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HEAT SEMIGROUP ON A COMPLETE RIEMANNIAN MANIFOLD

By PE1 Hsu
University of Illinois at Chicago

Let M be a complete Riemannian manifold and p(t, x, y) the minimal
heat kernel on M. Let P, be the associated semigroup. We say that M is
stochastically complete if [y, p(t, x, y)dy = 1 for all ¢ > 0, x € M; we say
that M has the Cy-diffusion property (or the Feller property) if P,f vanishes
at infinity for all ¢#> 0 whenever f is so. Let xo € M and let x(r)? >
—inf{Ric(x): p(x, xy) <7} (p is the Riemannian distance). We prove
that M is stochastically complete and has the Cy-diffusion property if
[ k(r)~!dr = oo by studying the radial part of the Riemannian Brownian
motion on M.

1. Introduction. Let (M, g) be a noncompact, connected Riemannian mani-
fold and A the Laplace-Beltrami operator. The Riemannian Brownian motion X
on M is the minimal diffusion process on M associated with the operator A/2.
The transition density p(¢, x, ¥) of the Brownian motion is the minimal funda-
mental solution of the heat operator d/d¢ — A/2. Let M U {3} be the one-point
compactification of M. As usual, we regard X as a continuous Markov process on
M U {d}. Let e be the explosion time of X, that is,

e=inf{t>0:X,=4}.

When P,e = o] =1 for one x € M (hence for all x € M since P,[e = 0] is
harmonic on M), we say M is stochastically complete. Intuitively, stochastic
completeness means that the Brownian motion will not drift to infinity in finite
amount of time. Since clearly

Ble>t]= [ p(t,x,7) &,
M
stochastic completeness also means that the heat kernel on M is conservative:
/p(t,x, y)dy=1 forallt>0,x € M.
M

Stochastic completeness is equivalent to the uniqueness of solution of heat
equation with L* initial data.

Let Cy(M) be the space of continuous functions on M vanishing at infinity.
Consider the diffusion semigroup

RI(X) = [ 1()p(t,x,5) dy
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for f € C(M). We say that P, is a Cydiffusion or M has the Cy-diffusion
property (or the Feller property) if P,C(M) c Cy(M), namely if the function
space Cy(M) is invariant under P, for any ¢ > 0. Intuitively, P, is a Cy-diffusion
if the Brownian motion starting from very far has small probability of visiting a
fixed compact set before fixed time (see the precise statement in Lemma 3.1).
Thus again C,-diffusion property means the Brownian motion will not drift away
from where it starts too fast. We would like to seek a geometric condition on M
for stochastic completeness and the Cy-diffusion property.

We will assume that M is geometrically complete, namely, complete under its
Riemannian distance p. Let x, € M be a fixed reference point on M, and
p(x) = p(x, x,). Set p(x,d) = o for all x € M. Then we have e =
inf{t > 0: p(X,) = oo}. Geometrically, the speed at which the Brownian motion
wanders away from its starting point is controlled by the lower bound of the
Ricci curvature. A quantitative version of this statement can be found in Lemma
3.2 below. Let

k(r)? = —inf{Ric(x): p(x) < r}.

Then it is reasonable to expect that conditions for stochastic completeness and
the C,-diffusion property can be expressed as growth conditions on the func-
tion k.

Stochastic completeness and the Cy-diffusion property has been discussed by
various authors. We mention Azencott [1] and Yau [10] (also (Doziuk [2]), who
proved, among other things, that a geometrically complete manifold with Ricci
curvature bounded from below by a constant [namely, x(r) < ¢ < 0] is stochas-
tically complete and has the Cy-diffusion property. Azencott [1] pointed out that
if a Cartan—Hadamard manifold has sectional curvature bounded from above by
—p(x)%*¢, then it is not stochastically complete. He also noted that every
< Cartan-Hadarmard manifold has the Cj-diffusion property. The work of Hsu
and March [5] implies that M is stochastically complete if «(r) < L(1 + r) for
some L > 0. Karp and Li [7] in an unpublished article showed that M is
stochastically complete if the volume of the geodesic ball Bg(x,) of radius R
centered at x, satisfies the growth condition vol(Bg(x,)) < exp[ cR?] for some
constant ¢. This was improved by Grigor’yan [4] to vol(Bg(x,)) < exp f(R) for
any increasing f such that [* rf(r)~!dr = oo. It was also shown in Karp and Li
[7] that M has the C,-diffusion property if there exists a constant L such that
k(r) < LQ +r).

