

SKETCH OF PROOF. (b) follows from (a) and Lemma 2.2. To prove (a), we
begin by observing that

m(t,0, B, ,) = e*VP(X? € B, ,).

If M were fixed, (a) would follow from the local central theorem, but M is not
fixed, so we have to prove a version which is uniform in M. That proof takes
some work and interrupts the flow of ideas, so the proof of Lemma 4.3 is
postponed to the end of the section.

PROOF OF PROPOSITION 4.1. As in the proof of Proposition 3.2 it is enough to
show

LEMMA 4.4. There is an a € (0,1) so that if a/2¢ < t < a/e and E|£)| >
1 — a, then for ¢ < g, we have

dE£° 3
—_— <_ .
S EIEd < 3¢

For once this result is established, we can use the fact that
E\ ol <E|Z, ;5| =e*?<1+a

(the second inequality coming from Lemma 2.7) to conclude that if E|£)] > 1 — a
for all a/2¢ < t < a/¢, then

Eif,|<1+a-8a/2=1-a/2<1,

and (1.6) implies that the contact process will die out.
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We begin the proof of Lemma 4.4 with the following trivial, but useful,
observation.

LEMMA 45. If 0 < X < Y and EX > (1 — 0)EY, then

EY? - EX? < 2(6EYEY?)"”.
PROOF. - X?2= (Y- X)Y + X). Applying the Cauchy-Schwarz in-
equality to (Y X)/2 and (Y — X)HY + X) < 2Y%2 gives
E(Y? - X?) < (E(Y - X)E(4Y?))"7,
proving the lemma. O
To prove Lemma 4.4, we pick 6 so that (b, — 2(6C,C;)*/?) > 0 and then pick
a <1/3 so that 0 <e%1 —b0) <1—a. Here b,, b,, C, and C; are the

constants of Lemmas 4.3 and 4.2. The reader will see the reasons for these
choices as the argument progresses. Let

Vo (t) =Z[m,m + 1) X [n,n + 1)),
U, o(t) = £([m,m + 1) X [n,n + 1)),
L=[-87¢71n1z2
Now if a/2e < t < a/¢, we claim that for at least one-half of the (m, n) € I,,
(1) EU, .(t)/EV,, (t)=1-0.
For otherwise

1
L (EV8) = BU, () 2 5\1)8 in_ BV, (1)
(2) (m,n)el, (m,n)el,

1 -1
> §|I,|0b1(1 +t) et
by Lemma 4.3. Since |I,| = (2[#/2] + 1)? > 2¢ + 2 for large ¢, our choice of a
implies that
(8) E|)I= Y EU, (t) <e*V(1-b0)<e*(l-b8)<1-a,

(m, n)

contradicting the assumption that E|£0| > 1 — a. Let
= {(m,n) € I,: EU,, ,(¢)/EV,, ,(t) >1 - 6}.

A.pplying Lemma 45t0o X = U, ,(t)and Y = V,, () and then using Lemma 4.2
gives
(4) EV; (t) — EUZ (t) < 2(8C,C;)"*((1 + t) ' log(2 + ¢))
for (m, n) € J,. Lemma 4.3 tells us that
(5) EVZ (t) > by(1+¢t) 'log(2 + t)



460 M. BRAMSON, R. DURRETT AND G. SWINDLE
for all (m, n) € I,, so using the fact that |I,| > 2¢ + 2 for large ¢, we have
1
Y EUZ (t) = =(2t + 2)(b, — 2(8C,C5) ) (1 + ) "'log(2 + t)
(6) (m,nyed 2

> B(loge™* + log(a/2))

for t > a/2¢, if B = (b, — 2(8C,C,)'/?). B is positive by the choice of 6.
The interference term

L Plx,yed) = X E(U, (t)(Un,a(t) - 1))

X, y~X m,n
(7) > Y EUZ.(t)- X EV,.(¢)
(m,n)Ed, (m,n)

> B(loge™! + log(a/2)) — e®

if ¢t € [a/2¢, a/c]. Plugging the last bound into the differential equation (1.2)
gives :

d 0 0 >\ -1 a
(8) 7 BIEN < eEIE)) — E(’AT)( B(log e* + log(a/2)) — e?).
Now if ¢ < a/e and a < 1, then
9) E|t) <E|Z))<e®*<1+2a

by Lemma 2.7. Combining (8) and (9) gives that if o(M) < (B8/5)(¢ *loge™),

(10) %EI«E?I <e{(1+2a)-5+ (g(a)/loge™)},

where g(a) = 5log(a/2) + 5e®/B. For fixed a, if ¢ is small enough,
g(a)/log(e~!) < 1/3. Since a was chosen to be less than or equal to 1/3, it
follows that

d o
(11) EEV;’,I < —3e,
proving Lemma 4.4. O

The last detail remaining in the proof of Proposition 4.1 is the proof of
Lemma 4.3. The key to the proof is a slight generalization of the local central
limit theorem. Let XM be a continuous-time random walk with X3 = 0, which
jumps at rate 1 and has jumps uniformly distributed on {x € Z¢/M: 0 < ||x|| <
1}. The last definition is inconsistent with our earlier practice of using super-
scripts to denote the starting point, but we will only use the new notation until
the end of this section, and we will not use the old notation during that time.

