HEAT SEMIGROUP ON A COMPLETE RIEMANNIAN MANIFOLD

By Pei Hsu

University of Illinois at Chicago

Let M be a complete Riemannian manifold and p(t, x, y) the minimal heat kernel on M. Let P_t be the associated semigroup. We say that M is stochastically complete if $\int_M p(t, x, y) \, dy = 1$ for all t > 0, $x \in M$; we say that M has the C_0 -diffusion property (or the Feller property) if $P_t f$ vanishes at infinity for all t > 0 whenever f is so. Let $x_0 \in M$ and let $\kappa(r)^2 \ge -\inf\{\text{Ric}(x): \rho(x, x_0) \le r\}$ (ρ is the Riemannian distance). We prove that M is stochastically complete and has the C_0 -diffusion property if $\int_c^\infty \kappa(r)^{-1} dr = \infty$ by studying the radial part of the Riemannian Brownian motion on M.

1. Introduction. Let (M, g) be a noncompact, connected Riemannian manifold and Δ the Laplace-Beltrami operator. The Riemannian Brownian motion X on M is the minimal diffusion process on M associated with the operator $\Delta/2$. The transition density p(t, x, y) of the Brownian motion is the minimal fundamental solution of the heat operator $\partial/\partial t - \Delta/2$. Let $M \cup \{\partial\}$ be the one-point compactification of M. As usual, we regard X as a continuous Markov process on $M \cup \{\partial\}$. Let e be the explosion time of X, that is,

$$e = \inf\{t > 0 \colon X_t = \partial\}.$$

When $P_x[e=\infty]=1$ for one $x\in M$ (hence for all $x\in M$ since $P_x[e=\infty]$ is harmonic on M), we say M is stochastically complete. Intuitively, stochastic completeness means that the Brownian motion will not drift to infinity in finite amount of time. Since clearly

$$P_x[e>t] = \int_M p(t,x,y) \, dy,$$

stochastic completeness also means that the heat kernel on M is conservative:

$$\int_{M} p(t, x, y) dy = 1 \text{ for all } t > 0, x \in M.$$

Stochastic completeness is equivalent to the uniqueness of solution of heat equation with L^{∞} initial data.

Let $C_0(M)$ be the space of continuous functions on M vanishing at infinity. Consider the diffusion semigroup

$$P_t f(X) = \int_M f(y) p(t, x, y) dy$$

Received December 1987; revised June 1988.

AMS 1980 subject classification. 58J32.

Key words and phrases. Riemannian manifold, comparison theorems, Riemannian Brownian motion, stochastic completeness, Ricci curvature, C₀-diffusion.

for $f \in C_0(M)$. We say that P_t is a C_0 -diffusion or M has the C_0 -diffusion property (or the Feller property) if $P_tC_0(M) \subset C_0(M)$, namely if the function space $C_0(M)$ is invariant under P_t for any t>0. Intuitively, P_t is a C_0 -diffusion if the Brownian motion starting from very far has small probability of visiting a fixed compact set before fixed time (see the precise statement in Lemma 3.1). Thus again C_0 -diffusion property means the Brownian motion will not drift away from where it starts too fast. We would like to seek a geometric condition on M for stochastic completeness and the C_0 -diffusion property.

We will assume that M is geometrically complete, namely, complete under its Riemannian distance ρ . Let $x_0 \in M$ be a fixed reference point on M, and $\rho(x) = \rho(x, x_0)$. Set $\rho(x, \partial) = \infty$ for all $x \in M$. Then we have $e = \inf\{t > 0: \rho(X_t) = \infty\}$. Geometrically, the speed at which the Brownian motion wanders away from its starting point is controlled by the lower bound of the Ricci curvature. A quantitative version of this statement can be found in Lemma 3.2 below. Let

$$\kappa(r)^2 \ge -\inf\{\operatorname{Ric}(x): \rho(x) \le r\}.$$

Then it is reasonable to expect that conditions for stochastic completeness and the C_0 -diffusion property can be expressed as growth conditions on the function κ