Our result in this article can be simply stated as follows.

THEOREM. If M is complete and if [* k(r)~'dr = o, then M is stochasti-
cally complete and has the Cy-diffusion property. :

The stochastic completeness part of our result is implied by the result of
Grigor’yan [4]. Our result of the Cy-diffusion property improves the condition of
Karp and Li [7]. We show our results by studying the radial part of the
Riemannian Brownian motion of M.
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2. Stochastic completeness. Consider the radial process p(X,). According
to Kendall [8], there exists a standard Brownian motion 8, and a nondecreasing
process L, with initial value zero which increases only when X, belongs to the
cut-locus C(x,) of x,, such that for ¢ < e,

(2.1) p(X,) =B+ %LtAP(Xs) ds — L,.

Now Ap(x) is smooth on M \ C(x,). By the Hessian comparison theorem
(Greene and Wu [3], pages 19-28), Ap is locally bounded away from point x,.
We also notice that the Riemannian volume measure of C(x,) is zero. As a
consequence the Brownian motion spends zero amount of time on C(x,) and the
term [{Ap(X,)ds in (2.1) is well defined. (2.1) is essentially the result of
applying It6’s formula to function p(x). See the appendix to this section for a
proof.

Without loss of generality, we assume that function k satisfies the following
three extra conditions:

(i) x(c) > 0.
(i) « is nondecreasing.
(iii) lim, _,  x(s) = o0

Let G:[0, 0] — [0, o) be the unique solution of the equation
G'(r) =«k(r)’G(r), G0)=0, G'(0)=1.
Let (R", g*) be the Riemannian manifold with the metric g* = dr? + G(r)*d6?
[(p, @) is the usual polar coordinates on R"]. The radial Ricci curvature of
(R" g%)is
Ric(5,6) = ~(n = )& = _ (= 1u(p)"
G(p)

Now we use the Laplacian comparison theorem (Greene and Wu [3], page 26) to
manifolds (M, g) and (R", g*), and conclude that on M \ C(x,),

(22) dp < (n )G(("))

Let p} be the process on [0,00) determined by the stochastic differential
equation

n—-1 G (pF
* —
(23) ot =Bt 5 | G

Let e* be the explosion time of p}. By a comparison theorem for solutions of
stochastic differential equations (Ikeda and Watanabe [6], pages 352-356) and
the pos1t1v1ty of L,, (2.1), (2.2) and (2.3) imply p(X ) < p} for all ¢ > 0. It follows
that e* < e a.s. Thus it suffices to show that e* = oo a.s. Now we are dealing
with a one-dimensional It6-type diffusion (2.3). The condition for nonexplosion
in this case is known (Ikeda and Watanabe [6], pages 365-367): e* = oo a.s. if

))ds, ps = 0.
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and only if

def

(2.4) 1(G)E wa(r)l_"drfch(s)"_lds = .

The above condition (2.4) is the best condition for the nonexplosion of Rieman-
nian Brownian motion in general. To convert this condition into the more
explicit condition on the function «x(s) stated in our theorem, we need to show
that [* k(r)~'ds = oo implies I(G) =

Observe first that k(r)2 = G'(r)/ G(r) is nondecreasing. Integrating by parts,
we have

fo'G(s)2 di(s)? = G"(r)G(r) — G'(r)® + 1.

Hence G"(r)G(r) — G'(r)! > —1, or
G(r)? a67(r) 1
< + <
G(r) G(r)  G(r)
for r > ¢ and ¢, = 1 + k(c)"'G(c) 2 Integrating by parts again, we have
rdG™ 1G(r "1 G(e)"
[Gtoyae= L [200) 1600 10
G’ (s) n G (r) n G(c)
Since ‘G grows at least exponentially, we have [* G(r)! " dr < . Therefore
1 G(r) 0;1/2 00 1
I(G)z;/ G() 0227-/; k(r)” ds — ¢y = .

This shows M is stochastically complete.

< ex(r)’

Appendix to Section 2. We give a more direct proof of (2.1) (compare with
Kendall [8]). The key to the proof is the following remarkable property of the
distance function p. Let ¢ be a smooth, nonnegative function on M with
compact support, then

(A) [p@)de@rdrs [ o(x)8p(x) ds.