LEMMA 4.6. If M - oo andx,/n*/? — x then for any Borel set with |0B| = 0,
|B| < o0,

n??P(X¥ € x, + B) - |Bln(x),
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where
= 2\~ %2 2 /92
n(x) = (2m0?) exp( — |x|2/202),
o2 is the limit of the o} and o} is the variance of one component of XM.
PrRooF. We will only prove the result for rectangles B = [a,, b;] X
-+« X[ay, by], since that is all we need. Since the components of XM are

independent, it suffices to prove the result in one dimension. To do this, we will
use ideas from Sections 10.4 and 10.2 of Breiman (1968). Let

11—cosy 0
ho(y) = ;T and hy(y) = ehy(y).

If we introduce the Fourier transform
8(u) = [eg(y) dy,
then
jio(u) - {1 = |ul lul <1,

0 otherwise,
and

jio(u) = iio(u + 0).
We will show that for any 6,
(12) Vi Ehy( XM = x,) > #(=) [ho() dy.
Taking 6 = 0 and letting
a, = VnEh( X} - x,) and a=n(x) [ho(y) dy = #(x),
it follows that a, — a. Let
po(A) =VnP(X¥ —x,€A) and u(A) = »(x)A|,
where |A| is the Lebesgue measure of A. Finally, define probability measures by
7(B) = a;' [ ho(y)u,(dy) and »(B) =a™" [ ho(y)u(dy).
B B

Written in terms of », and », (12) becomes

(13) Je“rmldy) — [en(dy).

Since this holds for all §, we have shown that the characteristic functions
converge, and it follows that », = », where = denotes weak convergence. Now
the function

k(y) = l[a,b](y)/ho(y)
is bounded and continuous a.s. with respect to », so it follows that

[E()mdy) = [R(3)p(dy).
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Since a, — a, this implies the desired result:
VnP(X¥ - x, € [a, b]) > (b— a)n(x),

and it only remains to prove (12).

Let o (u) = Eexp(iuX), and let J =[—j, j1] be a closed interval
|par(w)] = 1if and only if u = 2aMn for some n € Z, so if M is large |p,,(u)| # 1
on J — {0}. Let A be a bounded continuous function such that

h(u) = jewxh(x)dx

vanishes on J¢, for example, each h, qualifies if j > j(6). We will show that (12)
holds for all such A. Inverting the Fourier transform gives

1 . A
(14) h(x) = o e h(u) du.
[See Chung (1974), page 155.] If we let FM be the distribution of X,’:‘ — x,, then
1
M _ - —iuxj M,
En(X} - x,) = 5- ffe h(u) dudFM(x)

(15) X
= 5o [ o (~w)exp(ix,u)h(u) du.

Expanding the characteristic function in a power series at 0 and using the fact
that E|XM|? < C gives [see Billingsley (1978), formula (26.5), page 297]

Clul®
(16) |oar(u) — (1 — ofu?/2)| <2 TR
(Recall 62 = the variance of XM.) As M — o0, o3 = ¢ > 0, so we can pick M
large enough so that |6} — 0%| < 02/2, and then b small enough so that

Clu® o%u?

(17) TR for u € (—b, b).
With this done, we have
o2u? ou? o2u? o%u?
1- + 1- - .
(18) 0 < |py(u) < 2 g =< g < exp( 3 )

As M > o0, XM = X, so ¢y(u) = ¢, (u) uniformly in every finite interval
[Chung (1974), Theorem 6.3.1, page 160]. It follows from (18) that if M is large
and N =(-b,0b),thenforuedJ— N,

(19) loy ()] <1 — B with 8> 0.

From the last observation it follows that

(20) Vir| = [ o~ u)exp(iue,)h(u) du| < 225 (1 = B)'IA. =0
a Ine a
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as n — oo. For the interval N, change variables u = v/ Vn to get

— e~ wexpliuee, ) h(w) du
(21)
= 52 " oo enlix,0/ 7 o/ ) doi

The central limit theorem implies that

(22) o3 (—v/Vn) - exp(—o%’/2),

and by (18) the integrand is dominated by |||, exp(—o2V?%/8). So by (20)~(22)
Vn o O
—_ n(__ XU —0“v° /2, ixv

(23) o (e h(u) du > = [ = e .

To evaluate the right-hand side, we recall the definition of A(0) and do a little
calculus (or apply the inversion formula to the normal distribution) to see that
the limit is

#(x) [h(y) dy,
proving (12) and completing the proof of Lemma 4.6. O

REMARKs. (i) Above we have proved the result only for times n € Z .. To
handle a general ¢, observe that if n <t < n + 1, X is the sum of n indepen-
dent copies of X*(¢/n) and this distribution converges weakly to X as n — co.
To handle jumps at rate A > 1, just change time ¢ - At.

(ii) In the proof we used the fact that E|X¥|? < C. By more careful use of the
formula from Billingsley in the derivation of (16), this condition can be replaced
by one of the Lindeberg type. We leave this extension to the reader who needs it.

With Lemma 4.6 established, the proof of (a) in Lemma 4.3 is trivial. As we
observed earlier
m(t,0,B, ,) = e VP(XMeB, ).

Lemma 4.6 implies that if £, M - o, A > 1 and m,/t'/? - x, n,/t'/? > y, then

e~ (@ +y) /20

(24) tP(XM € B(m,, n,)) >

From this it follows that for any % there are constants b,(k), M, and ¢, > 1
(which depend on k), so that if M > M,, ¢t > t,and (m, n) € [—(kt)"?, (kt)"/?]?,
then

n) = (1 + t) '

The last result with 2 = 1 is (a). We will need the more general result in the
proof of (b) which follows.