Stochastic completeness and the C_0 -diffusion property has been discussed by various authors. We mention Azencott [1] and Yau [10] (also (Doziuk [2]), who proved, among other things, that a geometrically complete manifold with Ricci curvature bounded from below by a constant [namely, $\kappa(r) \leq c < \infty$] is stochastically complete and has the C_0 -diffusion property. Azencott [1] pointed out that if a Cartan-Hadamard manifold has sectional curvature bounded from above by $-\rho(x)^{2+\varepsilon}$, then it is not stochastically complete. He also noted that every Cartan-Hadarmard manifold has the Co-diffusion property. The work of Hsu and March [5] implies that M is stochastically complete if $\kappa(r) \leq L(1+r)$ for some L > 0. Karp and Li [7] in an unpublished article showed that M is stochastically complete if the volume of the geodesic ball $B_R(x_0)$ of radius R centered at x_0 satisfies the growth condition $\operatorname{vol}(B_R(x_0)) \leq \exp[cR^2]$ for some constant c. This was improved by Grigor'yan [4] to $\operatorname{vol}(B_R(x_0)) \leq \exp f(R)$ for any increasing f such that $\int_c^{\infty} rf(r)^{-1} dr = \infty$. It was also shown in Karp and Li [7] that M has the C_0 -diffusion property if there exists a constant L such that $\kappa(r) \leq L(1+r).$

Our result in this article can be simply stated as follows.

THEOREM. If M is complete and if $\int_c^{\infty} \kappa(r)^{-1} dr = \infty$, then M is stochastically complete and has the C_0 -diffusion property.

The stochastic completeness part of our result is implied by the result of Grigor'yan [4]. Our result of the C_0 -diffusion property improves the condition of Karp and Li [7]. We show our results by studying the radial part of the Riemannian Brownian motion of M.

1250 P. HSU

2. Stochastic completeness. Consider the radial process $\rho(X_t)$. According to Kendall [8], there exists a standard Brownian motion β_t and a nondecreasing process L_t with initial value zero which increases only when X_t belongs to the cut-locus $C(x_0)$ of x_0 , such that for t < e,

(2.1)
$$\rho(X_t) = \beta_t + \frac{1}{2} \int_0^t \Delta \rho(X_s) \, ds - L_t.$$

Now $\Delta\rho(x)$ is smooth on $M \setminus C(x_0)$. By the Hessian comparison theorem (Greene and Wu [3], pages 19–28), $\Delta\rho$ is locally bounded away from point x_0 . We also notice that the Riemannian volume measure of $C(x_0)$ is zero. As a consequence the Brownian motion spends zero amount of time on $C(x_0)$ and the term $\int_0^t \Delta\rho(X_s) \, ds$ in (2.1) is well defined. (2.1) is essentially the result of applying Itô's formula to function $\rho(x)$. See the appendix to this section for a proof.

Without loss of generality, we assume that function κ satisfies the following three extra conditions:

- (i) $\kappa(c) > 0$.
- (ii) κ is nondecreasing.
- (iii) $\lim_{s\to\infty} \kappa(s) = \infty$.

Let $G: [0, \infty] \to [0, \infty)$ be the unique solution of the equation

$$G''(r) = \kappa(r)^2 G(r), \qquad G(0) = 0, \qquad G'(0) = 1.$$

Let (R^n, g^*) be the Riemannian manifold with the metric $g^* = dr^2 + G(r)^2 d\theta^2$ $[(\rho, \theta)]$ is the usual polar coordinates on R^n . The radial Ricci curvature of (R^n, g^*) is

$$\operatorname{Ric}(\dot{\rho},\dot{\rho}) = -(n-1)\frac{G''(\rho)}{G(\rho)} = -(n-1)\kappa(\rho)^{2}.$$