[Recall that C(x,) is the cut-locus of x,.] Inequality (A) is proved in the
appendix of Yau [11]. Now let Ap denote the Laplacian of p in the distributional
sense. The above inequality implies that the distribution

(2.5) p=ApIy ) — AP

is nonnegative on nonnegative test functions. It follows from the Riesz represen-
tation theorem that p is a Radon measure on M concentrated on the cut-locus
C(x,). Thus Ap, the distributional Laplacian of p, is itself realized as a measure
on M. A generalized Itd formula (Meyer [9]) applied to the function p gives
immediately formula (2.1) with L, equal to the continuous positive additive
functional associated with the measure p.
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It is interesting to point out that (2.1) and (A) are in fact equivalent. Thus
Kendall’s proof of (2.1) amounts to a probabilistic proof of (A).

3. C,-diffusion property. We need two lemmas. The first is elementary and
a proof can be found in Azencott [1]. The proof of the second is essentially
contained in Hsu and March [5].

LeEMMA 3.1. P, is a Cydiffusion semigroup if and only if for any compact set
K and any fixed t > 0, we have
(3.1) lim P,[T,<t]=0,

p(x)— 0
where Ty, is the first hitting time of K:
Ty =inf{t>0: X,€ K}.

LEMMA 3.2. Let
7= inf{t > 0: p(X,, X,) = 1}.

If the Ricci curvature of M in the geodesic ball B(X,) centered at X, with
radius 1 is bounded from below by —L? < —1, then

-1 —coL
Px['r <c¢lL ] <e
for some universal positive constants ¢, and c,.

Proor. This is essentially Lemma 4 of Hsu and March [5]. In the present
case, the geodesic ball B,(X,) may not entirely lie within the cut-locus. However,
we notice the following three facts:

(a) From (2.1) we have for any s < ¢,

p(X) ~p(X) < B~ B+ 5 [A0(X,) ds
(b) Away from the cut-locus C(X,), the Laplacian comparison theorem
(Greene and Wu [3], page 26) gives '
Ap < (n — 1)L coth Lp.
(c) The Brownian motion spends zero amount of time in the cut-locus.
The above three facts enable us to carry out the proof of the lemma by

repeating, mutatis mutandis, the proof of Hsu and March [5]. O

We now prove the second part of our theorem. By Lemma 3.1, it is enough to
show (3.1). We may assume that K = Bg(x,), the geodesic ball centered at x,
with radius R. Let 7 be defined as in Lemma 3.2. Consider the following
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stopping times:

$o=0,

=T,

s, = inf{t > 7,: p(xy, X,) = p(x) — 1},
=100,

8y = inf{t > 7, + 5;: p(x4, X,) = p(x) — 2},

T, =710, ,
s,=inf{t 27, +s, ;:p(X,) = p(x) — n}

(8 is the shift operator). It is clear that

(3.2) Ty = So)-R1 =T+ o+ F TR

([a] denotes the integral part of a). Now since p(X,, ) = p(x) — k + 1, we have
by Lemma 3.2

(3.3) P < em(p(x) — &+ 2)7Y] < emaxto-ke),
Choose n(x, t) to be the first integer n such that
n t
Y ok(p(x) —k+2)" 1> —.
k=1 ¢

In view of the condition [*k(s) !'ds = co such n(x, t) exists for sufficiently
large p(x), and furthermore we must have [p(x) — R] > n(x, t). Hence

n(x, t)
(Ty<tyc{nt+n+t - Fmum<t)c U {n<en(p(x) —k+2)7"}.
k=1
Using (3.3), we have
n(x, t)
(3.4) Px[TK < t] < Z e~ cerlp(x)—k+2) fp(lee—Cz"(") dr.
k=1 m(x,t)

Here we have set m(x,T) = p(x) — n(x, t) + 1 for simplicity. The choice of
n(x, t) implies that

n(x, t)—1 t
Y w(p(x) —k+2)7 " < —
k=1 G
or
p(x)+2 -1 t
3.5 . k(r < —.
( “j) ‘/;n(x,t)+2 ( ) (&

Using (3.4), (3.5) and the elementary inequality e~ ** < ae™%%/k fork > a > ¢, !,
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we have

t
P[T, < t] < k(m(x,t))ecxim ’»[2x(m(x, 1) + —|,
1

provided that m(x, t) > c;'. Now the assumption [* k(r)~'dr = o implies by
(3.5) that m(x, t) - oo as p(x) - 0. (3.1) follows immediately from the above
inequality by letting p(x) — co. The theorem is proved.
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