(25) m(t,0, B
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From Lemma 2.2, my(t,0, B, ,) is larger than

[Buldz) [ as m(t — 5,0, dy)
t lly—(m, n)l|<s'/?

(26)
xm(s, y, B, ,)m(s,y+2z,B, ,).

Because of the restrictions on y and s, the last two terms are at least (recall

A=)

(27) b,(1) /(s +1).

Now ||y — (m,n)| < s¥2< £/2 and |(m, n)| < % imply |yl < 26/% <
(8(t — s))'/%, s0

(28) m(t—s,0,dy) > 2sb,(8)/(1 + ¢).

'4y—(m, n)l|<s'?
Using (27) and (28) in (26) gives

v

/t/2 b1(8)

s(1+t)

b1(8)b1(1)2 t/2 -1
TR /:o/ (1+s) 'ds

by(1) )2

m2(t707 Bm,n) (1 + S)

\%

¢ _
s t(log(l + 5) —log(1 + to)) > by(1 + t) 'log(2 + ¢t)

for t > ¢, and suitable b,. O

5. A block construction for the contact process. Our strategy for prov-
ing the contact process survives is to show that in “space-time” it dominates
two-dimensional site percolation with p close to 1. To explain our construction,
we have to recall how the contact process can be constructed from a “graphical
representation.” For each x € Z%/M we have a rate 1 Poisson process {T%,
n=12,...} and for all x, y with 0 <|lx — y|| <1, we have a rate A/v(M)
Poisson process {T\*?, n = 1,2,...}. At times T we write a 8 at x to indicate
that the particle at x dies (if one is present). At times T,»” we draw an arrow
from x to y to indicate that if x is occupied and y is vacant there will be a birth

at y.
To construct the process from the graphical representation we say there is
a path from (x, s) to (y, t) if there is a sequence of times s = s, <s; -+ <

s,+1 = t and a sequence of points x = x,, x,..., x, = y so that (i) at time s,
1 < i < n, there is an arrow from x,_, to x; and (ii) there is no § at x; during
(8;8;,1) for0 <i <n.

To construct the contact process starting from the set of sites A occupied at
time s, let

£49) = {y: there is a path from (x, s) to (y, ¢) for some x € A}.
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It should be clear that this recipe constructs the contact process. If not, see
Chapter VI of Liggett (1985) or Chapter 4 of Durrett (1988) for more details.

To describe the block construction, we need some notation. In what follows
K,, K, and K; are constants which will be chosen later. Let %= {(j, k) € Z%
J+ kiseven}. Let L = (K,/¢), I = L'/?, and let

=[(2j-1),@j+1)] x[-1,1]*"

At the kth stage of the construction we will be given sets A;,cI; for
(J, k) € Z with
9] K,/e <|A; 4l < 2K, /¢,
(I1) |A; N B,| <2Kh(e) forallnez?,

where B, =[n, — 1,n, + 1) X .-+ X[n;—1,n,+ 1) and

e~ 1/2 d=1,
h(e) = { log(¢™?) d=2,
1 d> 3.

We will say that (j, k) is open, if a modified contact process £;>* which starts
with A, occupied at time kL and is not allowed to give birth outside H; =
(2Jj - 2)l (2 J + 2)l) X R%"! survives up to time (k + 1)L, and there are sets

A%y &k N I, for i = —1,1 which have
(I,) IAj‘,k+1| = Kl/e,
(1) IAi‘,kH N B,,I < K;h(e) forall n e z°.

(Here and in what follows we will assume K, is chosen so that K, /e is an
integer.) If (j, k) is not open we set AJ' r+1 = 9. To continue the construction
onlevel £ + 1, welet A;,,, =A}" .., UAL ...

A sequence of points (m,, n),(ml, n+1),...,(m,n+k)e? is said to
be an open path if all the points are open and for 0<i<k—1, m;,,, €
{m; — 1, m; + 1}. The construction is designed so that (a) if the contact process
starts with A, , satisfying (I) and (II) occupied and there is an infinite open path
on Z starting at (0,0) (i.e,, “percolation occurs”), then the contact process
survives, and (b) the regions H;, H; are disjoint if |i —j| > 2. [Recall #=
{(m, n) € Z% m + n is even) and look at Figure 1 which shows the boxes in

=1]

Property (b) implies that given what has happened at levels £ < n — 1, the
fates of sites (m, n) on a fixed level n are independent. Combining this observa-
tion with (a) and a result from Durrett (1984) [see (1) in Section 10] gives

LemMma 5.1.  If for any A; ,, satisfying (I) and (II), the probability ( j, k) is
open is greater than or equal to 1 — k where k < 1/81, then the probability there



466 M. BRAMSON, R. DURRETT AND G. SWINDLE

L, I

£
44 as oy

-61 I, -2 I, 2L I, 6L

Fic. 1.

is no infinite open path from (0,0) on & is at most

ol 81k
S gmen/h =
e 1 — 3k

PROOF. One can easily verify by induction that the open sites on ¥ domi-
nate oriented site percolation with parameter x. The quantity given above is an
upper bound for the probability that site percolation fails to percolate; see
Durrett (1984), Section 10. O