Now we use the Laplacian comparison theorem (Greene and Wu [3], page 26) to manifolds (M, g) and (R^n, g^*) , and conclude that on $M \setminus C(x_0)$,

(2.2)
$$\Delta \rho \leq (n-1) \frac{G'(\rho)}{G(\rho)}.$$

Let ρ_t^* be the process on $[0, \infty)$ determined by the stochastic differential equation

(2.3)
$$\rho_t^* = \beta_t + \frac{n-1}{2} \int_0^t \frac{G'(\rho_s^*)}{G(\rho_s^*)} ds, \qquad \rho_0^* = 0.$$

Let e^* be the explosion time of ρ_t^* . By a comparison theorem for solutions of stochastic differential equations (Ikeda and Watanabe [6], pages 352-356) and the positivity of L_t , (2.1), (2.2) and (2.3) imply $\rho(X_t) \leq \rho_t^*$ for all t > 0. It follows that $e^* \leq e$ a.s. Thus it suffices to show that $e^* = \infty$ a.s. Now we are dealing with a one-dimensional Itô-type diffusion (2.3). The condition for nonexplosion in this case is known (Ikeda and Watanabe [6], pages 365-367): $e^* = \infty$ a.s. if

and only if

(2.4)
$$I(G) \stackrel{\text{def}}{=} \int_{c}^{\infty} G(r)^{1-n} dr \int_{c}^{r} G(s)^{n-1} ds = \infty.$$

The above condition (2.4) is the best condition for the nonexplosion of Riemannian Brownian motion in general. To convert this condition into the more explicit condition on the function $\kappa(s)$ stated in our theorem, we need to show that $\int_c^\infty \kappa(r)^{-1} ds = \infty$ implies $I(G) = \infty$.

Observe first that $\kappa(r)^2 = G''(r)/G(r)$ is nondecreasing. Integrating by parts, we have

$$\int_0^r G(s)^2 d\kappa(s)^2 = G''(r)G(r) - G'(r)^2 + 1.$$

Hence $G''(r)G(r) - G'(r)^2 \ge -1$, or

$$\left[\frac{G'(r)}{G(r)}\right]^2 \leq \frac{G''(r)}{G(r)} + \frac{1}{G(r)^2} \leq c_1 \kappa(r)^2$$

for $r \ge c$ and $c_1 = 1 + \kappa(c)^{-1}G(c)^{-2}$. Integrating by parts again, we have

$$\int_{c}^{r} G(s)^{n-1} ds = \frac{1}{n} \int_{c}^{r} \frac{dG^{n}(s)}{G'(s)} \ge \frac{1}{n} \frac{G(r)^{n}}{G'(r)} - \frac{1}{n} \frac{G(c)^{n}}{G'(c)}.$$

Since G grows at least exponentially, we have $\int_c^\infty G(r)^{1-n} dr < \infty$. Therefore

$$I(G) \geq \frac{1}{n} \int_{c}^{\infty} \frac{G(r)}{G'(r)} dr - c_2 \geq \frac{c_1^{-1/2}}{n} \int_{c}^{\infty} \kappa(r)^{-1} ds - c_2 = \infty.$$

This shows M is stochastically complete.

Appendix to Section 2. We give a more direct proof of (2.1) (compare with Kendall [8]). The key to the proof is the following remarkable property of the distance function ρ . Let ϕ be a smooth, nonnegative function on M with compact support, then

(A)
$$\int_{M} \rho(x) \, \Delta \phi(x) \, dx \leq \int_{M \setminus C(x_0)} \phi(x) \, \Delta \rho(x) \, dx.$$

[Recall that $C(x_0)$ is the cut-locus of x_0 .] Inequality (A) is proved in the appendix of Yau [11]. Now let $\Delta \rho$ denote the Laplacian of ρ in the distributional sense. The above inequality implies that the distribution

(2.5)
$$\mu = \Delta \rho I_{M \setminus C(x_0)} - \Delta \rho$$

is nonnegative on nonnegative test functions. It follows from the Riesz representation theorem that μ is a Radon measure on M concentrated on the cut-locus $C(x_0)$. Thus $\Delta \rho$, the distributional Laplacian of ρ , is itself realized as a measure on M. A generalized Itô formula (Meyer [9]) applied to the function ρ gives immediately formula (2.1) with L_t equal to the continuous positive additive functional associated with the measure μ .