6. Estimates for branching random walk. Let A =1 +¢ L = (K,/¢)
and let

= [(2/ - 1)LV, (2) + 1)IV?] x [-LV%, 172]% 7

Let Z? denote the branching random walk starting from a set A C I, [i.e,
Z&(x) =1if x € A, = 0, otherwise], and modified so that no births are allowed
at points outside (—2L2,2L'/%) X R¢"!. In this section we will prove

LEMMA 6.1. If 8 > 0, there are constants ¢,, K, and K, so that if |A| =
(K ,/¢), then for € < g,
P(ZA(L) 2 3K /e, j= —land 1) > 1 — 6.
ProOF. The proof of Lemma 6.1 is based on estimating the first and second

moments of Z. I.et_Zf denote the modified branching random walk starting
from Z7 = {x} (i.e., Z* when A = {x)}). First note that

(1) EZX(I) = e*VP(X; e L)),
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where X; denotes the random walk killed when it leaves (—2L'/2,2L"/?) x R4,
The proof of (1) is the same as that of (2.1).
To estimate second moments, we use the trivial inequality

@) E(e=*9Zx(1))" < E(e-*~VZ5(RY))".
Setting A = R? in Lemma 2.2 gives

E(Z) = BZ; + \[ EZ; (EZ;) ds.
0

So
E(emO0izz)? = =iy Afote‘("‘“‘“s’ ds
(3) 2
= e~ (A-Dt 4 oD (1 — e~ =Dty < -
if ¢ = A — 1 < 1. Inequalities (2) and (3) imply that
(4) o%(e*"1Zx(1)) < 2/e,

where ¢2(Y) denotes the variance of Y.

The next step is to get a lower bound on EZ"(I ), or in view of (1), a lower
bound on P(X} € I, ). To get a bound independent of M and x € I,, we observe
that if ¢ = K2/s and x = 6(K,/¢)/? with§, > § € [—1,1]¢ and we let M, > M
(possibly «) as ¢ = 0, then

(5) P(X; . e1) - P(BM°e[1,2] x [-1,1]).

Here B is a Brownian motion with mean 0 and covariance o], starting from
6 and killed when its first component exits [ —2,2], oZ is the variance defined
near (2.6) and o2 is the limit of the 0. Since o > 0 and o2 = 1/3, it follows
that 62 is bounded and bounded away from 0, so the right-hand side of (5) is at
least p > O forall § € [—1,1]¢ and M € {1,2,..., }. From this it follows that,
for any value of K,, we have for ¢ < ¢( K,),

(6) P(X%, eL)>p/2>0

forall x € [,=[-L,L]%and M > 1.
Combining (6) and (1) and recalling (4) shows that the variable
V= e O DIZH(L)
has (for small ¢)

(7) EV > plAl/2,
(8) o%(V) < 2|A| /.
So Chebyshev’s inequality implies
olA| A\ 214 16 32 1

p
9) P(VST)SP(|V—EV|2 ol AP - P AR
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If we pick K, so that 32/p?K, < §/2 and pick K, so that exp(K,)p/4 > 3, then
for ¢ < ¢(K,) and |A| > K, /e we have
(10) P(Z4 (1) < 3K,/¢) < 8/2.

The same estimate applies to I_,, and we have proved the desired result. O

7. Upper bounds. To prove the upper bounds in Theorem 1, it is enough to
show that if the volume (defined in the Introduction) satisfies

K, 32 d=1,
(1) o(M) > ( K,e 'log(e™?) d=2,
K. ! d=>3,
then the contact process survives when K, is large. If we let
e~1/2 d=1,
(2) h(e) = {log(s‘l) d=2,
1 d=>3,

then (1) can be written as
(3) o(M) > K,e 'h(e).
Our first step is to thin Z, ;‘}2 /. (the process defined in Section 6), so that there are

at most Kjh(e) particles in any set B,=[n, —1,n, +1] X - X[ng—1,
ng+ 1] with n € Z% We call the thinned process Z ..

LEMMA 7.1. Suppose 8§ > 0 and we pick ¢,, K, K, so that Lemma 6.1 holds.
Let I; be as in Section 6, and let A C I, with K,/e < |A| < 2K, /e. If K, is
large and ¢ < &, then

P(Z4 (L) > 2K, /e for j= —1,1) > 1 — 28.
ProoF. Our approach will be to show that the unrestricted process has
Z,“(‘2 ,{B,) < K3h(e) with high probability and then to apply Lemma 6.1. The

key to the estimate for the unrestricted process is obtaining upper bounds on the
second moments. Lemma 2.2 tells us that

t
E(Z;(B,))’ = m(t,x, B,) + [Bu(dz) ['ds [m(¢~ s, , dy)
0
xm(s,y, B,)m(s, y + z, B,).
By Lemma 2.4, the first term is less than or equal to C(1 + ¢)~%/% and

(5) m(s,y+2,B,) <C(1+s) %
Now

(4)

(6) fm(t —s,x,dy)m(s, y, B,) = m(t, x, B,) < Ce?/?
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if t = K,/e. Here and in what follows C is a constant which depends on d, K,
and K, and will change from line to line. As in Section 4, we have replaced ¢ by
¢t + 1 for convenience and will continue to do so. Integrating from 0 to ¢ gives

, e JCQEEd=n,
(7) [asa+s)™ <{cogi+e) -2,
c d=>=3.
Combining the results above gives for ¢ = K, /e and ¢ < 1/2,
C d=1,
(8) E(Z3(B,)’) <{ Celog(e™))  d=2,
Ced/? d=3.

Let A C I be a set with < 2K, /¢ particles and write
o) E(2XB,)’) = ¥ E(2:(B,)")+ ¥ Y EZi(B,EZ(B,).
x€A

X€EA yeA
Y*EX
Using (8), the first term on the right-hand side of (9) is smaller than
C/e d=1,
(10) Cloge™! d=2,
Celd/2-1 d > 3.
The second term on the right-hand side of (9) is smaller than
2 2
| X £2:(8,) < (41e0supP(xX; € B,)
(]_1) x€EA x
< (2K,e'C(1 + t)"”/z)2 < Ce?d2
for t = K,/¢ and ¢ < 1/2. Combining this with the estimate in (10) gives
C/e d=1,
(12) E(z#(B,)’) <{Cloge™! d=2,
Cegd/2-1 d=3.
Let V, = ZA(B,). Recalling the definition of A(¢) in (2), it follows that
EV? C

< ed/2-1

(13) E(V,; V, > K;h(e)) < Kn(e) ~ K,

If we let
Dj = Z anwn > K3h(e)
n

where the sum is over n € I; and j = —1 or 1, then

(14) ZM1) - ZM(1) < D,
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Since by the definition of I; there are at most 2% K,/¢)*/? terms in the sum, (13)
tells us that

(15) ED; < Es_l.
K
Chebyshev’s inequality gives
(16) P(D > £) < ED’ C
1/ €

where C depends on K, and K,. Picking K; to make the last quantity less than
8/2 and using Lemma 6.1 proves Lemma 7.1. O

Having shown Lemma 7.1, the next step in our proof is to show that if K, is
large, then the modified contact process considered in Section 5 does not dlffer
much from the correspondmg modified branching random walk. Let £ denote
the modified contact process in which births outside (—2L'/2,2L/?)"X R¢"! ar
not allowed, and suppose A C I, has

(I K,/e < |A| < 2K /¢,
(I1) |ANB,| <2K;h(e) forallne zZ.

If we let f,(x) = the fraction of x’s neighbors which are in (—2L'/2,2L'/?) x
R, then reasoning as we did for (1.2) gives

Els, = (A= DEL@)E ) - o E X P(x,y€ &)
x y~x
(17) A
> (- 1)EZfL(x)$ (x) - _(M_)Z Y P(x,yeZ)
X y~x
and
d __ _
(18) ZBZM = (A - DEL[,(x)ZA(x).
If we let 8(x) = ZAx) - £A(x) and subtract, then we have
d
(19) EE|3;4| <(A=1)E|82 + (M) ?E P(x,y € z}),

where |8/4| = £,8/%(x). To analyze the last equation, we use the following lemma.

LEMMA 7.2. If f(0) =0, g(t) > 0 and (d/dt)f(t) < ef(t) + g(t), then for
t<T1/g,

f(t) <e’ fo 8(s) ds.
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Proor.
t
h(¢) = e* [‘e=%g(s) ds
0

has A(0) = 0 and

d
Tdih(t) =eh(t) + g(t).

A standard comparison argument [look at ¢, = inf{t: h(¢) < f(¢)}] shows that
h(t) = f(¢). The result follows. O

Lemma 7.2 shows us that E|8/| can be estimated by bounding

(20) g(t) = E(?T)Z ¥ P(x,y < 27)

To do this, we will observe that the double sum is the number of pairs of
particles x, y € Z# with 0 < ||x — y|| < 1. Now if x ~ y, then x, y are both in B,
where n; = 1 + min([x;],[ y,]), so

(21) £(t) < ;(%EE(Z;*(B,,V).

As in the proof of Lemma 7.1 we begin by writing
Y. E(2:(B,)") = Lm(t, x, B,)
(22) + dz Itds m(t—s,x,d
xm(s, y, B,)m(s, y + 2, B,).

The first term is less than or equal to 2?EZZ. To estimate the second, we observe
that if ¢ = K, /¢,

(23) m(s,y+2z,B,) < C(1+s)
and
(24) me(t —s,x,dy)m(s, y, B,) < 29EZF < C.

Here and in what follows, C is a constant which depends upon K, and K, (and
later K3), and will change from line to line. Integrating from 0 to ¢ gives

, s c@ +t)? d=1,
(25) f0d8(1+8) Z<{Clogl+¢) d=2
C d=> 3.
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Combining (22)—~(25) gives for ¢t = K,/¢ and ¢ < 1/2,
(26) Y E(2:(B,)") < h(e).

Continuing to follow the pattern of the proof of Lemma 7.1, we let A C I, be
a set with at most 2K, /e particles, and write

(27) LE(zA(B)) =X X E(2(B,)’) + L ¥ X EZI(B,)EZ!(B,).
n n x€A n x€A yeA
Y#EX
Using (26), we see that if ¢t < K,/¢ and |A| < 2K, /¢ the first term on the
right-hand side of (27) is smaller than
(28) 2K h(e) /.