1252 P. HSU

It is interesting to point out that (2.1) and (A) are in fact equivalent. Thus Kendall's proof of (2.1) amounts to a probabilistic proof of (A).

3. C_0 -diffusion property. We need two lemmas. The first is elementary and a proof can be found in Azencott [1]. The proof of the second is essentially contained in Hsu and March [5].

LEMMA 3.1. P_t is a C_0 -diffusion semigroup if and only if for any compact set K and any fixed t > 0, we have

(3.1)
$$\lim_{\rho(x)\to\infty} P_x[T_K \le t] = 0,$$

where T_K is the first hitting time of K:

$$T_K = \inf\{t > 0 \colon X_t \in K\}.$$

LEMMA 3.2. Let

$$\tau = \inf\{t > 0: \rho(X_0, X_t) = 1\}.$$

If the Ricci curvature of M in the geodesic ball $B_1(X_0)$ centered at X_0 with radius 1 is bounded from below by $-L^2 \le -1$, then

$$P_x \left[\tau \le c_1 L^{-1} \right] \le e^{-c_2 L}$$

for some universal positive constants c_1 and c_2 .

PROOF. This is essentially Lemma 4 of Hsu and March [5]. In the present case, the geodesic ball $B_1(X_0)$ may not entirely lie within the cut-locus. However, we notice the following three facts:

(a) From (2.1) we have for any $s \le t$,

$$\rho(X_t) - \rho(X_s) \le \beta_t - \beta_s + \frac{1}{2} \int \Delta \rho(X_s) ds.$$

(b) Away from the cut-locus $C(X_0)$, the Laplacian comparison theorem (Greene and Wu [3], page 26) gives

$$\Delta \rho \leq (n-1)L \coth L \rho$$
.

(c) The Brownian motion spends zero amount of time in the cut-locus.

The above three facts enable us to carry out the proof of the lemma by repeating, mutatis mutandis, the proof of Hsu and March [5]. \Box

We now prove the second part of our theorem. By Lemma 3.1, it is enough to show (3.1). We may assume that $K = \overline{B_R(x_0)}$, the geodesic ball centered at x_0 with radius R. Let τ be defined as in Lemma 3.2. Consider the following

stopping times:

$$\begin{split} s_0 &= 0, \\ \tau_1 &= \tau, \\ s_1 &= \inf \big\{ t \geq \tau_1 \colon \rho \big(x_0, \, X_t \big) = \rho \big(x \big) - 1 \big\}, \\ \tau_2 &= \tau \circ \theta_{s_1}, \\ s_2 &= \inf \big\{ t \geq \tau_2 + s_1 \colon \rho \big(x_0, \, X_t \big) = \rho \big(x \big) - 2 \big\}, \\ & \cdots \\ \tau_n &= \tau \circ \theta_{s_{n-1}}, \\ s_n &= \inf \big\{ t \geq \tau_n + s_{n-1} \colon \rho \big(X_t \big) = \rho \big(x \big) - n \big\} \end{split}$$

(θ is the shift operator). It is clear that

(3.2)
$$T_K \ge s_{[\rho(x)-R]} \ge \tau_1 + \tau_2 + \cdots + \tau_{[\rho(x)-R]}$$

([a] denotes the integral part of a). Now since $\rho(X_{s_{k-1}}) = \rho(x) - k + 1$, we have by Lemma 3.2

(3.3)
$$P_x \left[\tau_k \le c_1 \kappa (\rho(x) - k + 2)^{-1} \right] \le e^{-c_2 \kappa (\rho(x) - k + 2)}.$$