To bound the second term on the right-hand side of (27), we observe that it is
smaller than

@9) T( T E2(8,)) = L(62(8,)) s (s Ez/(B,)| SEZAB,)

For the second term on the right-hand side of (29), we observe that for ¢ < K, /e,
(30) Y EZA(B,) < 29EZ# = 29 Ale* Dt < C/e
n

since |A| < 2K, /¢. For the first term on the right-hand side of (29) we write (for
t < K,/¢)

EZ}(B,) = X e* V'P(X} € B,)

x€A

<C Y J|ANnB,| sup P(XF<B,).

me@2z)* x€B,

Now |A N B,,| < 2K;h(¢) by hypothesis II. (This is the only time that assump-
tion is used.) If x € B,,,

P(X;eB,) =P(X?eB,-x)<P(X?eB},),

where B! = [k, — 2,k; + 2) X -+ X[ky— 2, kg + 2) so the last expression in
(31) is smaller than

(32) C(2K;h(s)) ¥ P(X? e B;,) < Ch(e)

me2Z)?

(31)

since the sum over m is < 2% Combining (32) and (30) gives

(33) Y (EZA(B,))" < Ch(e) /e,

n

which when put together with (27) and (28) gives
(34) LE(ZA(B,)?) < Ch(e)/e.
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The rest is arithmetic. Using (34) with (20) and (21) gives that if v(M) >
K, h(¢)/e and € < 1/2 (recall A =1 + ¢),

®) o) = s £ £ Py e 28) < 5o TE(ZHBY) < 1

x y~x 4

Using (35) and Lemma 7.2 on the differential equation (19), we see that if
t< K,/

(36) E|82 < I%e'l.
Using Chebyshev’s inequality now gives
(37) P82 > K, /¢) < 8.

Combining the last result with Lemma 7.1, shows that if A satisfies assump-
tions (I) and (II) above, then with probability greater than 1 — 36, there are sets
Al cérn = —1 and 1, with

I) |4’ = K, /e,
(Ir) |A’ N B,| < K3h(e) forallne z?
If 8§ < 1/3 - (81)% and the contact process starts from A cC I, satisfying (I) and
(IT), then Lemma 5.1 implies that the process will survive with probability
(38) >1—w>1—3658>0
T 1-(3/9) '
We apologize to the reader for the silly arithmetic. For the proof in Section 9 it

will be important that the success probability approaches 1 as § — 0.
The arguments above have shown that if

Ce™ %2 d=1,
(39) Mz{cC(etloge™))”? d=2,
Ce~ /4 d >3,

and C is large, then the contact process survives for all time with positive
probability. Inverting gives Theorem 1.

8. Proof of Theorem 2. Let § > 0 and pick K,, K,, K; and K, so that if
we use the construction developed in Sections 5-7 and have v(M) > K e~ 'h(e),
then the probability of success is at least 1 — & when & <e¢, If we pick
e < A — 1, then the contact process with parameter A is larger than the one with
parameter 1 + ¢. To prove Theorem 2 then, it is enough to show

LEmMA 8.1. If L = K,/¢ and ¢ is small, then with a probability p, close to
(A = /A, €2, N[LY%8LY2] x [— L2, L'/?]9~1 will contain a set with

(i) |A| = K,/¢ and
(i) |A N B,| < K;h(e) foralln € 29,
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where
B,=[n,—1,n —-1)X- - X[n;—1,n,+1).

For this will imply that P(£,) > (1 — 8)p,. To prove Lemma 8.1, we will do
three things.

(a) Show that if ¢ is small, then with probability close to (A — 1)/A, ZP N
[—LY?2, L'/?]¢ will contain a set A with |A| = K, /e.

(b) Use Lemma 7.1 to conclude that with probability close to (A — 1)/A,
Z9, N ([L'/?,3LY?] x [—L*?, L/?]9" 1) contains a set satisfying (i) and (ii).

(c) Show that if ¢ is fixed, then P(|Z2;| # |£3,]) > 0 as M - oo.

If the random walk law (i.e., the distribution of X) were fixed, (a) would
follow from the fact that in a supercritical branching random walk where the
steps have mean 0 and covariance =, then as ¢ - oo,

(1) e_O‘_l)‘Zt([—tlﬂ, tl/2]d) - WP(X € [—l,l]d) in probability,

where W is the a.s. limit of e"*~VZ| and x is a normal random variable with
mean 0 and covariance 2. [See Ney (1965) or Asmussen and Kaplan (1976). For a
local limit theorem, see Theorem 4.1 in Durrett (1979).]

Unfortunately, the random walk law is not fixed so we have to reprove (1) to
show that the convergence occurs in L? uniformly in M. The first step is to
introduce

LEMMA 8.2. For any Borel set B,
E(e~*~9Z%(B) — e~ *-Z9P(X) € B))’

_ j(;tdue—(k—l)ufp(xl? e dy)f,BM(dz)
x{P(X2,€B-y)-P(X?< B)}
C(P(Xere B y-2) - P(x0< B)).

This is a special case of a formula proved in the appendix of Fleischman
(1978). To get from Lemma 8.2 to (1), we need to estimate

(2) P(X2,€H,-y)-P(X2eH,)

for H, = [—¢/2,¢/?]¢, and for most y in the support of X?. If u = r,t and
y=at"? withr,-> r, a, > a and M, > M (possibly o), then (2) approaches
(3) P(B,€J,—a) - P(BY € J,),

where J; = [—1,1]¢ and BM is a d-dimensional Brownian motion with mean 0

and covariance Ao tI starting from 0. Here 67 is the variance defined near (2.6)

and o2 is the limit of o2.

Let 1 > 0. By Chebyshev’s inequality we can pick K > 1 so that for all M
and u > 0,

(4) P(I1 X2 = K(u? + 1)) <.
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Now if ||y|| < K(u'? + 2) (the extra 1 is included to handle y + z with ||z|| < 1)
and u < ryt, then
lall = lly/87%) < K(ry? + 2¢71/2).

If r, is fixed, the second term is smaller than the first when ¢ is large. This
motivates picking r, so that

|P(BM,ed, —a) - P(BY e J,)| <72
for all r<r, |a|| <2Kr}/? and all M. Combining the last fact with the
convergence of X0%/t"/% to BM, we see that if ¢ > ¢,,
(5) \P(X2, € H,~y) - P(X? € H,)| <27/
for u < ryt and y with || y|| < K(u'/% + 2).

REMARK. To prepare for developments in the next section, we would like the
reader to observe that the argument above works if H, = [L'/% 3LY/?] x
[—LY2, LY?]9 tand J, =[1,3] X [-1,1]9"L

Using (4) and (5), we can estimate the integrals in Lemma 8.2. There are two
cases.

CASE 1. u > ryt. Estimating the two differences of probabilities by 1 and
integrating gives an upper bound

—(A=Dryt
e ( )"o’

A
L _(A-lu
(6) )\frOte du < X

the second bound resulting from replacing the upper limit by oo in the integral.

CASE 2. u < ryt. We use (5) for y with ||y|| < K(u'/2? + 1) and estimate the
two differences by 1 when | y|| > K(u'2? + 1). Using (4), it follows that the
integral is smaller than

Since n > 0 is arbitrary it follows from (6) and (7) that

(8) E(e"*DZ0(4,) — e *DZ9P(XP € A,))" - 0,
uniformly in M as t = 0. Since

9) e~ "VYZ0 > W as.,

(10) P(W > 0) = P(|Z0| > Oforall ¢) = A-t

A
and

11 P(X) € H,) > a positive limit,
t t
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it follows that for any M < oo,
(12) P(Z)(H)=M) > (A-1)/\ ast— oo.

(11) is the result promised in (a). The last detail then is to prove (c), but this is
easy. With ¢ fixed

(13) P( sup |Z2| > M1/3) -0

0<t<2K, /¢
as M — oo (compare with a branching process with no deaths). If |Z?| < M'/3
for all 0 < ¢ < 2K, /¢, then even if all the particles were in [0, 1] the rate at
which collisions occur (i.e., births from an occupied site which land on an
occupied site) would be smaller than M'/3M1/2 /v(M). It follows from this that

(14) P(|1Z0| # || for some ¢ < 2K, /¢)
<2K,M?*3/(ev(M)) >0 as M - co.
[Recall v(M) = M%)

9. Proof of Theorem 3. In this section we return to the setup‘ of Sections
5-7. A =1+ ¢ and K,-K, are the constants from the construction. (They will
have to be adjusted below.) Let L = K, /¢ and let

I = [(2j - 1)LY2,(2) + 1)L1/2] x [-L'7?, L1/2]d_1.
As in Section 8, we want to show that if § > 0 and ¢ is small, then with a
probability greater than or equal to (1 — 58)e/(1 + €), £2 N I, will contain a set
with
i) |A| = K,/¢,
(i) |A N B,| < K;h(e)forall n € 29,

where B, =[n; —1,n, + 1) X --- X[nyz— 1, ny + 1). The key to doing this is
to prove

LEMMA 9.1. If 8 > 0 and K, are given, then we can pick K, and ¢, so that
for & < g,

P(ZX(I,) = 3K /¢) = (1 — 38)e/(1 + ¢).

The last result should remind the reader of Lemma 6.1. There are two
differences. (a) We are starting with one particle, so we cannot make the error
probabilities small by making K, large. (b) We do not need to truncate the
branching process.

Once Lemma 9.1 is proved, Theorem 3 follows easily using the methods of
Section 7, so we give that part of the proof now. Pick K, and K, so that Lemma
6.1 can be applied and then increase K, so that Lemma 9.1 applies. From (7.8)
we get

C d
(1) E(ZY(B,)") <{Celog(e™!) d
Ced/? d

b

1
2,
3.

v
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So if we let V, = Z)(B,), and

—z d=1,
(2) h(e) = {log(s‘l) d=2,
1 d=3,
then
2
(3) E(V,; V,> K;h(e)) < KI:IYZE) < K£3£d/2.
If we let

D= Z an(v,,> Kh(e))?
n

where the sum is over n € I, then it follows from (3) that

4 ED ¢
< ——
() -
and Chebyshev’s inequality gives
K, ED C
(5) p(p > —) <
K,/e

Again, the next step is to thin Z} so that there are at most K ;A(¢) particles in
any B,, and call the thinned process 20 .- If K4 is large, then (5) implies

(6) P(Z{(1) > 2K /¢) > (1 — 48)e/(1 + ¢).
By increasing K,, we can guarantee the conclusion of Lemma 7.1 also holds.