Choose n(x, t) to be the first integer n such that

$$\sum_{k=1}^{n} \kappa (\rho(x) - k + 2)^{-1} > \frac{t}{c_1}.$$

In view of the condition $\int_c^{\infty} \kappa(s)^{-1} ds = \infty$ such n(x, t) exists for sufficiently large $\rho(x)$, and furthermore we must have $[\rho(x) - R] \ge n(x, t)$. Hence

$$\left\{T_K \leq t\right\} \subset \left\{\tau_1 + \tau_2 + \cdots + \tau_{\left[\rho(x) - R\right]} \leq t\right\} \subset \bigcup_{k=1}^{n(x, t)} \left\{\tau_k \leq c_1 \kappa \left(\rho(x) - k + 2\right)^{-1}\right\}.$$

Using (3.3), we have

$$(3.4) P_x [T_K \le t] \le \sum_{k=1}^{n(x, t)} e^{-c_2 \kappa(\rho(x) - k + 2)} \le \int_{m(x, t)}^{\rho(x) + 1} e^{-c_2 \kappa(r)} dr.$$

Here we have set $m(x, T) = \rho(x) - n(x, t) + 1$ for simplicity. The choice of n(x, t) implies that

$$\sum_{k=1}^{n(x, t)-1} \kappa (\rho(x) - k + 2)^{-1} \le \frac{t}{c_1}$$

or

Using (3.4), (3.5) and the elementary inequality $e^{-c_2\kappa} \le ae^{-c_2a}/\kappa$ for $\kappa \ge a \ge c_2^{-1}$,

1254

we have

$$P_x \big[T_k \leq t \big] \leq \kappa \big(m(x,t) \big) e^{-c_2 \kappa (m(x,t))} \bigg[2 \kappa \big(m(x,t) \big)^{-1} + \frac{t}{c_1} \bigg],$$

provided that $m(x, t) \ge c_2^{-1}$. Now the assumption $\int_c^{\infty} \kappa(r)^{-1} dr = \infty$ implies by (3.5) that $m(x, t) \to \infty$ as $\rho(x) \to \infty$. (3.1) follows immediately from the above inequality by letting $\rho(x) \to \infty$. The theorem is proved.

Acknowledgment. I thank Harold Donnelly for showing me reference [4].

REFERENCES

- AZENCOTT, R. (1974). Behavior of diffusion semigroups at infinity. Bull. Soc. Math. France 102 193-240.
- [2] DODZIUK, J. (1983). Maximum principle for parabolic inequalities and the heat flow on open manifolds. *Indiana Univ. Math. J.* 32 703-716.
- [3] GREENE, R. E. and Wu, H. (1979). Function Theory on Manifolds which Possess a Pole. Lecture Notes in Math. 699. Springer, New York.
- [4] GRIGOR'YAN, A. A. (1987). On stochastic completeness of complete manifolds. Soviet Math. Dokl. 34 310-313.
- [5] Hsu, P. and March, P. (1985). The limiting angle of certain Riemannian Brownian motions. Comm. Pure Appl. Math. 38 755-768.
- [6] IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes. Kodansha, Tokyo/North-Holland, Amsterdam.
- [7] KARP, L. and LI, P. (1984). On the heat equation on complete manifolds. Preprint.
- [8] KENDALL, W. S. (1987). The radial part of Brownian motion on a manifold: A semimartingale property. Ann. Probab. 15 1491-1500.
- [9] MEYER, P.-A. (1978). La formule d'Itô pour le mouvement brownien d'après Brosamler. Séminaire de Probabilités XII, 1976 / 77. Lecture Notes in Math. 649 764-769. Springer, New York.
- [10] Yau, S.-T. (1978). On the heat kernel of a complete Riemannian manifold. J. Math. Pures Appl. 57 191-201.
- [11] YAU, S.-T. (1976). Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. *Indiana Univ. Math. J.* 25 659-670.

DEPARTMENT OF MATHEMATICS NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS 60208