To estimate the difference between the contact process and the branching
process, we write |8 = |Z7| — |¢]|, and follow the derivation of (7.19) to get

d A

— 0 - 0 0
(7) g P < (= DER + SR Y B Px v € Z0).
Using the reasoning which led to (7.26) now gives for ¢ < 1/2,
(8) Y Y P(x,ye2?) < ZE(ZO(B )?) < Ch(e).

x y~x
The last result implies that if v(M) > K, h(¢)/¢, then for ¢t < K, /¢,
A c

9 P(x,y€Z)) < —-=.
®) won & E Py <2) < g

Using (9) and Lemma 7.2 on (7), we see that if ¢ < K,/ and o(M) > K ;& 'h(e),
then

c
10 E|8?
(10) , 1< %

Using Chebyshev’s inequality now gives that if K, is large
(11) P(|80 > K, /¢) < Se.
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By picking K, larger, we can guarantee that if the contact process starts from
A C I, satisfying (i) and (ii), then it survives with probability greater than
1 — C& [see (7.38)]. Combining (11) with (6) shows that with probability greater
than (1 — 58)e/(1 + ¢) there is a set A C ¢2 N I, with properties (I) and (II).
This implies P(Q,) > (1 — C’8)¢/(1 + ¢) and the proof of Theorem 3 is com-
plete.

The key to the proof of Lemma 9.1 is the following result.
LEMMA 9.2. Let A = (1 + ¢) and suppose ¢ < 1. There is a constant (1)

[independent of M and having 8(7) - 0 as ™ — ], so that if ¢t =1/¢ and
I = [¢/2,3t'2] X [~ '/, £1/2]%" ", then
8(7)

€

E(e=*DZY(IL,) — e~ *4Z0|P(X0 € 1))’ <

REMARKS. (i) To see that the bound is the right order of magnitude, observe
that Lemma 2.1 implies that |Z,°/8| > 0 with probability approximately equal to
¢, and

E(12%,)112%4 > 0) = e"/e,
so (ignoring a few details)
E(em® 7929, )" = 1/e.

(ii) The fact that 8(7) - 0 as 7 — oo says that if = is large and |Z,°/E| > 0,
then the particles are distributed in space as the central limit theorem dictates.
Here, we have only proved the result for the one set we are interested in but the
proof below generalizes easily.

To prove Lemma 9.2, we use Lemma 8.2 and apply (8.4) and (8.5) to estimate
the terms on the right-hand side. As in Section 8, there are two cases.

CAsE 1. u > ryt. Estimating the two differences of probabilities by 1 and
integrating gives an upper bound

(12) )\fte'"‘du < 2e770 /¢,
Tt :
the second bound resulting from replacing the upper limit by oo in the integral.

CASE 2. u < ryt. We use (8.5) for y with ||y|| < K(u'/? + 1) and estimate the
two differences by 1 when ||y|| = K(u*/2? + 1). Using (8.4), it follows that the
integral is smaller than

(13) N[ e 5n du < 109/,
0

Combining the bounds from the two cases gives
(14) (2exp(—ry7) + 107) /6.
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If we pick 5 so that 10m < §/2, then for 7 large, the upper bound is smaller than
8 /& proving Lemma 9.2.

We turn now to the proof of Lemma 9.1. (6.6) implies that there is an 5 > 0 so
that if H, = [n'/2,3n'/2] X [-n'/%, n'/2]%" ! and n > n,, then

(15) P(X?eH,)=n>0.

The next step is to apply Lemma 2.1 to the branching process with offspring
distribution p, = P(|Z{| = k). If we do this, then (in the notation of Lemma 2.1)
p = e, v depends on & but converges to a positive finite limit a as ¢ > 0 and
(=g 1-e

-y T e

(16) c

since p > 1.

Writing Z, for |Z?| to simplify notation and applying Lemma 2.1 now gives
that as n — oo,
(17) P(Z,/c,p" > x|Z, > 0) > e~

Replacing » by a and e® — 1 by ¢ in the denominator of c,u” the last conclusion
can be written as

€
(18) P(Zna(T—l) > x|Zn > 0) —>e .

We want to combine the last result with Lemma 9.2 to prove Lemma 9.1. To
facilitate this, we begin by observing that if p < 5 (15) implies

2 2

P|ez,P(X? € H,) > Tp z, > 0)

e en
Z > 2 Z
(19) = P "a(e™ — 1) pa(e""‘ -nr" > 0)

4p

> P(Zn——— >—|\Z, > 0)
ale—1)  «

if n > (In2)/e. (So later we have to pick K, > In2.) From (18), the last quantity
approaches e~ %/ as n — oo and ¢ — 0. If we pick p < 1 so that e" %/ > 1 — §,
then we can pick ¢, n, so that for n > n, and ¢ <¢,,

2

(20) Plez,P(X?c H,) > T” Z,>0|>1- 25

Let

A, =e "ZYI) — e~ MZJP(XQ € I,).
A, =0on {|Z) > 0} and
(21) P(1Z0 > 0) = e/(1 + &) = e/2
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for £ < 1. So if we let n = L (which we assume is an integer) and recall Z, is an
abbreviation for |Z?|, it follows from Lemma 9.2 that

E(8})  8(K,) 2

2 0 —

Using Chebyshev’s inequality now gives

(23) P(AL < —0%/e||1Z0] > 0) < 28(K,)/p".
Pick K, > In2 [for the last computation in (19)] and large enough so that
(24) 28(K,)/p* < 8,
(25) p’exp(K,) > 3K,.
With this choice of K,, (20) and (23) give (observe that H; = I)
(26) P(Z{(1)) > 3K, /¢||Z}] > 0) = (1 - 38),
which is the desired result since
P(1Z9 > 0) > lj-e =>‘>‘—1.
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